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Abstract

Wide-field calcium imaging techniques allow recordings of high-resolution neuronal activ-
ity across one or more brain regions. However, since the recordings capture light emission
generated by the fluorescence of the calcium indicator, the neural activity that drives the
calcium changes is masked by the calcium indicator dynamics. Here we develop and evaluate
new methods to deconvolve the calcium traces and estimate the underlying neural spiking
rate. Our methods take into account both the noise in the recordings and the temporal
dynamics of the calcium indicator response. Our first proposal estimates firing rates that
are constant over discrete time bins. The size of each time bin depends on the data and is
determined dynamically. Our second proposal estimates the rate as a continuous function
and is meant for studies that look for slow rate fluctuations rather than abrupt changes. We
compare our results with those of two alternative approaches: direct deconvolution using a
‘first differences’ approach, and the ‘Lucy-Richardson’ image recovery method, adapted to
recover temporal dynamics. We show that our methods outperform competitors on synthetic
data as well as on wide-field calcium recordings in which the spikes were recorded in parallel
using multi-channel silicon probe.

1 Introduction

Recent developments in optogenetics allow for the recording of high-resolution images of neuronal
activity from the entire dorsal surface of the cortex in behaving animals (Makino et al. 2017, Chen
et al. 2017, Allen et al. 2017), through the use of fluorescent calcium indicator molecules (Chen
et al. 2013). Each pixel captures the fluorescence arising from dozens to thousands of neurons.
Images can be steadily collected for hours at a high rate, from dozens to hundreds of Hertz. When
the images are aggregated over time, a fluorescence trace can be extracted for each pixel. Inferring
the time-varying neuronal activity from a given fluorescence trace is a challenging deconvolution
problem.

Wide-field recording techniques date back a few decades. Before optogenetic manipulations
were available, wide-field techniques used a combination of a single photon microscope and a camera
to record the natural changes in illumination due to hemodynamic changes (Masino et al. 1993, for
example). Because wide-field recordings cover large fields of view, the luminescence captured in
each pixel originates from multiple sources (blood vessels and/or neurons). Hence the luminescence
is strong enough to be captured through the skull, when the skull is relatively thin, as is the case
for mice. This avoids invasive procedures, which in turn allows recordings of in vivo brain activity
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in behaving animals. It is also possible to conduct wide-field recordings in anesthetized animals
(Kalchenko et al. 2014) or in vitro slices.

In recent years, the development of optogenetics has enabled neuronal recordings in vivo for
long periods of time and across multiple days by combining optogenetic manipulations, which
were originally developed for two photon microscopy, with chronically implanted windows that
expose large fields of view. Furthermore, wide-field imaging can now be used to image neural
activity across multiple brain regions (Silasi et al. 2016). As a result, wide-field imaging has
rapidly become a standard recording technique (Clancy et al. 2019, Mann et al. 2017, Musall
et al. 2018, Chen et al. 2017, Allen et al. 2017, Aimon et al. 2015, Wekselblatt et al. 2016, Makino
et al. 2017). However, suitable approaches for deconvolution of wide-field calcium recordings are
notably absent. In this paper, we develop a statistical model to extract mesoscale neural activity
from wide-field recordings.

The problem of inferring the underlying neuronal activity from a fluorescence trace has recently
been considered by a number of authors, in the case of fluorescence traces that result from the
activity of a single neuron (Jewell & Witten 2018, Jewell et al. 2019, Friedrich et al. 2017, Pnev-
matikakis et al. 2016). These papers make use of an auto-regressive model, originally proposed in
Vogelstein et al. (2009), that associates the fluorescence yt of a single neuron at the tth timepoint
with the unobserved calcium ct at the tth timepoint,

yt = β0 + β1ct + εt, εt ∼ind.

(
0, σ2

)
, t = 1, . . . , T,

ct = γct−1 + st, t = 2, ..., T,
(1)

where st ≥ 0 allows for the occurrence of a spike at the tth timepoint, and where γ ∈ (0, 1)
is the rate of calcium decay. In words, (1) indicates that the calcium decays exponentially over
time, unless there is a spike at the tth timepoint, in which case it increases; furthermore, the
observed fluorescence is a noisy realization of the underlying calcium at each timepoint. In (1),
β0 corresponds to the baseline fluorescence, which must be estimated; however, we can set β1 = 1
without loss of generality, as this simply amounts to scaling the calcium by a constant factor. To
fit the model (1) with β1 = 1, Friedrich et al. (2017), Jewell & Witten (2018), and Jewell et al.
(2019) solve the optimization problem

minimizec1,...,cT ,β0

{
T∑
t=1

(yt − β0 − ct)2 + λP (ct − γct−1)

}
subject to ct ≥ γct−1, t = 2, . . . , T, (2)

where λ is a nonnegative tuning parameter, and where P (·) is a penalty function designed to induce
sparsity in its argument — that is, to encourage ct− γct−1 = st = 0 — so that at most timepoints,
no spike is estimated to occur. Friedrich et al. (2017) makes use of an `1 penalty (Tibshirani 1996),
while Jewell & Witten (2018) and Jewell et al. (2019) instead use an `0 penalty.

However, fluorescence traces that result from wide-field calcium imaging recordings correspond
to the activity of a collection of neurons rather than the activity of a single neuron. Consequently,
single-neuron deconvolution solutions, which assume that at most time points there are no spikes,
cannot be directly applied. In this manuscript, we propose to extend the model (1), and the
corresponding optimization problem (2), to the setting of wide-field calcium imaging recordings.
We apply this new approach for deconvolution of wide-field calcium imaging recordings to data
from the retrosplenial cortex (Swanson et al. 2018).
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2 A Model for Wide-Field Recordings and Neuronal Ac-

tivity

2.1 Extension of the Model (1) to Wide-Field Recordings

To begin, we consider the model (1), in a setting in which the observed fluorescence trace is the
sum of the fluorescences associated with each of p neurons recorded at a given pixel. For the jth
neuron, j = 1, . . . , p, (1) takes the form

yjt = βj0 + cjt + εjt , εjt ∼ind.

(
0, (σj)2

)
, t = 1, . . . , T,

cjt = γcjt−1 + sjt , t = 2, . . . , T,
(3)

where we assume that the rate of calcium decay, γ, is the same for all p neurons. However, in the
wide-field case we do not separately observe the fluorescence for each of the p neurons; we instead
observe their summed fluorescence. Summing (3) across the p neurons yields the model

yt = β0 + ct + εt, εt ∼ind.

(
0,

p∑
j=1

(σj)2

)
, t = 1, . . . , T,

ct = γct−1 + rt, t = 2, . . . , T,

(4)

where yt ≡
∑p

j=1 y
j
t is the total observed fluorescence of the p neurons, and where β0, ct, and εt

are the total baseline fluorescence, total calcium at the tth timepoint, and total noise at the tth
timepoint, respectively. In (4), we can interpret rt as the amount that the calcium increases, at
the tth timepoint, as a result of spiking events in the p neurons; we will refer to this as the spiking
rate. Because p is potentially quite large, on the order of hundreds to thousands of neurons, we
do not expect rt to be sparse. However, critically, we do expect rt to (for the most part) take on
similar values at nearby timepoints: we do not expect the rate to vary over time in an arbitrary
way. We will explore this point in greater detail in the next section.

The total baseline fluorescence, β0, typically depends on the processing performed on the
observed fluorescence; see e.g. the ∆F/F pre-processing of Chen et al. 2017.

2.2 Optimization Problem

The model (4) leads naturally to the optimization problem

minimizec1,...,cT ,β0

{
T∑
t=1

(yt − β0 − ct)2 + λP (c2 − γc1, c3 − γc2, . . . , cT − γcT−1)

}
(5)

subject to ct ≥ γct−1 t = 2, . . . , T.

Problem (5) closely resembles the optimization problem (2) used to deconvolve the fluorescence
trace for a single neuron (Friedrich et al. 2017, Jewell & Witten 2018, Jewell et al. 2019). For
that task, the authors considered the use of a sparsity-inducing penalty, because a neuron is not
expected to spike at most timepoints. By contrast, here we are considering a model in which
yt represents the total fluorescence at the tth timepoint summed over p neurons, and in which
ct − γct−1 represents the spiking rate at the tth timepoint across all p neurons. Therefore, in the
context of wide-field imaging, we do not want P (·) to be a sparsity-inducing penalty. Instead, we
want P (·) to encourage adjacent timepoints to, for the most part, have similar values of rt.
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For convenience, in what follows, we will reparametrize (5) in terms of r1, . . . , rT , where rt =
ct − γct−1 for t = 2, . . . , T as defined in (4), and where r1 ≡ c1. The latter is strictly a definition
intended for notational convenience. This reparametrizaton can be also expressed in matrix form,
r = Dc, where D is a T × T full-rank matrix with 1’s on the diagonal and −γ’s just below the
diagonal. This leads to a rephrasing of the optimization problem (5) as follows:

minimizer1,...,rT ,β0

{
‖y − 1Tβ0 −D−1r‖2 + λP (r2, . . . , rT )

}
subject to rt ≥ 0, t = 2, . . . , T, (6)

where 1T is a vector of length T with all elements equal to 1.

Proposition 1. The optimization problem (5) is equivalent to (6), in the sense that β̂0 = β̃0 and
r̂ = Dc̃, where r̂ = (r̂1, . . . , r̂T )> and β̂0 solve (6), and c̃ = (c̃1, . . . , c̃T )> and β̃0 solve (5).

We propose two possible forms for P (·):

1. Dynamically-Binned Spiking Rate. We consider the penalty

P (r2, . . . , rT ) =
T∑
t=3

|rt − rt−1|, (7)

which is a fused lasso, or total variation denoising, penalty (Tibshirani et al. 2005, Tibshirani
et al. 2012, Condat 2013). This penalty encourages the spiking rate, rt, to be constant over
time, with only occasional changepoints, as shown in Figure 1B. This will yield estimates
of the spiking rate that are constant within a bin, where the bins are themselves adaptively
estimated from the data.

2. Continuously-Varying Spiking Rate. We consider the penalty

P (r2, . . . , rT ) =
T∑
t=3

(rt − rt−1)2, (8)

which encourages rt ≈ rt−1, so that the spiking rate varies continuously over time, as shown
in Figure 1C.

For simplicity, we can represent both penalties as

P (r2, . . . , rT ) =
T∑
t=3

|rt − rt−1|n, n = 1 or 2, (9)

where n = 1 corresponds to dynamically-binned (7) and n = 2 corresponds to a continuously-
varying rate (8). The optimization problem (6) with penalty (9) can be written as

minimizer1,...,rT ,β0

{
‖y − 1Tβ0 −D−1r‖2 + λ

T∑
t=3

|rt − rt−1|n
}

subject to rt ≥ 0, t = 2, . . . , T.

(10)

Proposition 2. The pair (r̃, β̃0) is a solution to problem (10) if and only if β̃0 = 1
T

1>T (y −D−1r̃)
and r̃ is a solution to

minimizer1,...,rT

{
‖ỹ − Ar‖2 + λ

T∑
t=3

|rt − rt−1|n
}

subject to rt ≥ 0, t = 2, . . . , T, (11)

where A =
(
I − 1

T
1T1>T

)
D−1 and ỹ =

(
I − 1

T
1T1>T

)
y, with I the T × T identity matrix and 1T1>T

a T × T matrix of ones.
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Figure 1: Illustrations of fluorescence trace and spiking rates estimated with two different penalties.
A. An example of a recorded fluorescence trace. B. The spiking rate deconvolved from the recorded
trace by solving (6) using the Dynamically-Binned penalty in (7). C. The spiking rate deconvolved
from the recorded trace by solving (6) using the Continuously-Varying penalty in (8).

Note that ỹ is the mean-centered version of y, and A is the column-mean-centered version of D−1.
We prove Proposition 2 in Appendix A. It implies that we can solve (10) by simply solving (11)
to obtain the spiking rate, and then using a closed form expression to obtain the intercept.

With n = 1 or n = 2, (10) is a convex optimization problem. However, it is not strictly convex
and so the solution is not unique. The following proposition indicates that the solution to (10) is
invariant under a constant shift in the spiking rate.

Proposition 3. Let the pair (r̂, β̂0) denote a solution to (10). Then the pair (r̃, β̃) also solves
(10), where r̃t ≡ r̂t + d for t = 2, . . . , T for any d ≥ − min

t=2,...,T
(r̂t) that satisfies q(d, r̂) ≥ 0, for

β̃0 ≡ 1
T

1>T (ȳ −D−1r̃) and a particular choice of r̃1.

We provide explicit expressions for q(d, r̂1) and r̃1 in the proof of Proposition 3 in Appendix B.

3 Algorithm

3.1 Overview of Proximal Gradient Descent

Equation (11) with n ≥ 1 is a convex optimization problem (Boyd & Vandenberghe 2004) that
can be efficiently solved for the global optimum. Here, we make use of proximal gradient descent.

We now provide a brief overview of proximal gradient descent; a detailed treatment can be
found in Parikh et al. (2014). Suppose that we wish to solve the optimization problem

minimize
x

{f(x) + g(x)} (12)

where f(·) is a smooth convex function, and g(·) is convex but possibly non-differentiable. Then,
under mild conditions, an iterative algorithm that initializes x at x(0), and then at the tth iteration
applies the update

x(t) ← Proxsg(·)
(
x(t−1) − s∇f(x(t−1))

)
,

will converge to the global optimum. Here, s is a stepsize chosen so that s ≤ 1/L, where L is the
Lipschitz constant for the function ∇f(·). The notation Proxsg(·) indicates the proximal operator
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of the function sg(·), defined as

Proxsg(·)(x̃) ≡ arg min
x

{
1

2
‖x− x̃‖2 + sg(x)

}
. (13)

Therefore, proximal gradient descent provides a simple recipe for solving a broad class of con-
vex optimization problems of the form (12), provided that the proximal operator (13) is easily
computed, and the function ∇f(·) is Lipschitz continuous.

3.2 Algorithm for Dynamically-Binned Spiking Rate

We now propose a proximal gradient descent algorithm for solving (10) with n = 1. By Proposition
2, we can simply solve

minimizer1,...,rT

{
‖ỹ − Ar‖2 + λ

T∑
t=3

|rt − rt−1|

}
subject to rt ≥ 0, t = 2, . . . , T. (14)

Using the notation of (12), we take f(r) = ‖ỹ − Ar‖2 and g(r) = λ
∑T

t=3 |rt − rt−1|n.
The following results, which are proven in Appendices C and D, will be useful.

Proposition 4. The function ∇rf(r) = −2A> (ỹ − Ar) is Lipschitz continuous with Lipschitz

constant L satisfying L ≤ 2
(

1−γT
1−γ

)2
.

Proposition 5. Let r̂ solve the optimization problem

minimizer1,...,rT

{
1

2
‖r − x̃‖2 + sλ

T∑
t=3

|rt − rt−1|

}
. (15)

Then r̃t ≡ max(r̂t, 0) for t = 2, . . . , T and r̃1 ≡ r̂1 solves the optimization problem

minimizer1,...,rT

{
1

2
‖r − x̃‖2 + sλ

T∑
t=3

|rt − rt−1|

}
subject to rt ≥ 0, t = 2, . . . , T. (16)

A number of standard solvers, such as the flsa solver in R (Hoefling 2010), are available to solve
(15). We solve (15) by implementing the proposal of Condat (2013). Proposition 5 implies that
given a solution to (15), solving (16) is straightforward.

Propositions 2, 4, and 5 lead directly to Algorithm 1 for solving (14).

3.3 Algorithm for Continuously-Varying Spiking Rate

We now propose a proximal gradient descent algorithm for solving (10) with n = 2. By Proposition
2 it suffices to solve

minimizer1,...,rT

{
‖ỹ − Ar‖2 + λ

T∑
t=3

(rt − rt−1)2
}

subject to rt ≥ 0, t = 2, . . . , T. (17)

We can further express (17) as

minimizer1,...,rT

{
‖ỹ − Ar‖2 + λ

T∑
t=3

(rt − rt−1)2 +
T∑
t=2

h(rt)

}
, (18)
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Algorithm 1 Dynamically-Binned Rate Deconvolution: Solving (10) with n = 1

Given the signal y and the calcium decay in a time step γ, do:

1. Calculate ỹ =
(
I − 1

T
1T1>T

)
y.

2. Set the step size s = 1
2

(
1−γ
1−γT

)2
, and A =

(
I − 1

T
1T1>T

)
D−1.

3. Initialize r ∈ RT
+.

4. Iterate until convergence:

(a) Let x̃← r + 2sA>(ỹ − Ar).

(b) Let r ← argminr

{
1
2
‖x̃− r‖2 + sλ

∑T
t=3 |rt − rt−1|

}
.

(c) Let rt ← (rt)+ for t = 2, . . . , T .

5. Let β0 = 1
T

(1T )> (y −D−1r).

with

h(r) =

{
0, if r ≥ 0

∞, if r < 0.
(19)

This allows us to express the objective function in (17) as f(r) + g(r) where

f(r) = ‖ỹ − Ar‖2 +
T∑
t=3

(rt − rt−1)2 and g(r) =
T∑
t=2

h(rt). (20)

Proposition 6. The function ∇f(r) = −2A> (ỹ − Ar) + 2λZr is Lipschitz continuous with Lips-

chitz constant L satisfying L ≤ 2
(1−γT )

2
+4λ(1−γ)2

(1−γ)2 , where

Zi,j =


−1, if |i− j| = 1 and i+ j > 3

2, if i = j and 2 < i < T

1, if i = j = 2 or i = j = T

0, otherwise

. (21)

We note that
∑T

t=3(rt − rt−1)2 = r>Zr. Proposition 6 is proven in Appendix E.

Proposition 7. For any s ≥ 0, the solution to the optimization problem

minimizer1,...,rT

{
1

2
‖r − x̃‖2 + s

T∑
t=2

h(r)

}
(22)

is given by rt = max(x̃t, 0) for t = 2, . . . , T and r1 = x̃1.

Proposition 7 is straightforward and the proof is omitted. Propositions 2, 6 and 7 lead to
Algorithm 2 for solving (17).

In Appendix F we consider solving (10) with n = 2 in the absence of the non-negativity
constraint on r.
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Algorithm 2 Continuously-Varying Rate Deconvolution: Solving (10) with n = 2

Given the signal y and the calcium decay in a time step γ, do:

1. Calculate ỹ =
(
I − 1

T
1T1>T

)
y.

2. Set the step size s = 1
2

(1−γ)2

(1−γT )2+4λ(1−γ)2
, and A =

(
I − 1

T
1T1>T

)
D−1.

3. Initialize r ∈ RT
+.

4. Iterate until convergence:

(a) Let r ← r + 2sA>(ỹ − Ar)− 2sλZr.

(b) Let rt ← (rt)+ for t = 2, . . . , T .

5. Let β0 = 1
T

(1T )> (y −D−1r).

4 Results on Simulated Data

4.1 Evaluation of Algorithms 1 and 2

Here we evaluate the performances of Algorithms 1 and 2 on simulated fluoresence data generated
from randomly drawn rate traces. We measure the difference between the true rate r and the
deconvolved rate rest as

err(r, rest) =
1

T − 1

T∑
t=2

|rt − restt |. (23)

Since the solution to (10) is unique only up to a contant shift (see Proposition 3), we compute (23)
after subtracting the mean from both rt and restt for t = 2, . . . , T .

We begin by generating 500 random piece-wise constant rate traces and 500 random continuous
rate traces, and use those to calculate calcium and fluorescence traces (details are given in Appendix
G; see Figures 2A, 2B, 2D, 2E). We used Algorithms 1 and 2 to deconvolve the fluorescence traces
generated from piece-wise constant and continuous rates, respectively.

For each fluorescence trace, we performed the deconvolution for a range of values of the penalty
λ and the decay rate γ. For each pair of λ and γ, we calculated the average error (23) across all
500 simulated data sets, as well as the average of

∑T
t=3 |rt− rt−1|n. The results are summarized in

Figure 2C and 2E.
Our results indicate that deconvolving the rate using the original calcium decay constant γ

indeed yields the lowest error for most values of the penalty λ.

4.2 Comparisons with Other Methods

We compare our algorithms’ performances to those of other approaches that can be used to analyze
wide-field calcium imaging data.

1. First Differences Deconvolution. This method assumes that the calcium is represented di-
rectly by the fluorescence. Hence, the rate can be found by assuming c = y in (4), yielding

rt = yt − γyt−1 for t = 2, . . . , T. (24)
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Figure 2: Deconvolution of the fluorescence signal into spiking rate. A–C. Dynamically-binned
deconvolution. A,B. Underlying piece-wise constant rate (light green) was created by the random
process described in Appendix G. The rate was transformed, using the model (4), into the un-
derlying calcium trace (dark blue). White noise and a constant shift were added to the latter to
create the noisy fluorescence signal (blue, plotted here without the shift). Algorithm 1 was used
to estimate the spiking rate. The resulting estimated rate (dark green) successfully recovers the
underlying rate. The estimated rate was used to estimate the underlying calcium trace (purple)
using (4). C. Error of the deconvolution algorithm, using (23) and a range of values of γ and λ,
averaged over 500 simulated data sets. D–F. Continuously-varying rate deconvolution. Algorithm
2 was used to estimate the spiking rate; details are as in A–C.

In the special case of γ = 1, this method is equivalent to estimating the rate by computing
the first differences of the observed fluorescence. We used a moving average window to
smooth the resulting estimated rate, and added a mean shift to the result in order to avoid
negative rates. This method is a natural and simple alternative to our approach: it bypasses
estimation of the underlying calcium, and replaces the penalties in (7) and (8) with a simple
post hoc smoothing.

2. Lucy-Richardson Deconvolution. This iterative algorithm was originally used in astrophysics
to restore the light source from a filtered blurred image (Lucy 1974, Richardson 1972). It
assumes that the blurring is a result of a convolution by a filter f and additive noise. The
algorithm maximizes the likelihood of the original image and the denoised image, assuming
the noise has a Poisson distribution. In wide-field calcium imaging, this approach has been
applied with a one-dimensional filter given by ft = γt (Wekselblatt et al. 2016). To improve
performance, we smooth the results using a moving average. The algorithm guarantees
non-negativity of the estimated rate.

We compare the above methods and Algorithms 1 and 2 by simulating continuously-varying
spiking rates (Appendix G) and measuring the errors (23) of the deconvolved rates. Results are
shown in Figure 3 for a range of values of γ and λ, averaged over 500 simulated data sets. We also
measured the fluctuation in each of the deconvolved rate traces by

ζ(r) =
T∑
t=3

(rt − rt−1)2, (25)
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which is the penalty used in (10) with n = 2.
We find that both the first differences and Lucy-Richardson approaches perform best when

the true value of γ is used (Figures 3B and 3D). However, the best results for the first differences
approach are achieved with larger fluctuations (i.e. larger values of the penalty in (25)) compared to
other methods (Figures 3B and 3E). This is also evident from inspecting the best deconvolved rate
for the example trace (Figure 3A). Lucy-Richardson achieves the best fit with fewer fluctuations
(Figure 3D), which results in a smoother deconvolved rate (Figure 3C).

Figure 3E indicates that our continuously-varying spiking rate algorithm performs the best,
with the smallest error and the smallest fluctuations at its minimum error (with γ = 0.95 and λ =
2750). Lucy-Richardson comes in second, just ahead of our dynamically-binned algorithm, and far
ahead of the first differences method. When we simulated data with a piece-wise constant spiking
rate (not shown), our dynamically-binned algorithm performed the best, with Lucy-Richardson
second and just ahead of our continuously-varying algorithm, and the first differences method
once again far behind.

Last, we calculated the correlations of the deconvolved rate traces, the underlying calcium, and
the fluorescence with the underlying rate traces. We see in Figure 3F that all deconvolution meth-
ods yield substantially better estimates of the underlying rate than simply using the underlying
calcium or observed fluorescence.
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Figure 3: Deconvolution using competing approaches. A–B. Deconvolution of continuously-varying
spiking rate using the first differences method. A. An example: Underlying continuous rate (light
green) and estimated rate using the first differences method (dark green). The example was
generated using the parameter set that yields the lowest average error for this method. B. Error
of the first differences method quantified using (23). The x-axis displays the fluctuations in the
estimated rate defined in (25). We used a range of γ values and a variety of smoothing window
lengths. C–D. Similar to A–B but for the Lucy-Richardson (L.R.) method. E. Comparisons of
Algorithms 1 and 2 with other methods. F. Correlation of the underlying rate with the deconvolved
rate achieved by our algorithms, other methods, or the underlying calcium or fluorescence.
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5 Results on Recorded Data

5.1 Whole Dorsal Surface Recordings

Here we evaluate the performances of Algorithms 1 and 2 and the first differences and Lucy-
Richardson deconvolution methods on a dataset described in Musall et al. (2018). The dataset
consists of fluorescence traces recorded simultaneously at 20Hz from the whole dorsal surface of
a genetically encoded GCaMP6s mouse. During the one-hour recording, the mouse performed
multiple trials of some task. Dimension reduction (Musall et al. 2018), hemodynamics removal
(Wekselblatt et al. 2016), and ∆F/F transformation were performed on the traces. Qualitatively
similar results are achieved after performing only a ∆F/F transformation prior to deconvolution
(not shown).

In this data set, because the true spiking rate is unknown, we split each recorded fluorescence
trace y = (y1, y2, . . . , yT ) into “odd” and “even” traces, yodd =

(
y1, y3, . . . , yT−1

)
and yeven =

(y2, y4, . . . , yT ). We then deconvolve the odd trace yodd to estimate the spiking rate rodd and the

intercept, β
odd

0 = 2
T

1>T
2

(yodd − D−1rodd). To calculate D, defined in Section 2.2, we use γ = 0.95,

the estimated decay (Chen et al. 2013) for GCaMP6s mice at the 10Hz frequency corresponding
to the “odd” and “even” traces.

Next, we apply the second line in (4), adapted to the odd observations, in order to compute
codd according to coddt = γcoddt−2 + roddt for t = 1, 3, 5, . . . , T − 1. We then apply the first line in (4) to
compute

err(yeven, codd) =
2

T (max(y)−min(y))

T/2∑
t=1

|yeven2t − β
odd

0 − codd2t−1|. (26)

The four different deconvolution methods were applied for a range of tuning parameter values.
We find that Algorithm 2 results in the smallest error out of all methods; see Figure 4J. The first
differences method as well as Algorithm 1 result in very similar performances, while the latter has
less fluctuation in the deconvolved rate (see (25)); this can be seen in Figures 4E-J.

5.2 Parallel Wide-Field and Spike Recordings

Here we compare the performances of Algorithm 1, Algorithm 2, first differences and Lucy-
Richardson on parallel recorded spiking data described in Clancy et al. (2019). The data consists
of the number of spikes recorded from a multi-channel silicon probe in V1 in each 25ms bin and,
simultaneously, a fluorescence trace recorded from the same location at 40Hz. A ∆F/F transfor-
mation was applied to the fluorescence trace after recording. We note that the probe detects only a
subset of the spikes that contribute to the calcium fluorescence. To test the different deconvolution
methods, we use the rate of the detected spikes as an estimate of the underlying spiking rate.

To evaluate the methods, we calculated the difference between the deconvolved and the recorded
spike rates (23), after dividing each spike rate by its standard deviation.

A decay rate of γ = 0.97 has been reported in the literature (Clancy et al. 2019, Chen et al. 2013)
for GCaMP6f mice recorded at 40Hz. We investigated a range of values of γ and found that all
methods attained the lowest error (23) with γ = 0.975 except Lucy-Richardson, which attained the
lowest error with γ = 0.98. We also found that the Lucy-Richardson method attained its lowest
error when its fluctuation (defined in (25)) is quite small, Figure 5D. This agrees with results
shown in Figures 4G and 4J. The smallest error, across all methods and parameter values, was
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Figure 4: Deconvolution of recorded data from Musall et al. (2018). A. An example of a fluo-
rescence trace recorded from a pixel during a single trial. B. Schematic of a whole dorsal surface
wide-field view. White circles indicate the locations of pixels from which fluorescence traces were
recorded. The example in A was taken from the pixel circled in blue. C. A fluorescence trace
created by extracting from A. the odd time points. D-G. Deconvolution of the fluorescence trace
in C. into spiking rate using the D. dynamically-binned algorithm (Algorithm 1), E. continuously-
varying algorithm (Algorithm 2), F. first differences method, and G. Lucy-Richardson method.
The rates in D-G are displayed with tuning parameters selected to minimize the error in J. H.
The “even” trace from A is displayed alongside the results of convolving the spiking rates in D-G
obtained from the “odd” trace. J. The relative error between the “even” fluorescence trace and
the convolved calcium from the deconvolved spiking rate using the “odd” fluorescence trace (26).
The error is displayed as a function of the normalized fluctuations, defined by (25) divided by
max(rodd)2. Different fluctuation levels and errors were achieved by varying λ for the dynamically-
binned and continuously-varying algorithms, and by varying the smoothing window for the first
differences and Lucy-Richardson methods. Larger fluctuation values correspond to lower values
of λ and smaller smoothing windows. When λ = 0, no smoothing occurs; this corresponds to the
right-hand side of the figure. Results were averaged across traces from all 10 pixels highlighted in
B., and 100 trials for each pixel. All fluorescence traces were shifted to have only positive values
prior to performing the Lucy-Richardson method.
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achieved by the dynamically-binned algorithm, shown in Figure 5D. Comparable error values were
achieved by the continuously-varying and Lucy-Richardson methods.
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Figure 5: Deconvolved spiking rate compared with recorded spiking rate. A. An example of spiking
rate (black) recorded in parallel to the fluorescence (gray), along with the rates estimated by the
four deconvolution methods. Tuning parameters were selected to yield the lowest error (23). B.
Enlarged regions from A for (i) 0-10 sec and (ii) 42-52 sec. C. Deconvolved spiking rate (shades
of turquoise) calculated using different calcium decay values, γ, to deconvolve the fluorescence
trace (gray) for (i) 0-10 sec, and (ii) 42-52 sec, used for the dynamically-binned algorithm. D. The
error (23) between the recorded spiking rate and the estimated spiking rate obtained using (i) the
dynamically-binned algorithm, (ii) the continuously-varying algorithm, (iii) first differences, and
(iv) Lucy-Richardson. For each of the methods, the error was calculated for a range of tuning
parameter values. Larger fluctuation values, defined in (25), correspond to lower values of λ for
Algorithms 1 and 2 and smaller smoothing windows for first differences and Lucy-Richardson
methods. Results were averaged across 75 traces, each of which was 60 seconds long.

6 Discussion

In this paper, we have proposed two new approaches for estimating the spike rate from wide-
field calcium imaging data. The first approach assumes that the true spike rate is piece-wise
constant with bins that must be dynamically estimated from the data, whereas the second assumes
that the true spike rate varies continuously. We have shown that these approaches outperform
existing approaches for spike rate estimation from wide-field calcium imaging data on two data
sets. Furthermore, they perform well regardless of whether a simple ∆F/F transformation is
performed, or whether hemodynamics removal and dimension reduction are also performed.

In many data sets, multiple fluorescence traces are available from nearby brain regions. The
approaches proposed in this paper analyze each fluoresence trace separately, without exploiting
the presence of multiple traces. We leave to future work the development of an approach for spike
rate estimation that more accurately estimates the spike rate by carefully modeling the spatial
dynamics among the fluorescence traces.
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7 Code Availability

Our code is available at https://github.com/meravstr/Wide-Field-Deconvolution.
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A Proof of Proposition 2

Lemma 1. Let A = PD−1, ỹ = Py with P = I − 1
T

1T1>T and β0 = 1
T

∑T
t=1(yt − (D−1r)t). Then,

‖y − 1Tβ0 −D−1r‖2 = ‖ỹ − Ar‖2.

Proof of Lemma 1. Since P>P = P and P1T = 0, it follows that

‖y − 1Tβ0 −D−1r‖2 =
(
y − 1Tβ0 −D−1r

)>(
I − 1

T
1T1>T +

1

T
1T1>T

)(
y − 1Tβ0 −D−1r

)
=
(
y − 1Tβ0 −D−1r

)>
P>P

(
y − 1Tβ0 −D−1r

)
+
(
y − 1Tβ0 −D−1r

)T 1

T
1T1>T

(
y − 1Tβ0 −D−1r

)
= ‖ỹ − Ar‖2 +

1

T
‖1>T y − 1>T 1Tβ0 − 1>TD

−1r‖2 = ‖ỹ − Ar‖2.

The last equality follows from the fact that 1>T y − 1>T 1Tβ0 − 1>TD
−1r = 0.

Proof of Proposition 2. Taking the derivative of (10) with respect to β0 and setting it equal to
zero, we find that β0 = 1

T

∑T
t=1(yt − (D−1r)t). The result follows from Lemma 1.

B Proof of Proposition 3

Proof of Proposition 3. Proposition 2 states that r̂ is a solution to (10) if and only if it is also a
solution to (11). Hence, r̂ minimizes the objective function f(r) = ‖ỹ−Ar‖2 +λ

∑T
t=3 |rt− rt−1|n.

Therefore, any r̃ that satisfies f(r̃) = f(r̂) with r̃t > 0 for t = 2, . . . , T is a solution to the
optimization problem (10) as well.

If we construct r̃t = r̂t + d for t = 2, . . . , T with d ≥ − min
t=2,...,T

(r̂t), then r̃t ≥ 0 for t = 2, . . . , T .

In addition, λ
∑T

t=3 |r̃t − r̃t−1|n = λ
∑T

t=3 |r̂t − r̂t−1|n. So to show that f(r̃) = f(r̂), it suffices to
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show that ‖ỹ − Ar̃‖2 = ‖ỹ − Ar̂‖2. We will do so by choosing an appropriate value for r̃1. In
particular, notice that

‖ỹ − Ar̃‖2 =
T∑
t=1

(
ỹt −

T∑
j=1

(At,j r̃j)

)2

=
T∑
t=1

(
ỹt − At,1r̃1 −

T∑
j=2

[At,j (r̂j + d)]

)2

= r̃21

T∑
t=1

A2
t,1 − 2r̃1

T∑
t=1

At,1

(
ỹt −

T∑
j=2

[At,j (r̂j + d)]

)
+

T∑
t=1

(
ỹt −

T∑
j=2

[At,j (r̂j + d)]

)2

.

(27)

So it suffices to find the value of r̃1 for which (27) equals ‖ỹ − Ar̂‖2. We observe that (27) is
quadratic in r̃1. We define

a ≡
T∑
t=1

A2
t,1,

b ≡ −2
T∑
t=1

At,1

(
ỹt −

T∑
j=2

[At,j (r̂j + d)]

)
,

c ≡
T∑
t=1

(
ỹt −

T∑
j=2

[At,j (r̂j + d)]

)2

− ‖ỹ − Ar̂‖2.

A solution exists provided that b2 − 4ac ≥ 0, in which case r̃1 = −b±
√
b2−4ac
2a

. Defining q(d, r̂) ≡
b2 − 4ac, the proof is complete.

C Proof of Proposition 4

Equation (4) implies that

ct =
t∑

t′=1

γt−t
′
rt′ . (28)

Since c = D−1r, we find from (28) that the entries of D−1 are given by

(
D−1

)
i,j

=


0, if i < j

1, if i = j

γi−j, if i > j

. (29)

Lemma 2. maxi=1,...,T

{∑T
j=1 (D−1)i,j

}
= 1−γT

1−γ .

Proof. From (29),

maxi=1,...,T

{
T∑
j=1

(
D−1

)
i,j

}
= maxi=1,...,T

{
i∑

j=1

γi−j

}
=

T∑
j=1

γT−j =
1− γT

1− γ
,

where the last step was calculated using the expression for the sum of a geometric series.
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Following the same reasoning, one can also show that maxj=1,...,T

{∑T
i=1 (D−1)i,j

}
= 1−γT

1−γ .

Proof of Proposition 4. The Lipschitz constant of −2A> (ỹ − Ar) is given by the largest eigenvalue
of 2A>A (Bubeck et al. 2015). To find it, it is convenient to first explore the largest eigenvalue

of (D−1)
>
D−1, which is a symmetric matrix with positive real entries. By the Perron Frobenius

Theorem and Lemma 2, we can bound its largest eigenvalue by its largest single row sum:

Λmax

((
D−1

)>
D−1

)
≤ maxi

T∑
j=1

T∑
k=1

(
D−1

)
k,i

(
D−1

)
k,j

= maxi

T∑
k=1

(
D−1

)
k,i

(
T∑
j=1

(
D−1

)
k,j

)

≤ maxi

T∑
k=1

(
D−1

)
k,i

(
1− γT

1− γ

)
≤
(

1− γT

1− γ

)2

.

(30)

We recall that A = PD−1 and we observe that P>P = P , where P =
(
I − 1

T
1T1>T

)
, with I the

identity matrix and 1T1>T a T × T matrix of ones. Together with (30) and Rayleigh quotient
properties, the following holds for any vector u:

u>2A>Au

u>u
= 2

u> (D−1)
>
PD−1u

u>u
= 2

[
u> (D−1)

>
D−1u

u>u
− 1

T

u>1T1>T u

u>u

]

≤ 2Λmax

((
D−1

)>
D−1

)
− 2

T

‖1>T u‖2

u>u
≤ 2Λmax

((
D−1

)>
D−1

)
.

(31)

Since the above inequality holds for any vector u, including the eigenvector associated with the
largest eigenvalue of 2A>A, it follows that

Λmax

{
2A>A

}
≤ 2Λmax

((
D−1

)>
D−1

)
≤ 2

(
γT − 1

γ − 1

)2

. (32)

Hence the Lipschitz constant of ∇f(r) = −2A> (ỹ − Ar) is bounded above by L ≤ 2
(

1−γT
1−γ

)2
.

D Proof of Proposition 5

We will make use of the generalized sign, the subdifferential of the `1 norm, defined as

sign (z) =


−1 if z < 0

a for some a ∈ [−1, 1] if z = 0

1 if z > 0.

(33)

When z is a vector, the operation sign(z) is applied componentwise.

Proof of Proposition 5. The solution r̂ to (15) satisfies the optimality condition

0 ∈ r − x̃+ sλC>sign(Cr), (34)

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2020. ; https://doi.org/10.1101/2020.02.01.930040doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.01.930040
http://creativecommons.org/licenses/by-nc-nd/4.0/


where C is a (T − 2)× T matrix defined as

C =


0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

. . . . . .

0 0 0 0 . . . −1 1

 .

Furthermore, r̃ is a solution to (16) if and only if there exists some µ̃ such that the pair (r̃, µ̃)
satisfies the Karush-Kuhn-Tucker optimality conditions (Boyd & Vandenberghe 2004), given by

0 ∈ r − x̃+ sλC>sign(Cr)− µ, (35)

rt ≥ 0, t = 2, . . . , T, (36)

µt ≥ 0, t = 2, . . . , T, (37)

rtµt = 0, t = 2, . . . , T, (38)

where µ1 = 0. To complete the proof, we will show that r̃t ≡ max(r̂t, 0) and µ̃t ≡ −min(r̂t, 0)
satisfy (35)–(38).

The fact that r̃t and µ̃t satisfy (36)–(38) follows by inspection. It remains to show that r̃t and
µ̃t satisfy (35). Notice that r̂t = r̃t − µ̃t. Therefore, because r̂ solves (15), it follows directly from
(34) that

0 ∈ r̃ − x̃+ sλC>sign(Cr̂)− µ̃. (39)

Inspection of the matrix C reveals that the elements of Cr̂ are of the form r̂t+2− r̂t+1. Furthermore,
it is straightforward to show that (i) r̂t+2− r̂t+1 > 0 implies that r̃t+2− r̃t+1 ≥ 0; (ii) r̂t+2− r̂t+1 < 0
implies that r̃t+2 − r̃t+1 ≤ 0; and (iii) r̂t+2 − r̂t+1 = 0 implies that r̃t+2 − r̃t+1 = 0. Therefore,
sign(Cr̂) ⊆ sign(Cr̃). Combining this with (39) directly implies that the pair (r̃, µ̃) satisfies (35).

E Proof of Proposition 6

Proof of Proposition 6. The Lipschitz constant of the function −2A> (ỹ − Ar) + 2λZr is given by
the largest eigenvalue of 2A>A+ 2λZ (Bubeck et al. 2015). Since A>A and Z are symmetric and
real, the largest eigenvalue, Λmax, of their sum is bounded by the sum of their largest eigenvalues:

Λmax

(
2A>A+ 2λZ

)
≤ 2Λmax

(
A>A

)
+ 2λΛmax (Z) . (40)

.
It is not hard to show that Λmax (Z) ≤ 4.

Together with (32) and (40), it follows that the Lipschitz constant L satisfies L ≤ 2
(1−γT )

2
+4λ(1−γ)2

(1−γ)2 .

F Analytic Solution for the Continuously-Varying Spike-

Rate Problem without Non-Negativity Constraints

We consider problem (10) with n = 2 and without the non-negativity rate constraint, meaning the
problem

minimizer1,...,rT

{
‖ỹ − Ar‖2 + λ

T∑
t=3

(rt − rt−1)2
}
. (41)
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This problem can be solved analytically by computing ∇f(r) = 0, with f(r) = ‖ỹ−Ar‖2 +λr>Zr
and Z defined in (21), yielding:

−2A>(ỹ − Ar) + 2λZr = 0. (42)

The solution takes the form
r =

(
A>A+ λZ

)+
A>ỹ (43)

where
(
A>A+ λZ

)+
denotes the pseudo-inverse of A>A+ λZ.

G Simulation Details

G.1 Piece-wise Constant Rate

We generated changepoints for the rate from a discrete Unif.(0, 50) distribution. Between each
pair of changepoints, we generated the rate from a N(0, 102) distribution. We then made the rate
trace nonnegative by subtracting out its minimum value.

We generated the underlying calcium trace c from the rate trace r by calculating c = D−1r,
where we used γ = 0.95 in constructing D−1 (29). The value γ = 0.95 was estimated as the decay
of the calcium in Gcamp6s across 100 milliseconds (Chen et al. 2013).

We made use of only the last T = 600 timepoints of the calcium and the rate traces we
generated, so that c1 6= r1, as is the case in a real experiment in which the activity before the first
measured point is unknown.

Finally, we generated the observed florescence trace y using the model (4) with noise variance
σ̄2 = 0.1 (max(c)−min (c)), and intercept β0 = − 1

T

∑T
t=1 yt + βrnd, where

βrnd ∼ Unif. (0, 0.1 (max(y)−min (y))).

G.2 Continuously-Varying Rate

We generated continuous rate traces by integrating the neural network given by the equation
dx
dt

= −x + J tanh(x), where x is a vector of size N = 1000, and J is an N ×N matrix with i.i.d.
entries Jij ∼ N(0, 4/N). These choices led to chaotic dynamics (Sompolinsky et al. 1988). We
sampled the activity of x1 every 0.5 time steps for 600 steps (resulting in T = 1200 time points).
To ensure non-negativity of the rate trace, we subtracted out the minimum activity.

Given the rate trace, we then repeated the steps detailed in Appendix G.1 to generate the
calcium and fluorescence.

H Additional Data Analysis

We now re-analyze the fluorescence data of Clancy et al. (2019), originally studied in Section 5.2,
without making use of the true spiking rate. This analysis is valuable because in this data set
only ∆F/F was performed prior to deconvolution. This is in contrast to the fluorescence data
of Musall et al. (2018) studied in Section 5.1, on which hemodynamics removal and dimension
reduction were also performed.

The results, displayed in Figure 6, generally agree with those found in Figure 4J of Section 5.1.
In fact, in a number of other data sets processed using only ∆F/F , we found that our algorithms

gave good results (results not shown). This suggests that it is not necessary to perform dimension
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reduction before our algorithms are applied; furthermore, it may be preferable and more natural
not to do so.
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Figure 6: Deconvolution of recorded data from Clancy et al. 2019. This analysis did not make use
of the recorded spike rate: only the fluorescence data was used. More details about this figure are
provided in Figure 4J.
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