1 An allometric scaling approach to estimate epiphytic bryophyte biomass in tropical

2 montane cloud forests

- 3 Guan-Yu Lai¹, Hung-Chi Liu¹, Ariel J. Kuo², Cho-ying Huang^{1,3,*}
- ¹Department of Geography, National Taiwan University, Taipei 10617, Taiwan
- ⁵ ²Department of Civil and Environmental Engineering, University of California, Los Angeles,

6 CA 90024, USA

- ⁷ ³Research Center for Future Earth, National Taiwan University, Taipei 10617, Taiwan
- 8 *Corresponding author
- 9 Tel: 886 2 33663733; E-mail: choying@ntu.edu.tw

10 Abstract

11 Epiphytic bryophytes (EB) are some of the most commonly found plant species in tropical 12 montane cloud forests, and they play a disproportionate role in influencing the terrestrial hydrological and nutrient cycles. However, it is difficult to estimate the abundance of EB due to 13 the nature of their "epiphytic" habitat. This study proposes an allometric scaling approach to 14 measure EB biomass, implemented in 16,773 ha tropical montane cloud forests of northeastern 15 Taiwan. A general allometry was developed to estimate EB biomass of 100 cm² circular-shaped 16 17 mats (n = 131) and their central depths. A point-intercept instrument was invented to measure 18 the depths of EB along tree trunks (n = 210) below 3-m from the ground level (sampled stem surface area [SSA]) in twenty-one 30×30 m plots. Biomass of EB of each point measure was 19 20 derived using the general allometry and was aggregated across each SSA, and its performance 21 was evaluated. Total EB biomass of a tree was estimated by referring to an *in-situ* conversion 22 model and was interpolated for all trees in the plots (n = 1451). Finally, we assessed EB biomass density at the plot scale and preliminarily estimated EB biomass of the study region. 23 The general EB biomass-depth allometry showed that the depth of an EB mat was a salient 24 variable for biomass estimation ($R^2 = 0.72$, p < 0.001). The performance of upscaling from mats 25 26 to SSA was satisfactory, which allowed us to further estimate mean (± standard deviation) EB 27 biomass of the 21 plots $(272 \pm 104 \text{ kg ha}^{-1})$ and to provide preliminary estimation of the total EB biomass of 4562 Mg for the study region. Since a significant relationship between tree size 28 29 and EB abundance is commonly found, regional EB biomass may be mapped by integrating our 30 method and three-dimensional airborne data.

31 Keywords: conifer, diameter at breast height (DBH), lichen, liverwort, moss, scaling, Taiwan,
32 tree size

33 1 INTRODUCTION

34 Bryophytes are rootless, non-vascular terrestrial plants such as mosses, liverworts and hornworts. 35 Due to their primitive physiological characteristics, bryophytes are sensitive to the recent changes in climate such as increases in air temperatures (Aptroot & Van Herk 2007; Zotz & 36 Bader 2009) and atmospheric carbon dioxide (Turetsky 2003), and decreases in precipitation 37 (Gignac 2001). Epiphytic bryophytes (EB) are species that grow on the surface of a plant above 38 the ground. They are some of the most representative lifeforms of tropical montane cloud forests 39 40 (TMCF) (Barkman 1958; Smith 1982), which are ecosystems that experience frequent immersion of low altitude cloud (also known as "fog", exchangeably used hereafter) with high 41 humidity. Tropical montane cloud forests, as suggested by their name, are mostly distributed 42 over mountainous regions. While covering only about 0.14% (~30M ha) of the Earth's terrestrial 43 surface (Bruijnzeel, Mulligan, & Scatena 2011) and 2.5% of tropical forests of the world (Bubb 44 45 et al. 2004), they are the major water sources for lowland environments. As a result, TMCFs play a disproportionately-large role in the functioning of a global terrestrial ecosystem relative to their 46 limited distribution. 47

Epiphytic bryophytes may obtain necessary water and nutrients for growth by intercepting 48 parallel fog water (Stadtmüller 1987; Holwerda et al. 2010; Scholl, Eugster, & Burkard 2011). In 49 50 some regions, EB are keystone species for providing water and essential nutrients to maintain the 51 health of TMCFs (Gradstein 2008; Zotz & Bader 2009) and may affect carbon storage of an entire ecosystem. They may also influence the global hydrological cycle by modifying 52 53 precipitation and evaporation levels (Rhoades 1995; Chang, Lai, & Wu 2002; Porada, Van Stan, 54 & Kleidon 2018). In the recent decades, land use and land cover change (Ray et al. 2006), and 55 the prevailing global trend of elevated temperatures (Still, Foster, & Schneider 1999; Foster

2001) may alter regional climate in tropics, resulting in substantial ramifications on EB (Benzing
1998) and eventually TMCF. As "canaries in the coal mine" (Gignac 2001), spatiotemporal
dynamics of EB may be effective indicators for monitoring the regional and global climate
changes. One of the very first steps in this research field is to quantify the abundance of EB,
which has been a very challenging task due to nature of their habitats and diverse morphologies
(McCune & Lesica 1992).

62 Biomass is a major metric to assess the abundance of plants (Bonham 2013). For EB, 63 biomass is also a key indirect parameter to assess the capacity of TMCFs to intercept fog (Zotz & Vollrath 2003). The abundance of EB in TMCFs may be affected by microclimatic (e.g., 64 65 humidity, temperature, luminosity) and host structural (such as tree size, height and density) 66 attributes (Peck, Hong, & McCune 1995; Freiberg & Freiberg 2000; Nöske et al. 2008; Chen, 67 Liu, & Wang 2010). Field survey approaches such as destructively sampling with interpolation 68 on the ground for low stature (Ah-Peng et al. 2017) or fallen (Chen, Liu, & Wang 2010) trees, and using a ladder, rope (Hsu, Horng, & Kuo 2002; Nakanishi et al. 2016), high tower or crane 69 70 (McCune et al. 1997; McCune et al. 2000) to reach tall trees have been commonly implemented to measure EB biomass (see Table 1 a comprehensive summary). However, field EB 71 measurements have been known to be quite challenging to carry out, which made regional 72 73 quantification impractical (Moffett & Lowman 1995; Barker & Pinard 2001). In this paper, we 74 proposed a simple and effective field allometric scaling method to estimate EB biomass for 75 TMCF, which combines small-scale destructive field biomass collection, vertical point intercept 76 sampling conducted by a newly-invented instrument, and up-scaling the biomass estimation with 77 a previously established *in-situ* equation and data interpolation.

78 2 MATERIALS AND METHODS

79 2.1 Study site

The study was focused on 16,773 ha TMCF of Chilan Mountain (24°98'N, 120°97'E) in 80 northeastern Taiwan (the spatial boundary defined by referring to Schulz et al., 2017). The 81 82 precipitation in summer and winter consists of mostly orographic precipitation and tropical cyclones (regionally known as typhoons), and the northeastern monsoon, respectively. Annual 83 precipitation and mean temperature of the site are 3,500 mm y⁻¹ and 12.7°C, respectively. The 84 mean (\pm standard deviation [SD]) elevation of the site is 1680 \pm 343 m a.s.l., and mean slope (\pm 85 86 SD) is $38.2^{\circ} \pm 13.4^{\circ}$ ranging from 0° to 88.7° . The rugged terrain faces regular moist wind from 87 the Pacific Ocean resulting in frequent occurrences of upslope fog approximately 300+ days of a 88 year and 38% of the time (Lai et al. 2006). This humid bioclimate harbors a substantial amount 89 of EB. There were 49 and 24 species observed in mature old-growth and regenerated forests, 90 respectively, by a preliminary local inventory (Chang, Lai, & Wu 2002). The primary vegetation 91 type of the TMCF is conifer forest, dominated by hinoki cypress (*Chamaecyparis obtusa* var. 92 formosana) and Japanese cedar (Cryptomeria japonica). Bryophytes are the dominant epiphytic species of the region, occupying 93.5% of the total biomass (Deng 2006). 93

94 2.2 The patch scale EB biomass sampling and model development

The first step was to derive a general allometry for EB biomass, and six sites along the elevation gradient of 1200–1950 m a.s.l. were selected for sample collection (Figure S1). In the summer (May-October) of 2017, the center depth (e.g., from rhizoids to the top of a plant) of each EB species (n = 131; 113 liverworts, 17 mosses and 1 lichen) (for details of the species see the spreadsheet in Supplementary Information) within a randomly-selected 100 cm² circular patch of

100 a tree stem below 3 m above the ground was measured using a stainless steel ruler, and the 101 sample was removed using a gardening shovel. Only a single species in the patch with the 102 homogeneous depth was confirmed before the sample removal. The method has been applied 103 previously by Rodríguez-Quiel, Mendieta-Leiva and Bader (2019). We note that one lichen 104 sample was included in the model development due to the presence of a small portion of lichen 105 among EB. The samples were stored in sealed linear low-density polyethylene bags to maintain 106 moisture, then placed in an ice box and transported to a laboratory within eight hours after their 107 removal from host trees. The samples were cleaned of dead organic matter, suspended soil and 108 tree bark with tap water, dried in a 70°C biomass oven for at least 72 hours, and weighed using a 109 three decimal place electronic balance (LIBROR EB-430H, Shimadzu, Japan). In this study, EB 110 biomass was defined as the total sampled dry weight divided by the projected surface area of the sample (mg cm⁻²). The depth of EB was used as a unique trait for each independent sample to 111 112 develop EB biomass allometric equations:

113
$$W = \alpha D^{\beta}$$

(1)

where W is the EB biomass (mg cm⁻²), D is the EB depth (cm), and α and β are the exponent 114 components for the model. A power model was selected to fit the data by referring to previous 115 studies (Niklas 1993; Niklas 2006) using R v. 3.5.0. (Stanford University; http://www.r-116 project.org/). Consecutive values ranging from 0.01 to 2.0 with an interval of 0.01 were selected 117 for β with and without a fixed α value of 10 to derive an optimized model to fit the empirical 118 data using generalized least squares. The method (generalized least squares) was specifically 119 120 designed to minimize the effect of unequal variances, which were commonly observed in 121 ecological data (Pinheiro & Bates 2006). Three variance covariate functions, the exponential of a variance covariate (varExp in R), power of a variance covariate (varPower) and constant plus
power of a variance covariate (varConsPower), were used to modify regression of the fitted
values and the residuals within the fitted model. The Akaike information criterion (AIC), the
Bayesian information criterion (BIC) and log-likelihood were considered when facilitating model
selection (Burnham & Anderson 2004). All statistical analyses were conducted using the "nlme"
package in R (Pinheiro *et al.* 2019).

128 2.3 The tree scale EB biomass estimation

129 The main goal of this study was to implement a new field method for estimating EB biomass of TMCF at the regional scale. Once the allometric model (equation (1)) has been established, the 130 131 next step was to estimate EB biomass of a tree, and we could then interpolate the estimate in the 132 plot and regional scales. Twenty-one 30×30 m plots along the elevation gradient of 1260–1990 133 m a.s.l in Chilan Mountain of northeastern Taiwan were surveyed (Figure S1). Diameter at breast height (DBH) measured at 130 cm above the ground for each living tree with DBH \ge 5 cm 134 135 within 16 plots was recorded in July of 2016. The same approach was applied again to five more plots in January of 2019. During May-August of 2018 and January-February of 2019, we 136 selected 10 trees (210 trees total) within each plot evenly distributed along the DBH gradient to 137 138 interpolate EB biomass. Basal diameter (BD) of each sampled tree was also measured, and the 139 relationship between basal area and DBH was investigated.

According to Johansson (1974) and Köhler *et al.* (2007), the majority of EB (in their case,
71–91%) were present at the lower part of a tree in TMCF, which may be utilized as a salient
variable in estimating EB biomass of a tree. Therefore, a new field instrument was designed
specifically for the estimation of EB biomass at the tree scale (Figure 1). From the ground to 300

144 cm of each sampled tree stem height, the EB depths (including the absence of EB with the depth 145 of 0 cm) were recorded for every 30 cm vertical interval in several directions and were converted 146 to biomass by referring to the allometry (equation (1)) and then averaged. The procedure was not vice versa due to the non-linearity of the allometry (a power model). We note that all trees in the 147 plots were taller than 300 cm. The biomass of EB below 300 cm of a host tree was derived by 148 taking the sampled stem surface area (SSA) into account. According to the visual inspection, the 149 shape of the trunk from the ground to 130 cm was defined as a truncated cone and from 130 cm 150 151 to 300 cm from the ground as a cylinder. Accordingly, the surface area (cm²) of the trunk below 3 m (SSA) was calculated by referring to equations (2) and (3): 152

153
$$SSA = 170 \times \pi \times DBH + \pi \times l \times \left(\frac{BD}{2} + \frac{DBH}{2}\right)$$
 (2)

154
$$l = \sqrt{130^2 + (\frac{BD}{2} - \frac{DBH}{2})^2}$$
 (3)

where SSA (cm²), *l* (cm), DBH (cm) and BD (cm) are sampled stem area, slant length of the cone, diameter at breast height and basal diameter, respectively. The sampled trees with DBH larger than 20 cm were recorded in eight directions (north, northeast, east, southeast, south, southwest, west and northwest) otherwise in just four major cardinal directions by referring to a compass. In August 2019, we stripped EB mats of SSA from 30 randomly selected and widelydistributed trees of different sizes to verify the estimation.

161 **2.4 EB biomass up-scaling**

162 The biomass of EB of 10 sampled tree was estimated by referring to equation (4):

163
$$ln(M_{Total}) = 0.99 ln(DBH) + 0.68 ln(M_{SSA}) - 1.195$$
 (4)

164 where M_{total} and M_{SSA} are EB biomass (kg) of total surface area and SSA of a tree, respectively, 165 according to the *in-situ* destructive measurement by stripping EB from 10 harvested hinoki trees $(R^2 = 0.99, p < 0.001)$ (Deng 2006). Since the intercept of equation (4) is negative, resulting in 166 167 negative values for small trees, a fixed ratio of 1.3 was then applied according to Deng (2006) 168 for those trees. Sampled stem area of all trees (SSAtotal) in a plot was then estimated with the knowledge of DBH and DBH-BD of each tree (equations (2) and (3)), and EB biomass (M_{total}, 169 kg) (equation 5) and its density (kg ha⁻¹) of a plot may be estimated by referring to equation (5) 170 171 with the knowledge of EB biomass (Msampled) on SSA (SSAsampled) of 10 sampled trees.

172
$$\frac{SSA_{total}}{SSA_{sa}} = \frac{M_{total}}{M_{sampled}}$$
(5)

173 Literature search was conducted in Google Scholar (https://scholar.google.com/) with the keywords "epiphytic bryophyte" and "biomass" for a general comparison of EB biomass density 174 (with basic bioclimatic information). We note that for the sake of quality control, non-refereed 175 articles such as graduate theses and conference proceedings were excluded. Finally, since the 176 177 stand characteristics of selected plots were quite representative of the region by referring to 178 Wang and Huang (2012), Hu and Huang (2019) and several local inventory data, EB biomass of TMCF in Chilan Mountain may be estimated after taking the areal size of the region (16,773 ha) 179 180 into account.

181 **3 RESULTS**

182 **3.1** Epiphytic bryophytes biomass allometry

In this study, we collected 100 cm² circular-shaped EB samples (n = 131) from six forest stands
in Chilan Mountain along an elevation gradient. The mean (± SD [minimum–maximum])

sampled EB depth and biomass were 4.5 ± 2.9 cm (0.3–13.7 cm) and 36.0 ± 20.3 (6.2–99.3) mg cm⁻², respectively. Significant positive correlations (p < 0.005) were found among EB depth and biomass with different regression models (Table 2). Performance of the allometric equation of the power of variance covariate function ($\mathbb{R}^2 = 0.72$, p < 0.0001) with smaller AIC and BIC and greater log likelihood was superior to other models, and the model was selected for further analyses (Figure 2).

191 **3.2** The tree-scale EB biomass estimation

Ten trees evenly distributed along the DBH gradient of each plot (total 210 trees) were selected 192 to investigate the relationship between DBH and BD of EB-hosted trees. The mean (\pm SD 193 [minimum-maximum]) DBH and BD of sampled trees were 33.5 ± 27.8 (7.6–128.7) cm and 194 49.5 ± 34.5 (9.9–186.2) cm, respectively. High correlation (R² = 0.94, p < 0.0001) was found 195 between DBH and BD (Figure S2). With this information, we computed SSA in the plots by 196 197 referring to equations (2) and (3). The statistics (mean \pm SD [minimum-maximum]) of SSA was 3.5 ± 2.8 (0.81–13.5) m². Mean (\pm SD [minimum–maximum]) EB depth of the 210 sampled trees 198 was 1.1 ± 0.6 (0.1–3.1) cm, and the data was injected into the allometry (Figure 2) to yield EB 199 200 biomass (mean \pm SD [minimum-maximum]) of 10.2 \pm 5.2 (0.7–26.1) mg cm⁻² (or 402.2 \pm 478.9 [8.3–2856.6] g) on SSA. We note that there was a significant positive curvilinear relationship (p 201 202 < 0.001) between DBH of the sampled tree and EB biomass on SSA (Figure 3). 203 Biomass of epiphytic bryophytes on 30 randomly selected trees with mean (\pm SD, minimum-maximum) DBH of 26.2 ± 21.5 (5.7–93.0) cm was destructively collected to verify 204

- the proposed approach of upscaling the patch scale estimation (Figure 2) to SSA. Overall, the
- performance was satisfactory (Figure 4) and all samples but one outlier ($R^2 = 0.82$ and 0.95

207 without the outlier, p < 0.0001 for both model) were close to the 1:1 line (slope = 0.93 and 0.95 208 without the outlier, p > 0.8 for the intercepts of both models) with the mean absolute difference 209 of 77.3 g (35.2% of the mean estimate) or 56.3 g (25.2% of the mean estimate) without the 210 outlier. The outlier may be possibly due to rotten and soften tree barks underneath the EB mats 211 (observed during the sample cleaning), and the depth of tree bark may have been included in the 212 EB depth measurement, resulting in pronounced over-estimation. By applying the *in-situ* conversion function (equation (4)), the EB biomass (mean \pm SD [minimum-maximum]) for each 213 sampled tree within the plots was estimated $(818.3 \pm 1335.1 [12.9-7279.1])$ g (n = 210). 214

215 **3.3** The plot and regional scales EB biomass estimation

216 Mean (\pm SD [minimum-maximum]) DBH of the trees (n = 1451) within twenty-one plots was

217 20.3 ± 17.5 cm (5.0–176.0 cm) (detailed plot-scale statistics of forest stands see Table S1). The

EB biomass (and biomass density) for each plot can be interpolated by referring to the EB

biomass of 10 sampled trees within each plot with the mean \pm SD (minimum-maximum) of 24.5

220 \pm 9.4 (8.8-39.0) kg (or 272.0 \pm 104.0 [97.9–433.3] kg ha⁻¹). Twenty-one referred papers were

found, and 86% (18/21) of the studies reported higher EB biomass density values than our mean

222 plot/stand scale estimation (Table 1). Finally, with the knowledge of the plot-scale mean EB

biomass density, we provided the preliminary estimation of the total EB biomass of 4562 Mg for

the 16,773 ha TMCF of Chilan Mountain.

225 4 DISCUSSION

Epiphytic bryophytes are some of the most quintessential species characterizing mid-altitude
tropical montane cloud forests (Bruijnzeel, Scatena, & Hamilton 2011) and play a pivotal role in
influencing the global hydrological cycle (Porada, Van Stan, & Kleidon 2018). Due to the

diverse morphology of the species and their "epiphytic" habitat, it is difficult to quantify the
abundance of EB. In this study, we propose a novel field protocol for regional EB biomass
estimation. Our discussion will mainly focus on (1) EB depth-biomass allometry, (2) scaling of
EB biomass from the patch to the regional scale, and (3) limitation and future directions.

233 4.1 The patch scale EB depth-biomass allometry

In this study, *in-situ* general allometric equations were developed to estimate the biomass of a 234 235 100 cm² circular patch of EB using the central depth of the sample (Figure 2). The performance 236 was satisfactory, even though the morphology of EB is much more diverse than most vascular 237 plants. Plant allometry focuses on relationships between plant body size and biomass, 238 production, population density or other abundance related dependent variables (Enquist, Brown, 239 & West 1998; Enquist et al. 1999). Stanton and Reeb (2016) suggested that some characteristics 240 of bryophytes may be allometrically scaled like vascular plants, which was verified in this study. 241 The mean exponent of the five selected power models was 0.75 (3/4) (Table 2), which agrees with the 3/4 power law (Kleiber 1947) and is similar to the constant scaling exponents over a 242 243 wide range of vascular plant size, often with quarter-powers in metabolic scaling theory using biomass as an independent variable (West, Brown, & Enquist 1997; West, Brown, & Enquist 244 245 1999). However, epiphytic bryophytes are non-vascular plants composed of a simple stem, 246 which has a limited role in transporting moisture and nutrients through conducting tissues and 247 does not follow the vascular transport system as a self-similar, fractal-like branching network (Ligrone, Duckett, & Renzaglia 2000). Two major branching forms of bryophytes are sympodial 248 249 with connected modules of equal level and monopodial (Stanton & Reeb 2016). For most 250 vascular plants, the branching bifurcation is two (Enquist et al. 2007), and the height is 1/4 251 exponent of mass (West, Brown, & Enquist 1999). It was different to our empirical observation,

although the sampling unit was a mat but not an individual. This could verify that the basic
assumption of an organism's self-similar branching network plays a major role in governing the
allometric relationship.

255 4.2 Up-scaling of EB biomass

A point-intercept field instrument was invented in this study to facilitate sampling EB height data 256 257 along a tree stem, which were then used as an independent variable to estimate EB biomass 258 (Figure 2) and EB biomass of SSA, and later extrapolate to the tree scale using an *in-situ* 259 conversion equation (Equation (4)). The distribution of EB biomass on a tree could be very sensitive to the ambient environment (McCune 1993; Sillett & Antoine 2004). Therefore, we 260 measured the depth of EB in four and eight directions for small (DBH ≤ 20 cm) and large (DBH 261 > 20 cm) trees, respectively, which may reduce microclimate-induced biases. The method was 262 efficient, taking about 15 minutes for the four-direction measurement and double that amount of 263 264 time for the eight-direction measurement. This may permit rapid sampling to obtain a large 265 sample size (Table 1). With proper sampling design and data inter/extrapolation, we may be able 266 to estimate EB biomass in a large region. Mean biomass density of EB estimated in this study 267 was similar to the one conducted in the same region (230 kg ha⁻¹) but within a much smaller 268 spatial extent using a destructive tree harvesting approach (Deng 2006). Our mean plot (forest 269 stand) scale estimation of EB biomass density falls within the lower half of the EB biomass 270 density global synthesis data (Table 1). It is challenging to make a fair comparison since those 271 previous studies were conducted using different data collection methods over a wide range of 272 spatial extents. However, in terms of efficiency, the proposed new approach is indeed superior to 273 other sampling methods implementing for the sampling of 210 EB host trees in this study.

This point-intercept approach should also be applicable for the estimation of ground bryophyte biomass, and facilitates the estimation of overall abundance of bryophytes in an ecosystem. This is a pivotal but rarely available parameter, and has a major impact on regulating the terrestrial hydrological cycles (Porada, Van Stan, & Kleidon 2018). This study focused on the height of a tree below 3 m from the ground, where the majority of EB are present (Trynoski & Glime 1982) (Figure 1B). The sampled stem area may be further extended with aids of a foldable ladder.

281 4.3 Limitation and future directions

One potential research limit is that the tree scale EB biomass estimation, which was extrapolated 282 283 from the estimation on SSA (equation 4), could not be validated with empirical data. The task is 284 rather difficult and may be impractical for the study region. It requires tree climbing or 285 destructive tree harvesting to strip EB of an entire tree. However, the support of tree climbing 286 was not available during the time of conducting this study, and it could be risky to climb a smallsize tree without reliable support for a climber's body weight. Logging for both natural and 287 288 plantation forests has been completely forbidden in Taiwan since 1991. Therefore, the latter 289 option may not be possible due to the local regulation. In the future, we might be able to take the 290 advantage of tropical cyclone-induced fallen logs and harvest EB biomass at the ground level, since the island is located in a typhoon-prone region (Chi et al. 2015). However, this sampling 291 292 approach could be biased since the probability of the strong wind induced tree falling may be associated with topography (Mitchell 2013), which also plays a pivotal role in governing the 293 294 abundance of EB (Werner et al. 2012).

295

It is extremely challenging to non-destructively measure EB biomass, and a new field

296 approach was developed in this study to tackle this task. This is crucial because the age of EB on 297 a tree could be almost as old as the age of the host tree (Kimmerer 2003), and it may require 298 many years of recovery after the removal of samples (Fenton, Frego, & Sims 2003). It may be 299 useful to further generalize the EB allometry (see the supplementary spreadsheet data) to make it 300 applicable for other settings. According to this study (Figure 3) and some previous literature (Hsu, Horng, & Kuo 2002; Köhler et al. 2007; Chen, Liu, & Wang 2010), we found that there 301 may be a significant relationship between the tree size and the abundance of EB. With the 302 303 availability of a three-dimensional tree size spatial layer at the regional scale derived from high spatial resolution airborne lidar (light detection and ranging) or aerial photographic point cloud 304 data (Chung et al. 2019; Kellner et al. 2019), we may be able to map EB biomass over a vast 305 306 region.

307 ACKNOWLEDGEMENTS

We appreciate Jun Zhang and Hong-You Lin for providing field assistance. This study was
sponsored by the Ministry of Science and Technology of Taiwan (MOST 106-2633-M-002002-), National Taiwan University EcoNTU project (106R104516), and the NTU Research
Center for Future Earth from the Featured Areas Research Center Program within the
framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan.

313 AUTHORS' CONTRIBUTIONS

GYL and CyH conceived the idea and developed the method for this research and led the
writing of the manuscript; GYL, AJK and HCL analyzed the data. All authors collected field
data and contributed critically to the drafts and gave final approval for publication.

317 DATA AVAILABILITY

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.01.928515; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

318 Data used to derive epiphytic bryophyte allometry can be found in Supplementary Information.

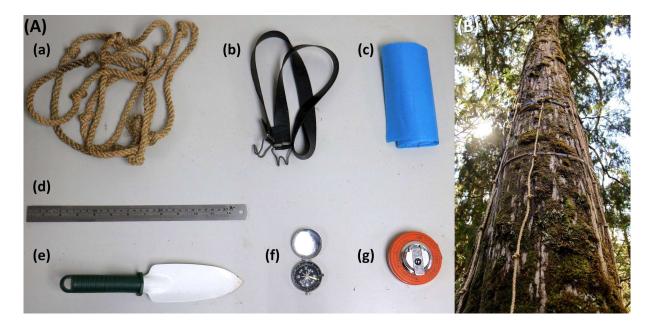
REFERENCES

320	Ah-Peng, C., Cardoso, A. W., Flores, O., West, A., Wilding, N., Strasberg, D., & Hedderson, T.
321	A. (2017). The role of epiphytic bryophytes in interception, storage, and the regulated
322	release of atmospheric moisture in a tropical montane cloud forest. Journal of Hydrology,
323	548, 665–673. https://doi.org/10.1016/j.jhydrol.2017.03.043
324	Aptroot, A., & Van Herk, C. (2007). Further evidence of the effects of global warming on
325	lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution, 146,
326	293-298. https://doi.org/10.1016/j.envpol.2006.03.018
327	Barker, M. G., & Pinard, M. A. (2001). Forest canopy research: sampling problems, and some
328	solutions. In K. E. Linsenmair, A. J. Davis, B. Fiala, & M. R. Speight (Eds), Tropical
329	forest canopies: ecology and management, Forestry Sciences, vol 69 (pp. 23–38).
330	Dordrecht, Netherlands: Springer. https://doi.org/10.1023/A:1017584130692
331	Barkman, J. J. (1958). Phytosociology and ecology of cryptogamic epiphytes: including a
332	taxonomic survey and description of their vegetation units in Europe. Assen, Netherlands:
333	Van Gorcum.
334	Benzing, D. H. (1998). Vulnerabilities of tropical forests to climate change: the significance of
335	resident epiphytes. Climatic Change, 39, 519–540.
336	https://doi.org/10.1023/a:1005312307709
337	Bonham, C. D. (2013). Measurements for Terrestrial Vegetation. West Sussex, UK: John Wiley
338	& Sons. https://doi.org/10.1002/9781118534540
339	Bruijnzeel, L., Mulligan, M., & Scatena, F. N. (2011). Hydrometeorology of tropical montane
340	cloud forests: emerging patterns. Hydrological Processes, 25, 465-498.
341	https://doi.org/10.1002/hyp.7974
342	Bruijnzeel, L. A., Scatena, F. N., & Hamilton, L. S. (2011). Tropical Montane Cloud Forests:
343	Science for Conservation and Management (International Hydrology Series). Cambridge,
344	UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511778384
345	Bubb, P., May, I. A., Miles, L., & Sayer, J. (2004). Cloud Forest Agenda. Cambridge, UK:
346	UNEP-World Conservation Monitoring Centre.
347	Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in
348	model selection. Sociological Methods & Research, 33, 261-304.
349	https://doi.org/10.1177/0049124104268644
350	Chang, SC., Lai, IL., & Wu, JT. (2002). Estimation of fog deposition on epiphytic
351	bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan.
352	Atmospheric Research, 64, 159–167. <u>https://doi.org/10.1016/S0169-8095(02)00088-1</u>
353	Chantanaorrapint, S., & Frahm, JP. (2011). Biomass and selected ecological factors of epiphytic
354	bryophyte along altitudinal gradients in Southern Thailand. Songklanakarin Journal of
355	Science & Technology, 33, 625–632.
356	Chen, L., Liu, W. y., & Wang, G. s. (2010). Estimation of epiphytic biomass and nutrient pools in
357	the subtropical montane cloud forest in the Ailao Mountains, south-western China.
358	Ecological Research, 25, 315–325. <u>https://doi.org/10.1007/s11284-009-0659-5</u>
359	Chi, CH., McEwan, R. W., Chang, CT., Zheng, C., Yang, Z., Chiang, JM., & Lin, TC.
360	(2015). Typhoon disturbance mediates elevational patterns of forest structure, but not
361	species diversity, in humid monsoon Asia. <i>Ecosystems</i> , 18, 1410–1423.
362	Chung, CH., Wang, CH., Hsieh, HC., & Huang, CY. (2019). Comparison of forest canopy
363	height profiles in a mountainous region of Taiwan derived from airborne lidar and

364	unmanned aerial vehicle imagery. GIScience & Remote Sensing, 56, 1289–1304.
365	https://doi.org/10.1080/15481603.2019.1627044
366	Coxson, D. S. (1991). Nutrient release from epiphytic bryophytes in tropical montane rain forest
367	(Guadeloupe). Canadian Journal of Botany, 69, 2122–2129. https://doi.org/10.1139/b91-
368	<u>266</u>
369	Deng, ZH. (2006). The composition, distribution, and biomass of epiphytic bryophytes of a
370	naturally regenerated Chamaecyparis obtusa var. formosana forest. Master Thesis,
371	Department of Natural Resources and Environment Studies, College of Environment
372	Studies, National Donghua University, Hualien, Taiwan.
373	Edwards, P., & Grubb, P. (1977). Studies of mineral cycling in a montane rain forest in New
374	Guinea: I. The distribution of organic matter in the vegetation and soil. Journal of
375	<i>Ecology</i> , 65, 943–969. <u>https://doi.org/10.2307/2259387</u>
376	Enquist, B. J., Brown, J. H., & West, G. B. (1998). Allometric scaling of plant energetics and
377	population density. <i>Nature</i> , 395, 163–165. <u>https://doi.org/10.1038/25977</u>
378	Enquist, B. J., Kerkhoff, A. J., Huxman, T. E., & Economo, E. P. (2007). Adaptive differences in
379	plant physiology and ecosystem paradoxes: insights from metabolic scaling theory.
380	<i>Global Change Biology, 13</i> , 591–609. <u>https://doi.org/10.1111/j.1365-2486.2006.01222.x</u>
381	Enquist, B. J., West, G. B., Charnov, E. L., & Brown, J. H. (1999). Allometric scaling of
382	production and life-history variation in vascular plants. <i>Nature</i> , 401, 907–911.
383	https://doi.org/10.1038/44819 Fonton N. L. Frage K. A. & Sime M. B. (2002) Changes in farest flags brought to (mass and
384	Fenton, N. J., Frego, K. A., & Sims, M. R. (2003). Changes in forest floor bryophyte (moss and liverwort) communities 4 years after forest harvest. <i>Canadian Journal of Botany</i> , 81,
385 386	714–731. https://doi.org/10.1139/b03-063
387	Foster, P. (2001). The potential negative impacts of global climate change on tropical montane
388	cloud forests. <i>Earth-Science Reviews</i> , 55, 73–106. https://doi.org/10.1016/S0012-
389	8252(01)00056-3
390	Freiberg, M., & Freiberg, E. (2000). Epiphyte diversity and biomass in the canopy of lowland
391	and montane forests in Ecuador. Journal of Tropical Ecology, 16, 673–688.
392	https://doi.org/10.1017/S0266467400001644
393	Gehrig-Downie, C., Obregón, A., Bendix, J., & Gradstein, S. R. (2011). Epiphyte biomass and
394	canopy microclimate in the tropical lowland cloud forest of French Guiana. <i>Biotropica</i> ,
395	43, 591–596. https://doi.org/10.1111/j.1744-7429.2010.00745.x
396	Gignac, L. D. (2001). Bryophytes as indicators of climate change. The Bryologist, 104, 410-420.
397	Gradstein, S. R. (2008). Epiphytes of tropical montane forests-impact of deforestation and
398	climate change. Göttingen Centre for Biodiversity and Ecology. Biodiversity and Ecology
399	Series, 2, 51–65.
400	Häger, A., & Dohrenbusch, A. (2011). Hydrometeorology and structure of tropical montane
401	cloud forests under contrasting biophysical conditions in north-western Costa Rica.
402	Hydrological Processes, 25, 392–401. https://doi.org/10.1002/hyp.7726
403	Hölscher, D., Köhler, L., van Dijk, A. I., & Bruijnzeel, L. S. (2004). The importance of epiphytes
404	to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of
405	Hydrology, 292, 308-322. https://doi.org/10.1016/j.jhydrol.2004.01.015
406	Hofstede, R. G., Wolf, J. H., & Benzing, D. H. (1993). Epiphytic biomass and nutrient status of a
407	Colombian upper montane rain forest. Selbyana, 14, 37–45.
408	Holwerda, F., Bruijnzeel, L., Muñoz-Villers, L., Equihua, M., & Asbjornsen, H. (2010). Rainfall
409	and cloud water interception in mature and secondary lower montane cloud forests of
	18

410	central Veracruz, Mexico. Journal of Hydrology, 384, 84–96.
411	https://doi.org/10.1016/j.jhydrol.2010.01.012
412	Hsu, CC., Horng, FW., & Kuo, CM. (2002). Epiphyte biomass and nutrient capital of a moist
413	subtropical forest in north-eastern Taiwan. Journal of Tropical Ecology, 18, 659–670.
414	https://doi.org/10.1017/S0266467402002432
415	Hu, KT., & Huang, Cy. (2019). A metabolic scaling theory-driven remote sensing approach to
416	map spatiotemporal dynamics of litterfall in a tropical montane cloud forest.
417	International Journal of Applied Earth Observation and Geoinformation, 82, 101896.
418	https://doi.org/10.1016/j.jag.2019.06.006
419	Johansson, D. (1974). Ecology of vascular epiphytes in West African rain forest. Acta
420	Phytogeographica Seucica, 59, 1–136.
421	Köhler, L., Tobón, C., Frumau, K. A., & Bruijnzeel, L. S. (2007). Biomass and water storage
422	dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa
423	Rica. Plant Ecology, 193, 171-184. https://doi.org/10.1007/s11258-006-9256-7
424	Kürschner, H., & Parolly, G. (2004). Phytomass and water-storing capacity of epiphytic rain
425	forest bryophyte communities in S Ecuador. Botanische Jahrbücher, 125, 489–504.
426	https://doi.org/10.1127/0006-8152/2004/0125-0489
427	Kellner, J. R., Albert, L. P., Burley, J. T., & Cushman, K. (2019). The case for remote sensing of
428	individual plants. American Journal of Botany, 106, 1139–1142.
429	https://doi.org/10.1002/ajb2.1347
430	Kimmerer, R. W. (2003). Gathering Moss: A Natural and Cultural History of Mosses. Oregon,
431	US: Oregon State University Press.
432	Kleiber, M. (1947). Body size and metabolic rate. <i>Physiological Reviews</i> , 27, 511–541.
433	https://doi.org/10.1152/physrev.1947.27.4.511
434	Lai, I., Chang, SC., Lin, PH., Chou, CH., & Wu, JT. (2006). Climatic characteristics of the
435	subtropical mountainous cloud forest at the Yuanyang Lake long-term ecological research
436	site, Taiwan. Taiwania, 51, 317–329. https://doi.org/10.6165/tai.2006.51(4).317
437	Ligrone, R., Duckett, J., & Renzaglia, K. (2000). Conducting tissues and phyletic relationships of
438	bryophytes. Philosophical Transactions of the Royal Society of London. Series B:
439	Biological Sciences, 355, 795–813. https://doi.org/10.1098/rstb.2000.0616
440	McCune, B. (1993). Gradients in epiphyte biomass in three Pseudotsuga-Tsuga forests of
441	different ages in western Oregon and Washington. The Bryologist, 96, 405-411.
442	https://doi.org/10.2307/3243870
443	McCune, B., Amsberry, K., Camacho, F., Clery, S., Cole, C., Emerson, C., Felder, G., French, P.,
444	Greene, D., & Harris, R. (1997). Vertical profile of epiphytes in a Pacific Northwest old-
445	growth forest. Northwest Science, 71, 145–152.
446	McCune, B., & Lesica, P. (1992). The trade-off between species capture and quantitative
447	accuracy in ecological inventory of lichens and bryophytes in forests in Montana. The
448	Bryologist, 95, 296–304. https://doi.org/10.2307/3243488
449	McCune, B., Rosentreter, R., Ponzetti, J. M., & Shaw, D. C. (2000). Epiphyte habitats in an old
450	conifer forest in western Washington, USA. The Bryologist, 103, 417-428.
451	https://doi.org/10.1639/0007-2745(2000)103[0417:EHIAOC]2.0.CO;2
452	Mitchell, S. (2013). Wind as a natural disturbance agent in forests: a synthesis. <i>Forestry: An</i>
453	International Journal of Forest Research, 86, 147–157.
454	https://doi.org/10.1093/forestry/cps058
455	Moffett, M. W., & Lowman, M. D. (1995). Canopy Access Techniques. In M. W. Moffett, & M.

456	D. Lowman (Eds), Forest canopies (pp. 3–26). San Diego: Academic Press.
457	Nöske, N. M., Hilt, N., Werner, F. A., Brehm, G., Fiedler, K., Sipman, H. J., & Gradstein, S. R.
458	(2008). Disturbance effects on diversity of epiphytes and moths in a montane forest in
459	Ecuador. Basic and Applied Ecology, 9, 4–12. https://doi.org/10.1016/j.baae.2007.06.014
460	Nadkarni, N. M. (1984a). Biomass and mineral capital of epiphytes in an Acer macrophyllum
461	community of a temperate moist coniferous forest, Olympic Peninsula, Washington State.
462	Canadian Journal of Botany, 62, 2223–2228. https://doi.org/10.1139/b84-302
463	Nadkarni, N. M. (1984b). Epiphyte biomass and nutrient capital of a neotropical elfin forest.
464	Biotropica, 249–256. https://doi.org/10.2307/2387932
465	Nadkarni, N. M., Schaefer, D., Matelson, T. J., & Solano, R. (2004). Biomass and nutrient pools
466	of canopy and terrestrial components in a primary and a secondary montane cloud forest,
467	Costa Rica. Forest Ecology and Management, 198, 223–236.
468	https://doi.org/10.1016/j.foreco.2004.04.011
469	Nakanishi, A., Sungpalee, W., Sri-Ngernyuang, K., & Kanzaki, M. (2016). Large variations in
470	composition and spatial distribution of epiphyte biomass on large trees in a tropical
471	montane forest of northern Thailand. <i>Plant Ecology</i> , 217, 1157–1169.
472	https://doi.org/10.1007/s11258-016-0640-7
473	Niklas, K. J. (1993). The allometry of plant reproductive biomass and stem diameter. American
474	Journal of Botany, 80, 461-467. https://doi.org/10.2307/2445392
475	Niklas, K. J. (2006). A phyletic perspective on the allometry of plant biomass-partitioning
476	patterns and functionally equivalent organ-categories. New Phytologist, 171, 27-40.
477	https://doi.org/10.1111/j.1469-8137.2006.01760.x
478	Peck, J. E., Hong, W. S., & McCune, B. (1995). Diversity of epiphytic bryophytes on three host
479	tree species, thermal Meadow, Hotsprings Island, Queen Charlotte Islands, Canada. The
480	Bryologist, 98, 123–128. https://doi.org/10.2307/3243648
481	Pentecost, A. (1998). Some observations on the biomass and distribution of cryptogamic
482	epiphytes in the upper montane forest of the Rwenzori Mountains, Uganda. Global
483	Ecology & Biogeography Letters, 7, 273–284. https://doi.org/10.2307/2997601
484	Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS. New York: Springer
485	Science & Business Media. https://doi.org/10.1007/b98882
486	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2019). nlme: Linear and nonlinear
487	mixed effects models. R Package Version 3.1-141, 3, 111. Retrieved from https://cran.r-
488	project.org/web/packages/nlme/index.html
489	Porada, P., Van Stan, J. T., & Kleidon, A. (2018). Significant contribution of non-vascular
490	vegetation to global rainfall interception. Nature Geoscience, 11, 563-567.
491	https://doi.org/10.1038/s41561-018-0176-7
492	Ray, D. K., Nair, U. S., Lawton, R. O., Welch, R. M., & Pielke Sr, R. A. (2006). Impact of land
493	use on Costa Rican tropical montane cloud forests: Sensitivity of orographic cloud
494	formation to deforestation in the plains. Journal of Geophysical Research: Atmospheres,
495	111. https://doi.org/10.1029/2005JD006096
496	Rhoades, F. M. (1995). Nonvascular epiphytes in forest canopies: worldwide distribution,
497	abundance, and ecological roles. In M. D. Lowman, & H. B. Rinker (Eds), Forest
498	canopies (pp. 353-408). San Diego, California: Academic Press.
499	Rieley, J., Richards, P., & Bebbington, A. (1979). The ecological role of bryophytes in a North
500	Wales woodland. Journal of Ecology, 67, 497-527. https://doi.org/10.2307/2259109


501 Rodríguez-Quiel, E. E., Mendieta-Leiva, G., & Bader, M. Y. (2019). Elevational patterns of

502	bryophyte and lichen biomass differ among substrates in the tropical montane forest of
503	Baru Volcano, Panama. Journal of Bryology, 41, 95–106.
504	https://doi.org/10.1080/03736687.2019.1584433
505	Scholl, M., Eugster, W., & Burkard, R. (2011). Understanding the role of fog in forest hydrology:
506	stable isotopes as tools for determining input and partitioning of cloud water in montane
507	forests. Hydrological Processes, 25, 353-366. https://doi.org/10.1002/hyp.7762
508	Schulz, H. M., Li, CF., Thies, B., Chang, SC., & Bendix, J. (2017). Mapping the montane
509	cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PloS
510	ONE, 12, e0172663.
511	Sillett, S. C., & Antoine, M. E. (2004). Lichens and bryophytes in forest canopies. In M. D.
512	Lowman, & H. B. Rinker (Eds), Forest canopies (pp. 151–174). Cambridge,
513	Massachusetts: Academic Press. https://doi.org/10.1016/B978-012457553-0/50013-7
514	Smith, A. J. E. (1982). Epiphytes and epiliths. In A. J. E. Smith (Ed), <i>Bryophyte Ecology</i> (pp.
515	191–227). Dordrecht, Netherlands: Springer. <u>https://doi.org/10.1007/978-94-009-5891-</u>
516	3 7
517	Stadtmüller, T. (1987). Cloud Forests in the Humid Tropics: A Bibliographic Review. Tokyo,
518	Japan: United Nations University Press.
519	Stanton, D. E., & Reeb, C. (2016). Morphogeometric approaches to non-vascular plants.
520	Frontiers in Plant Science, 7, 916. https://doi.org/10.3389/fpls.2016.00916
521	Still, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on
522	tropical montane cloud forests. Nature, 398, 608-610. https://doi.org/10.1038/19293
523	Tol, G. J., & Cleef, A. M. (1994). Above-ground biomass structure of a Chusquea tessellata
524	bamboo páramo, Chingaza National Park, Cordillera Oriental, Colombia. Vegetatio, 115,
525	29–39. https://doi.org/10.1007/BF00119384
526	Trynoski, S. E., & Glime, J. M. (1982). Direction and height of bryophytes on four species of
527	northern trees. The Bryologist, 281–300. https://doi.org/10.2307/3243047
528	Turetsky, M. R. (2003). The role of bryophytes in carbon and nitrogen cycling. <i>The Bryologist</i> ,
529	106, 395–410. https://doi.org/10.1639/05
530	Wang, HC., & Huang, CY. (2012). Investigating the spatial heterogeneity of a subtropical
531	montane cloud forest plantation with a QuickBird image. International Journal of Remote
532	Sensing, 33, 7868–7885. https://doi.org/10.1080/01431161.2012.703346
533	Werner, F., Homeier, J., Oesker, M., & Boy, J. (2012). Epiphytic biomass of a tropical montane
534	forest varies with topography. Journal of Tropical Ecology, 28, 23-31.
535	https://doi.org/10.1017/S0266467411000526
536	West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric
537	scaling laws in biology. Science, 276, 122–126.
538	https://doi.org/10.1126/science.276.5309.122
539	West, G. B., Brown, J. H., & Enquist, B. J. (1999). A general model for the structure and
540	allometry of plant vascular systems. Nature, 400, 664–667.
541	Ye, J., Hao, Z., & Dai, G. (2004). Bryophyte biomass in dark coniferous forest of Changbai
542	Mountain. The Journal of Applied Ecology, 15, 737–740.
543	Zotz, G., & Bader, M. Y. (2009). Epiphytic plants in a changing world-global: change effects on
544	vascular and non-vascular epiphytes. In U. Lüttge, W. Beyschlag, B. Büdel, & D. Francis
545	(Eds), Progress in Botany, vol. 70 (pp. 147–170). Berlin, Heidelberg: Springer.
546	https://doi.org/10.1007/978-3-540-68421-3_7
F 4 7	$7 \leftarrow C + 8 + 11 + 4 + D + (2002) + T + \frac{1}{2} + \frac{1}{2$

547 Zotz, G., & Vollrath, B. (2003). The epiphyte vegetation of the palm Socratea exorrhiza-

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.01.928515; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

548 correlations with tree size, tree age and bryophyte cover. *Journal of Tropical Ecology, 19*,
549 81–90. <u>https://doi.org/10.1017/S0266467403003092</u>

551 FIGURE 1 (A) The field instrument utilized in this study to estimate the biomass of epiphytic 552 bryophytes (EB) in tropical montane cloud forests of northeastern Taiwan: (a) A 3-m rope with 30 cm long intervals marked by knots, (b) an adjustable rubber strip to fix ropes to a tree stem, 553 (c) large, strong, and tear-resistant plastic bags to store EB from sampled stem surface area, (d) a 554 555 stainless steel ruler to measure the heights of EB mats before removing samples with (e) a 556 gardening shovel, (f) a compass to facilitate placing ropes in different orientations, (g) a fabric 557 diameter tape to measure the sampled stem surface area. (B) A demonstration. The photograph 558 was taken in Chilan Mountain by G. Lai in January 2019.

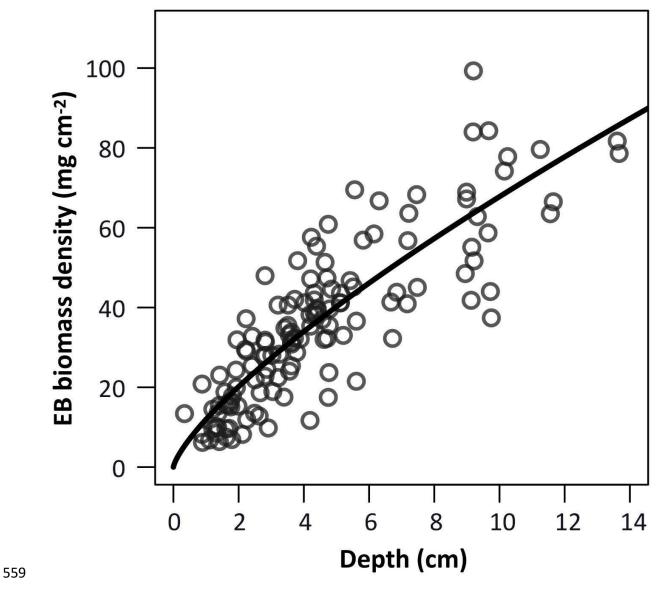
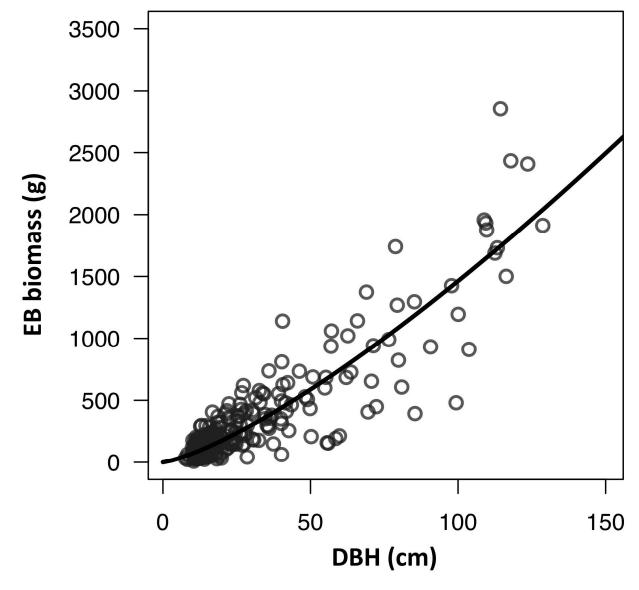



FIGURE 2 The best empirical general depth-biomass allometric model of epiphytic bryophytes (EB). The model was a power of variance covariate function ($R^2 = 0.72$, AIC = 380, p < 0.001, n = 131), and the performance was superior to other models (Table 2) with coefficient and

solution exponent of 11.96 and 0.75, respectively.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.01.928515; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

FIGURE 3 The relationship between diameter at breast height (DBH) and epiphytic bryophyte (EB) biomass of sampled stem surface area based upon 10 sampled trees of different DBH sizes on the 21 field plots (n = 210, Figure S1): EB biomass = 3.40DBH^{1.32} (R²= 0.86, p < 0.001).

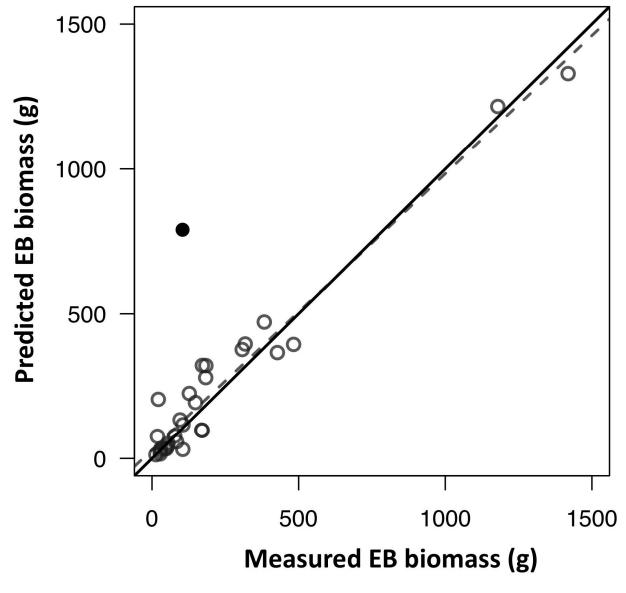


FIGURE 4 The comparison of model-predicted epiphytic bryophyte (EB) biomass and field
collected EB biomass. The black solid dot indicates an apparent outlier in which EB inhabited on
decomposed tree bark.

572	TABLE 1 Summary of the plot or the forest stand scale epiphytic bryophyte (EB) biomass density (kg ha ⁻¹) research reported in
573	refereed literature. For the sake of quality, only peer-reviewed articles are listed. The table is organized based upon the data collection
574	methods; "Climbing" includes the use of rope or ladder, and "Ground" indicates EB samples were reachable from the ground or
575	removed from fallen logs. We note that studies that combined terrestrial bryophyte biomass or did not specify the collection of EB
576	biomass only are not listed in this table. Annual precipitation (AP, mm y ⁻¹), mean annual temperature (MAT, °C) and elevation (m
577	a.s.l.) of each site were directly obtained from its corresponding article. If the information was missing, it was then obtained from the
578	internet. The ecosystems labelled as TMCF could be tropical montane cloud forest, or other similar forest ecosystems including
579	tropical montane rain forest or tropical montane moist forest. The ones categorized as TCF are temperate conifer forests. To make the
580	comparison legitimate, dead EB and humus mass was not included in the estimation. Studies only sampled part of EB biomass of trees
581	such as a tree trunk (e.g., Kürschner & Parolly, 2004) are also not listed here.

Method	Location	AP	MAT	Elevation	Ecosystem	Tree sample	EB biomass	Reference
Climbing	La Soufriére, Guadeloupe	1780	26.3	1330	TMCF	Not available	12336	Coxson (1991)
	Mascarene Archipelago, Madagascar	8000	24	1350	TMCF	Not available	9020	Ah-Peng <i>et al.</i> (2017)
	Santa Rosa de Cabal, Colombia	1250	5.5	3700	TMCF	1	6850	Hofstede, Wolf and Benzing (1993)
	Olympic Mountains, US	4700	9.6	179	TCF	3	6527	Nadkarni (1984a)
	Cordillera de Talamanca, Costa Rica	5193	16.8	1555	TMCF	15	6225	Köhler et al. (2007)

	Monteverde, Costa Rica	2591	18.6	1480	TMCF	25	4058	Nadkarni <i>et al.</i> (2004)
	Cordillera de Talamanca, Costa Rica	2812	10.9	2900	TMCF	6	1921	Hölscher <i>et al.</i> (2004)
	Fushan, Taiwan	3600	18.2	750	TMCF	18	1740	Hsu, Horng and Kuo (2002)
	Monteverde, Costa Rica	2591	18.6	1700	TMCF	4	945	Nadkarni (1984b)
	Northeast China	1450	-0.8	875	TCF	Not available	507	Ye, Hao and Dai (2004)
	The Tilaran Range, Costa Rica	5380	17.7	1325	TMCF	6	206	Häger and Dohrenbusch (2011)
Harvesting	Monteverde, Costa Rica	2591	18.6	1480	TMCF	9	2087	Nadkarni <i>et al.</i> (2004)
	Yunnan, China	1931	11.3	2500	TMCF	77	1663	Chen, Liu and Wang (2010)
	Cordillera Oriental, Colombia	1850	6	3650	Bamboo	Not available	1281	Tol and Cleef (1994)
	Rwenzor Mountains, Uganda	2000	8.5	3230	TMCF	1	1000	Pentecost (1998)
	Marafunga Basin, New Guinea	3985	13	2625	TMCF	42	940	Edwards and Grubb (1977)
	Zamora Chinchipe, Ecuador	2080	15.5	2093	TMCF	63	604	Werner <i>et al.</i> (2012)

	Central French Guiana	2500	27	288	TMCF	15	452	Gehrig-Downie et al. (2011)
	Cascade Range, US	2450	9.2	655	TCF	42	323	McCune (1993)
Ground	Southern Thailand	2000	28.5	804	Tropical forests	51	126	Chantanaorrapint and Frahm (2011)
	North Wales, UK	2187	10.3	98	TCF	16	87	Rieley, Richards and Bebbington (1979)
Scaling	Chilan mountain, Taiwan	3500	12.7	1680	TMCF	210	272	This study

TABLE 2 Model performance comparison of allometric equations ($W = \alpha D^{\beta}$, equation (1)) by referring to values of the Akaike

584 Information Criterion (AIC), the Bayesian Information Criterion (BIC) and log likelihood. We note that all models are significant with

585 *p* < 0.001.

Model	α	β	R ²	AIC	BIC	Log likelihood
Nonlinear squared regression	12.62	0.72	0.72	395.12	403.75	-194.56
Nonlinear squared regression*	10.00	0.84	0.70	400.34	406.09	-198.17
Power of a variance covariate	11.96	0.75	0.72	379.92	391.43	-185.96
Exponential of a variance covariate	11.77	0.77	0.72	380.12	391.62	-186.06
Constant power of a variance covariate	11.78	0.76	0.70	380.91	395.28	-185.45

586 *Nonlinear squared regression with the fixed α of 10.00