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Abstract 

Fluid shear stress is a key modulator of cellular physiology in vitro and in vivo, but its effects 

are under-investigated due to requirements for complicated induction methods.  

Herein we report the validation of ShearFAST; a smartphone application that measures the 

rocking profile on a standard laboratory cell rocker and calculates the resulting shear stress 

arising in tissue culture plates. 

ShearFAST measured rocking profiles were validated against a graphical analysis and also 

against measures reported by an 8-camera motion tracking system.  

ShearFAST angle assessments correlated well with both analyses (r ≥0.99, p ≤0.001) with no 

significant differences in pitch detected across the range of rocking angles tested.  

Rocking frequency assessment by ShearFAST also correlated well when compared to the two 

independent validatory techniques (r ≥0.99, p ≤0.0001), with excellent reproducibility between 

ShearFAST and video analysis (mean frequency measurement difference of 0.006 ± 0.005Hz) 

and motion capture analysis (mean frequency measurement difference of 0.008 ± 0.012Hz) 

These data make the ShearFAST assisted cell rocker model make it an attractive approach 

for economical, high throughput fluid shear stress experiments.  
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Introduction 

 

Fluid shear stress (FSS) is described as the deforming force generated against a solid 

boundary by motile fluid. As an inescapable consequence of fluid flow, FSS is known to 

modulate cellular physiology in diverse cell types (1–7) and is a key aetiological (8–13) , 

prognostic and therapeutic determinant in multiple disease states (14–18) . Despite this, the 

impact of this key environmental component on cellular physiology remains underrepresented 

in the majority of cell line based research. 

This became apparent in our studies of the impact of machine perfusion techniques on renal 

tissue destined for transplantation. The presence of fluid flow via low pressure (30 mmHg) 

pulsatile perfusion is a definitive difference that separates hypothermic machine perfusion 

(HMP), a mode of ex-vivo organ preservation, from more traditional static cold storage 

techniques. Preservation using HMP results in more favorable post-transplant outcomes when 

compared to static storage (19–22), and the exertion of fluid flow is a likely mechanism by 

which HMP promotes such benefit (23–25). However, the optimal HMP environment, including 

the optimal degree of FSS for each structure within the kidney is yet to be defined by animal 

models or clinical trials. Finding a solution to this problem may be facilitated through the use 

of high throughput in vitro models.  

Cell lines potentiate high throughput screening tools to help direct refinement of organ 

preservation protocols (26–28) , however are generally performed under the absence of fluid 

flow. This is reflective of standard lab practice; multi-well dishes are an efficient means to 

subject cultured cells to large numbers of different environments and in general, experiments 

are performed using assays and equipment compatible with the multi-well plate format.  

Although tools exist that allow for simulation of fluid shear stress in vitro (29–33) , these require 

bespoke equipment and are limited by their complicated, low throughput, expensive or 

unscalable nature. These restrictions become particularly pronounced when large scale shear 

stress experiments are desired. 
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A cell rocker based method for the delivery of defined degrees of FSS has been described 

(34) and is utilised in several reports (4,35–39) . This approach uses a mathematical model to 

calculate the resulting fluid shear stress when the rocking parameters (i.e. angle and speed), 

fluid parameters (i.e. volume and viscosity) and plate dimensions are known. 

Many cell rockers possess with a means to adjust rocking angle or speed; however our 

experience has demonstrated that when even when rocking profile is modifiable, the setting 

selected may either be incompatible with the model, lack the resolution required or be grossly 

inaccurate (Figure 6).  

Difficulties in delivering the mathematical and analytical accuracy required for the proper 

execution of cell rocker FSS models may help explain the underutilisation of this otherwise 

accessible tool in in biomedical research. 

Fortunately, the technology to address these problems is currently in place in laboratories 

throughout the world. Competition between major smartphone manufacturers has led to the 

ubiquitous presence of handheld devices capable of assessing spatial orientation (40) and 

performing complex mathematical operations. Since the cell rocker-based approach does not 

require additional equipment other than the tissue culture dish itself, using smartphones to 

measure rocking profiles is a simple intuitive step that enables greater experimentation with 

FSS in cell line studies. 

This paper describes the validation of ShearFAST (Shear Formula, Angle, Speed Toolset), a 

novel smartphone-based application which enables rapid characterisation of the rocking 

profile set on a standard laboratory cell rocker, and integrates its findings into the well-

established mathematical model of cell rocker based FSS induction.  
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Methods 

 

ShearFAST 

 

ShearFAST is composed of three individual tools; The formula tool, which calculates the 

characteristic shear stress when experimental parameters are known, the angle tool which 

measures the maximal rocking angle set on the cell rocker and the speed tool which measures 

whole cycle rocking frequency.  

 

Validation of the ShearFAST Formula tool 

 

The formula tool calculates the characteristic fluid shear stress when the volume of fluid, dish 

diameter, cycle time, fluid volume and viscosity are known. The results of the formula tool 

(Figure 4) were validated against the example data from the original publication. 

 

Validation of the ShearFAST angle tool 

 

A graphical analysis method involved capturing side-on photos of the cell rocker, and 

measurement of the cell rocker platform angle with respect to 0° using ImageJ (41) (Figure 1). 

A second validation utilised an Infrared Optolectronic 8-camera System (BTS Bioengineering, 

Milan, Italy) from now on referred to as motion capture analysis (Figure 2). 

The 2.2 Megapixel infrared cameras resolution (2048x1088 px, BTS DX 6000 model) tracked 

the 3D motion of retroreflective markers placed on the rocking platform (1.2 cm in diameter) 

with a precision of 0.1 mm (see https://www.btsbioengineering.com/products/smart-dx-

motion-capture/). 
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Image J angle analysis  

 

A camera was placed aligned so it could capture a side on view of the cell rocker platform. A 

smartphone with ShearFAST installed on it was placed on the rocker and the angle tool 

calibrated to 0° with the aid of a physical spirit level.  

An image was taken of the rocker during calibration to allow for later correction of any slight 

rotation of the camera (Figure1A) 

Following calibration, the rocker angle is considered to be 0° as per the spirit level 

measurements, therefore any apparent rotation of the rocking platform was assumed to be 

due to a slight camera rotation. The degree required to rotate the image so the platform is 

perfectly horizontal was determined and applied to the rest of the images after being deemed 

a suitable approach tested on a second, rotated calibration image (Figure 1B). 

 

 

Figure 1. ShearFAST calibration using a spirit level. The leveled platform (A) was used to 

determine the angle by which the camera capturing the photo was itself offset (B), allowing 

compensation during ImageJ platform angle analysis. 
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After calibration, the cell rocker was set to a series of smartphone detected angles, with 

screenshots taken of the mean angle detected alongside side view images of the cell rocker.  

The angles set on the cell rocker images were assessed using the same method, and 

compared to the measurements obtained using the ShearFAST angle tool.  

In a typical cell culture experiment using 35mm plates and 1.5ml media, the authors of the 

original model recommend avoidance of rocking angle above 10.2° to prevent exposure of the 

adherent cells to atmosphere. Therefore, 7 angles below this were assessed using the 

ShearFAST angle tool (Table S1). 

 

Motion capture analysis 

 

To perform motion capture analysis, the cell rocker was placed at the focal point of an 8-

camera motion tracking system. Motion capture retroreflective markers were placed on the 

rocker (Figure 2A), alongside the smartphone housing the ShearFAST and a physical spirit 

level. The application was calibrated to 0º as before, then the maximal platform rocking angle 

adjusted to 12 angles falling between 0-10° using the smartphone application (Table S2).  

The platform was then set rocking, and mean angle measurements were determined using 

the SMART ANALYZER software (BTS Bioengineering, version: 1.10.469.0) throughout the 

rocking period (Figure2B) 
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Figure 2. (A) A VWR cell rocker (Cat: 444-0146) which allows manual manipulation of rocking 

angle and RPM. Six tracking balls were attached to permit detection of rocking angle and cycle 

frequency. (B) The changes in the geometric position of each tracking ball (i.e. x,y,z 

coordinates) was determined using the 8 camera BTS motion tracking system. 

 

Validation of the Speed tool. 

 

Video Frequency analysis 

 

The smartphone was placed on cell rocker, which was set to rock at speeds ranging between 

30 and 110 rotations per minute (RPM) using dials on the rocker. Using ShearFAST, the 

acquired waveform was compared to modelled waveforms of user defined frequency until the 

acquired data was overlaid, granting rapid determination of rocking frequency. 

A video was taken of each rocking experiment during ShearFAST data acquisition. The videos 

were observed alongside a stopwatch with millisecond resolution. A screencast of both video 

and stopwatch was recorded, and the timepoints at which the cell rocker reached its maximal 

rocking angle was determined over the course of the video (Figure 3). 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 14, 2020. ; https://doi.org/10.1101/2020.01.31.929513doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.929513


 9 

 

Figure 3. Measurement of cycle time using video analysis. The images show consecutive 

timepoints at which the rocking platform reached its maximum rocking angle, which were 

recorded. 

At least three timepoints were collected for each rocking speed, subtraction of each timepoint 

from its preceding timepoint granted the assessment of the mean time taken to complete one 

full rocking cycle. These were averaged (T), permitting calculation of cycle frequency (Hz) 

using Equation 1. The data is reported in Table 1, and correlations between the measurement 

methods reported in Figure 7. 

𝐻𝑧 =
1000
𝑇	𝑚𝑠	

 

Equation 1: conversion of mean cycle time to rocking frequency simulations and frequency 

measured during video analysis 

 

Motion capture Frequency analysis 

 

Motion capture frequency analysis granted an assessment of the accuracy and reproducibility 

of the smartphone frequency measurements. Using the ShearFAST, the rocking frequency 

was set to 1Hz for three measures, and 0.65Hz for four other measures and compared to the 

motion capture results (Table 2). 
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Statistical analysis 

 

Correlations between ShearFAST measurements of rocking angle or frequency and those 

detected by the other analysis were identified by the Spearman R test. Linear regression was 

used to determine if the slope generated by ShearFAST measurements of rocking pitch or 

frequency differed from those detected by the other analysis.  
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Results 

 

Validation of the Formula tool 

 

The formula tool calculates the characteristic fluid shear stress reported in when the volume 

of fluid, dish diameter, cycle speed, fluid volume and viscosity are known (Figure 4). The FSS 

calculated by the ShearFAST formula tool was validated against the example data from the 

original publication’s supplementary data (34)  

 

Figure 4. ShearFAST formula tool reproduces the example data reported in the supplementary 

data of the original publication original publication  

 

Validation of the Angle tool 

 

ImageJ angle analysis 

 

ImageJ angle analysis demonstrated a close association with the smartphone application 

measurements (r=1.0, p≤0.0004) (5A). The smartphone measurements were around 0.25° 

higher than those of the graphical analysis (Table S1), but no difference in slope was found 

between angle measurement methods (p>0.84). 
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Motion capture angle analysis  

 

On average, ShearFAST angle measures and those attained by motion capture analysis  

varied by 0.54 ± 0.16° however this difference was not found to be significant (p>0.32) (Table 

S2). Angle measures between the two angle assessment methods were found to be correlated 

(R=0.99, p ≤0.0001) (Figure 5B). 

 

 

Figure 5. Correlation between pitch measurements detected using ShearFAST and Pitch 

measurements detected using ImageJ(A) and motion capture analysis (B) 

Video frequency analysis 

 
Video analysis of rocker cycle frequency corroborates the frequency assessment by the 

smartphone application (Table 1) and (Figure 6), with strong association between 

measurement techniques (r≥0.99, p≤0.0001) and no significant difference detected between 

the two measurement techniques (p=0.9219) (Figure 7). 
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Rocker 
speed 
(RPM) 

ShearFAST 
detected 

frequency 
(Hz) 

Mean 
cycle time 

(ms) 

Standard 
deviation 
cycle time 

(ms) 

Calculated 
mean 

frequency 
(Hz) 

Difference in 
measurement 

(Hz) 

Mean 
difference 

(Hz) 

110 0.990 1003.333 41.833 0.997 0.007 0.006±0.005 

100 0.915 1077.778 131.128 0.928 0.013 

90 0.835 1206.000 23.022 0.829 0.006 

80 0.760 1326.667 70.356 0.754 0.006 

70 0.680 1481.111 40.756 0.675 0.005 

60 0.590 1695.714 151.751 0.590 0 

50 0.480 2066.667 96.885 0.484 0.004 

40 0.385 2596.667 41.633 0.385 0 

30 0.290 3600.000 105.357 0.278 0.012 
 
Table 1. The rocking frequency detected by ShearFAST at different rocking speeds. 
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Figure 6. ShearFAST measured rocking frequencies at rocker defined rocking speeds (RPM). 

Illustrating the value of the ShearFAST approach; when manually selecting the rocking speed 

60RPM (i.e. 1Hz) the resulting profile was visibly slower. ShearFAST determined a rocking 

speed of 0.59Hz which was corroborated by later video analysis (Table 1). 
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Figure 7. Correlation between ShearFAST frequency measurement and video frequency 

measurement. 

 

Motion capture frequency analysis 

This analysis revealed a small average difference in frequency assessment of 0.007 ± 

0.012Hz between measures (Table 2). 

ShearFAST 
determined 

frequency (Hz) 

Motion 
capture 

frequency 
(Hz) 

Difference 
(Hz) 

Mean Difference 
(Hz) 

1.0 1.035 0.035 0.007 ± 0.012 

1.0 0.995 0.005 

1.0 0.995 0.005 

1.0 1.0 0.0 

0.65 0.645 0.005 

0.65 0.655 0.005 

0.65 0.65 0.0 

0.65 0.65 0.0 
 

Table 2. Reproducible frequency assessment by ShearFAST and motion capture analysis 
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Discussion  

  

Within cell line research there is a drive to more accurately simulate physiological 

environments through the utilization of parallel plate flow chambers, microfluidics and organ-

on-a-chip devices. These allow continuous instigation of fluid flow, however arguably diminish 

the versatility of the cell line approach. 

The fixed growth area available to adherent cells cultured in such devices alongside the 

requirements for sperate perfusion circuits restricts both the type and number of the 

downstream analysis that can be performed.  

The cell rocker model was proposed in 2010 (34) , and has been utilised to demonstrate 

important effects of FSS in diverse cell lineages and areas of medical research; (4,35–39) . 

However, the complexity of the model, including its requirements for mathematical and 

technical accuracy may be a factor limiting its correct implementation. 

ShearFAST provides a user-friendly experience with which to perform high throughput and 

scalable cell rocker induced cell line experiments in conventional laboratory cultureware.  

We demonstrate that the speed tool interface is an effective, intuitive and very efficient means 

for the determination of whole cycle rocking frequency. ShearFAST measures of rocking 

frequency correlated strongly with those derived from the real time video analysis, with very 

small, insignificant and ineffectual differences observed when compared to the video and 

motion capture analysis (i.e. 0.006Hz and 0.007Hz respectively). 

 We also found the angle tool measures platform pitch with acceptable degrees of accuracy. 

No differences in slope were detected by between ShearFAST measured angles and motion 

capture analysis or graphical analysis. 

Consider a hypothetical experiment in which 1.5ml of cell culture media is added to a 35mm 

dish and rocked at 1Hz. On average, the mean imprecision between the ShearFAST angle 

tool and the techniques used to validate it were found to be 0.54° for the motion capture 

analysis and 0.29° for the ImageJ analysis. Assuming perfect accuracy by the validatory 

methods and an angle overestimation by ShearFAST, these mean degrees of imprecision 
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would result in a characteristic shear stress generation of 0.63 dyne/cm2  and 0.66 dyne/cm2 

respectively, rather than the mathematically calculated 0.7 dyne/cm2 resulting from the 

conditions in the described hypothetical experiment. 

Since, as modelled in the original rocker publication, FSS induced during seesaw rocking 

varies with both cycle time and dish location, these insignificant differences detected in pitch 

measurements are offset by the potential of ShearFAST to foster simple, reproduceable and 

high throughput FSS experiments. 

The ShearFAST FSS induction method is compatible with high throughput apparatus to 

control additional extracellular environments, such as oxygen availability using hypoxia 

chambers. We performed the example screen under fluid anoxia using a nitrogen purged 

hypoxia chamber, thus we can be confident the protective effect of FSS observed did not stem 

from improved oxygen delivery to the submerged monolayers.  

Cultured proximal tubule cells have been shown to respond dynamically to fluid shear stress, 

changing both their phenotype (44) , reabsorbative activities (1) as well as the 3D actin 

structure of their cytoskeleton (45) .  

 We found the mean differences in cellular viability caused by generation of fluid flux to be 

small (i.e. instigation of 1 dyne/cm2 resulted in a 7% improvement in viability when compared 

to cells stored under fluid stasis).  

This emphasizes the value of the ShearFAST assisted cell rocker model. Unlike alternative 

methods of FSS induction, it is simple and economical to perform large numbers of technical 

or biological replicates using the multiwell plate format. Through this advantage, the effects of 

biological variation between experiments may be silenced, leading to enhanced detection of 

small changes conferred by fluid movement in the extracellular environment. 

Additionally, ShearFAST permits the generation of different degrees of FSS in the same 

experiment. The volume of fluid used is a variable governing the FSS generated under the 

same rocking profile. When paired with static parallel plates containing the same volumes of 

fluid, this phenomenon may be manipulated within ShearFAST to perform a ‘dose response’ 

of FSS induction. 
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Conclusions  

ShearFAST is a useful tool which facilitates the rapid execution of fluid shear stress 

experiments using a cell rocker. The mobile format of the software permits instant user 

acquisition through established smartphone application providers, while the user interface 

provides an intuitive means with which to accurately measure the rocking profile on a standard 

laboratory cell rocker. The costless execution of ShearFAST assisted cell are particularly 

useful for proof of concept studies, and is applicable for research involving adherent cell lines.  
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