
Metabolic pathway inference using multi-label classification
with rich pathway features

Abdur Rahman M. A. Basher1, Ryan J. McLaughlin1, Steven J. Hallam1,2,3,4,5*

1 Graduate Program in Bioinformatics, University of British Columbia, Genome
Sciences Centre, 100-570 West 7th Avenue, Vancouver, British Columbia V5Z 4S6,
Canada.
2 Department of Microbiology & Immunology, University of British Columbia,
2552-2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
3 Genome Science and Technology Program, University of British Columbia, 2329 West
Mall, Vancouver, BC V6T 1Z4, Canada
4 Life Sciences Institute, University of British Columbia, Vancouver, British Columbia,
Canada V6T 1Z3
5 ECOSCOPE Training Program, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z3

* shallam@mail.ubc.ca

Abstract

Metabolic inference from genomic sequence information is a necessary step in
determining the capacity of cells to make a living in the world at different levels of
biological organization. A common method for determining the metabolic potential
encoded in genomes is to map conceptually translated open reading frames onto a
database containing known product descriptions. Such gene-centric methods are limited
in their capacity to predict pathway presence or absence and do not support
standardized rule-sets for automated and reproducible research. Pathway-centric
methods based on defined rule sets or machine learning algorithms provide an adjunct
or alternative inference method that supports hypothesis generation and testing of
metabaolic relationships within and between cells. Here, we present mlLGPR,
multi-label based on logistic regression for pathway prediction, a software package that
uses supervised multi-label classification and rich pathway features to infer metabolic
networks at the individual, population and community levels of organization. We
evaluated mlLGPR performance using a corpora of 12 experimental datasets
manifesting diverse multi-label properties, including manually curated organismal
genomes, synthetic microbial communities and low complexity microbial communities.
Resulting performance metrics equaled or exceeded previous reports for organismal
genomes and identify specific challenges associated with features engineering and
training data for community-level metabolic inference.

Author summary

Predicting the complex series of metabolic interactions e.g. pathways, within and
between cells from genomic sequence information is an integral problem in biology
linking genotype to phenotype. This is a prerequisite to both understanding
fundamental life processes and ultimately engineering these processes for specific
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biotechnological applications. A pathway prediction problem exists because we have
limited knowledge of the reactions and pathways operating in cells even in model
organisms like Esherichia coli where the majority of protein functions are determined.
To improve pathway prediction outcomes for genomes at different levels of complexity
and completion we have developed mlLGPR, multi-label based on logistic regression for
pathway prediction, a scalable open source software package that uses supervised
multi-label classification and rich pathway features to infer metabolic networks. We
benchmark mlLGPR performance against other inference methods providing a code
base and metrics for continued application of machine learning methods to the pathway
prediction problem at the individual, population and community levels of biological
organization.

Introduction 1

Metabolic inference from genomic sequence information is a fundamental problem in 2

biology with far reaching implications for our capacity to perceive, evaluate and 3

engineer cells at the individual, population and community levels of organization [1, 2]. 4

Predicting metabolic interactions can be described in terms of molecular events or 5

reactions coordinated within a series or cycle. The set of reactions within and between 6

cells defines a reactome, while the set of linked reactions defines pathways within and 7

between cells. Reactomes and pathways can be predicted from primary sequence 8

information and refined using mass spectrometry to both validate known and uncover 9

novel pathways. 10

The development of reliable and flexible rule sets for metabolic inference is a 11

non-trivial step that requires manual curation to add accurate taxonomic or pathway 12

labels [3]. This problem is compounded by the ever increasing abundance of different 13

information structures sourced from organismal genomes, single-cell amplified gemomes 14

(SAGs) and metagenome assembled genomes (MAGs) (Fig 1). Under ideal 15

circumstances, pathways are inferred from a bounded reactome that has been manually 16

curated to reflect detailed biochemical knowledge from a closed reference genome e.g. 17

T1 in the information hierarchy in (Fig 1). While this is possible for a subset of model 18

organisms, it becomes increasingly difficult to realize when dealing with the broader 19

range of organismal diversity found in natural and engineered environments. At the 20

same time, advances in sequencing and mass spectrometry platforms continue to lower 21

the cost of data generation resulting in exponential increases in the volume and 22

complexity of multi-omic information (DNA, RNA, protein and metabolite) available for 23

metabolic inference [4]. 24

Over the past three decades, several trusted sources have emerged to collect and 25

curate reactomes and pathways based on biochemical knowledge including the Kyoto 26

Encyclopedia of Genes and Genomes (KEGG) [5], Reactome [6], and MetaCyc [7]. 27

MetaCyc is a multi-organism member of the BioCyc collection of Pathway/Genome 28

Databases (PGDB) [8] that contains only experimentally validated metabolic pathways 29

across all domains of life (currently over 2766 pathways from 3067 different organisms). 30

Pathway/Genome Databases can be constructed in Pathway Tools, a production-quality 31

software environment developed at SRI that supports metabolic inference based on the 32

MetaCyc database [9]. Navigable and extensively commented pathway descriptions, 33

literature citations, and enzyme properties combined within a PGDB provide a coherent 34

structure for exploring and interpreting pathways in genomes to biomes. Metabolic 35

inference in Pathway Tools is based on the use of a rule-based algorithm called 36

PathoLogic [10] producing organismal PGDBs e.g. EcoCyc [11] stored in repositories 37

e.g. BioCyc [12] that can be refined based on experimental validation. In addition to 38

organismal PDGBs, pathologic can be used to produce microbiome or environmental 39
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Fig 1. Genomic information hierarchy encompassing individual, population
and community levels of cellular organization. (a) Building on the BioCyc
curation-tiered structure of Pathway/Genome Databases (PGDBs) constructed from
organismal genomes, two additional data structures are resolved from single-cell and
plurality sequencing methods to define a 4 tiered hierarchy (T1-4) in descending order
of manual curation and functional validation. (b) Completion scales for organismal
genomes, single-cell amplified gemomes (SAGs) and metagenome assembled genomes
(MAGs) within the 4 tiered information hierarchy. Genome completion will have a
direct effect on metabolic inference outcomes with incomplete organismal genomes,
SAGs or MAGS resolving fewer metabolic interactions.
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Pathway/Genome Databases (ePGDBs) representing community level metabolic models 40

e.g. T4 on the information hierarchy in (Fig 1) [13–15] that can also be stored in open 41

source repositories e.g. EngCyc or GutCyc [14,16]. 42

While Pathologic provides a powerful engine for pathway-centric inference, it is a 43

hard coded and relatively inflexible application that does not not scale efficiently for 44

community sequencing projects. Moreover, Pathologic does not provide probability 45

scores associated with inferred pathways further limiting its statistical power with 46

respect to false discovery. An alternative inference method called MinPath uses integer 47

programming to identify the minimum number of pathways that can be described given 48

a set of defined input sequences e.g. KO family annotations in KEGG [17]. However, 49

such a parsimony approach is prone to false negatives and can be difficult to scale. 50

Issues of probability and scale have led to the consideration of machine learning (ML) 51

approaches for pathway prediction based on rich feature information. Dale and 52

colleagues conducted a comprehensive comparison of Pathologic to different types of 53

supervised ML algorithms including naive Bayes, k nearest neighbors, decision trees and 54

logistic regression, converting Pathologic rules into features and defining new features 55

for pathway inference [18]. They evaluated these algorithms on experimentally validated 56

pathways from six T1 PGDBs in the BioCyc collection randomly divided into training 57

and test sets. Resulting performance metrics indicated that generic ML methods equaled 58

or marginally exceeded the performance of Pathologic with the benefit of probability 59

estimation for pathway presence and increased flexibility and transparency of use. 60

Despite the potential benefits of adopting ML methods for pathway prediction from 61

genomic sequence information, Pathologic remains the primary inference engine of 62
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Pathway Tools [9], and alternative methods for pathway-centric inference expanding on 63

the algorithms evaluated by Dale and colleagues remain nascent. Several recent efforts 64

incorporate metabolite information to improve pathway inference and reaction rules to 65

infer metabolic pathways [3, 19–21]. Others, including BiomeNet [22] and 66

MetaNetSim [23] omit pathways and model reaction networks based on enzyme 67

abundance information. Here we describe a multi-label classification approach to 68

metabolic pathway inference using rich pathway feature information called mlLGPR, 69

multi-label based on logistic regression for pathway prediction. mlLGPR uses logistic 70

regression and feature vectors based on the work of Dale and colleagues to predict 71

metabolic pathways for individual genomes as well as more complex cellular 72

communities e.g. microbiomes. We evaluate mlLGPR performance in relation to other 73

inference methods including Pathologic and MinPath on a set of T1 PGDBs alone and 74

in combination from the BioCyc collection, symbiont genomes encoding distributed 75

metabolic pathways for amino acid biosynthesis [24], genomes used in the Critical 76

Assessment of Metagenome Interpretation (CAMI) initiative [25], and whole genome 77

shotgun sequences from the Hawaii Ocean Time Series (HOTS) [26]. 78

The mlLGPR Method 79

In this section, we provide a series of definitions and the problem formulation followed 80

by a description of mlLGPR components including: i)- features representation, ii)- the 81

prediction model, and iii)- the multi-label learning process. mlLGPR was written in 82

Python v3 and depends on scikit-learn v0.20 [27], Numpy v1.16 [28], NetworkX 83

v2.3 [29], and SciPy v1.4 [30]. 84

Definitions and Problem Formulation 85

Here, the default vector is considered to be a column vector and is represented by a 86

boldface lowercase letter (e.g., x) while the matrix of it is denoted by boldface uppercase 87

letter (e.g., X). If a subscript letter i is attached to a matrix, such as x(i), it indicates 88

the i-th row of X, which is a row vector while a subscript character to a vector, x(i), 89

represents an i-th cell of x. Occasional superscript, X(i), suggests an index to a sample 90

or current epoch during learning period. With these notations in mind, we introduce 91

the metabolic pathway inference problem by first defining the pathway dataset. 92

Metabolic pathway inference can be formulated as a supervised multi-label 93

prediction problem. This is because a genome encodes multiple pathway labels per 94

instance. Formally, let S = {(x(i),y(i)) : 1 < i 6 n} be a pathway dataset consisting of 95

n examples, where x(i) is a vector indicating abundance information for corresponding 96

enzymatic reactions. An enzymatic reaction is denoted by e, which is an element of a 97

set E = {e1, e2, ..., er}, having r possible enzymatic reactions, hence, the vector size x(i)
98

is r. The abundance of an enzymatic reaction for an example i, say e
(i)
l , is defined as 99

a
(i)
l (∈ R≥0). The class labels y(i) = [y

(i)
1 , ..., y

(i)
t ] ⊆ {0, 1}t is a pathway label vector of 100

size t that represents the total number of pathways, which are derived from a set of 101

universal metabolic pathway Y. The matrix form of x(i) and y(i) are X and Y, 102

respectively. 103

We further denote X = Rd as the d-dimensional input space, and transform each 104

sample x(i) ∈ X into an arbitrary m-dimensional vector based on a transformation 105

function where m� d. The transformation function for each sample i is defined by 106

Φ : X → Rm, which can be described as a feature extraction and transformation process 107

(see Section Features Engineering). Given the above notation and a multi-label dataset 108

S, we want to learn a hypothesis function f : Φ(x)→ 2|Y| from S, such that it predicts 109

metabolic pathways in new samples as accurately as possible. 110
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Fig 2. mlLGPR workflow. Datasets spanning the information hierarchy are used in
feature engineering. The Synthetic dataset (T1-3) with features is split into training
and test sets and used to train mlLGPR. Test data from the Gold Standard dataset
(T1) with features and Synthetic dataset (T1-3) with features is used to evaluate
mlLGPR performance prior to the application of mlLGPR on experimental datasets
(T4) from different sources.

Input Process Decision Output

Features Engineering 111

The design of feature vectors is critical for accurate classification and pathway inference. 112

We consider five types of feature vectors based on the work of Dale and colleagues [18]: 113

i)- enzymatic reactions abundance vector (φa), ii)- reactions evidence vector (φf ), iii)- 114

pathways evidence vector (φy), iv)- pathway common vector (φc), and v)- possible 115

pathways vector (φd). The transformation process φa is represented by r-dimensional 116

frequency vector, corresponding to the number of occurrences for each enzymatic 117

reaction as φa = [a1, a2, ..., ar]
>. An enzymatic reaction is characterized by an enzyme 118

commission (EC) classification number [31]. The reaction evidence vector φf indicates 119

the properties of the enzymatic reaction for each sample. The pathway evidence 120

features φy include a subset of features developed by Dale and colleagues expanding on 121

core PathoLogic rule sets to include additional information related to enzyme presence, 122

gaps in pathways, network connectivity, taxonomic range, etc [18]. The pathway 123

common feature vector φc, for a sample x(i) is represented by r-dimensional binary 124

vector and the possible pathways vector φd is a t-dimensional binary vector. Each of the 125

transformation function maps x to a different dimensional vector, and the concatenated 126

feature vector Φ = [φa(x(i)), φf (x(i)), φy(x(i)), φc(x(i)), φd(x(i))] has a total of 127

m-dimensional features for each sample. For a more in-depth description of the feature 128

engineering process please refer to Supplemental S2 Appendix). 129
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Prediction Model 130

We use the logistic regression (LR) model to infer a set of pathways given an instance 131

feature vector Φ(x(i)). LR was selected because of its proven power in discriminative 132

classification across a variety of supervised machine learning problems [32]. In addition 133

to direct probabilistic interpretation integrated into the model, LR can handle 134

high-dimensional data, efficiently. The LR model represents conditional probabilities 135

through a non-linear logistic function f(.) defined as 136

f(θj ,Φ(x(i))) = p(y
(i)
j = 1|Φ(x(i)); θj) =

exp(θ>j Φ(x(i)))

exp(θ>j Φ(x(i))) + 1
(1)

where y
(i)
j is the j-th element of the label vector y(i) ∈ {0, 1}t and θj is a 137

m-dimensional weight vector for the j-th pathway. Each element of Φ(x(i)) corresponds 138

to an element of θj for the j-class, therefore, we can retrieve important features that 139

contribute to the prediction of j by sorting the elements of Φ(x(i)) according to the 140

corresponding values of the weight vector θj . The Eq 1 is repeated for all the t classes 141

for an instance i, hence multi-labeling, and, for an individual pathway, the results are 142

stored in a vector q(i) ∈ Rt. Predicted pathways are reported based on a cut-off 143

threshold τ , which is set to 0.5 by default: 144

ŷi = vec

({
1 if q

(i)
j ≥ τ

0 otherwise

)
∀j ∈ t (2)

where vec is a vectorized operation. Given that Eq 1 produces a conditional 145

probability over each pathway, and the j-th class label will be included to y(i) only if 146

f(θj ,Φ(x(i))) ≥ τ we adopt a soft decision boundary using T-criterion rule [33] as: 147

ŷi = vec

(
1 if q

(i)
j ≥ τ

1 if q
(i)
j > fmax(q

(i)
j )

0 otherwise

)
∀j ∈ t (3)

where fmax(f(θj ,Φ(x(i)))) = β ·max
(
{f(θj ,Φ(x(i)) : ∀j ∈ t}

)
, which is the 148

maximum predictive probability score. The hyper-parameter β ∈ (0, 1] must be tuned 149

based on empirical information, and it cannot be set to 0, which implies retrieving all of 150

the t pathways. The predicted set of pathways using the Eq 3 is referred to as adaptive 151

prediction because the decision boundary, and its corresponding threshold, are tuned to 152

the test data [34]. 153

Multi-Label Learning Process 154

The process is decomposed into t independent binary classification problems, where 155

each binary classification problem corresponds to a possible pathway in the label space. 156

Then, LR is used to define a binary classifier f(.), such that for a training example 157

(Φ(x(i)),y(i)), an instance Φ(x(i)) will be involved in the learning process of t binary 158

classifiers. Given n training samples, we attempt to estimate all the weight vectors 159

individually θ1, θ2, ..., θt by maximizing the logistic loss function as follows: 160

ll(θj) = max
θj

1

n

n∑
i=1

(y
(i)
j θ>j Φ(x(i))− log(1 + exp(θ>j Φ(x(i)))) (4)

Usually, a penalty or regularization term Ω(θj) is inserted into the loss function to 161

enhance the generalization properties to unseen data, particularly if the dimension m of 162
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features is high. Thus, the overall objective cost function (after dropping the maximized 163

term for brevity) is defined as: 164

C(θj) = ll(θj)− λΩ(θj) (5)

where λ > 0 is a hyper-parameter that controls the trade-off between ll(θj) and 165

Ω(θj). Here, the regularization term Ω(θj) is chosen to be the elastic net: 166

Ω(θj) =
1− α

2
||θj ||22 + α||θj ||1 (6)

The elastic net penalty of Eq 6 is a compromise between the L1 penalty of LASSO 167

(by setting α = 1) and the L2 penalty of ridge-regression (by setting α = 0) [35]. While 168

the L1 term of the elastic net aims to remove irrelevant variables by forcing some 169

coefficients of θj to 0, leading to a sparse vector of θj , the L2 penalty ensures that 170

highly correlated variables have similar regression coefficients. Substituting Eq 6 into 171

Eq 5, yields the following objective function: 172

C(θj) = ll(θj)− λ(
1− α

2
||θj ||22 + α||θj ||1) (7)

During learning, the aim is to estimate parameters θj so as to maximize C(θj), 173

which is convex; however, the last term of Eq 7 is non-differentiable, making the 174

equation non-smooth. For the rightmost term, we apply the sub-gradient [36] method 175

allowing the optimization problem to be solved using mini-batch gradient descent 176

(GD) [37]. We initialize with random values for θj , followed by iterations to maximize 177

the cost function C(θj) with the following derivatives: 178

∂

∂θj
C(θj) =

1

n

n∑
i=1

Φ(x(i))[y
(i)
j − f(θj ,Φ(x(i)))]− λ[(1− α)θj + α sign(θj)] (8)

Finally, the update algorithm for θj at each iteration is obtained as: 179

θu+1
j = θuj + η(

1

n

n∑
i=1

Φ(x(i))[y
(i)
j − f(θj ,Φ(x(i)))]− λ[(1− α)θj + α sign(θj)]) (9)

where u is the current step. The mathematical derivation of the algorithm can be found 180

in Supplemental S1 Appendix. 181

Experimental Setup 182

In this section, we describe an experimental framework used to demonstrate mlLGPR 183

pathway prediction performance across multiple datasets spanning the genomic 184

information hierarchy (Fig 1). MetaCyc version 21 containing 2526 base pathways and 185

3650 enzymatic reactions, was used as a trusted source to generate samples, build 186

features, and validate results from the prediction algorithms, as outlined in 187

Section Results. For training we used two synthetic datasets Synset 1 and Synset 2 188

constructed from a list of MetaCyc pathways representing T1-3 organismal PGDBs. 189

We evaluated mlLGPR performance using a corpora of 12 experimental datasets 190

manifesting diverse multi-label properties, including manually curated organismal 191

genomes, synthetic microbial communities and low complexity microbial communities 1. 192

The T1 golden dataset consisted of six PGDBs including AraCyc, EcoCyc, HumanCyc, 193

LeishCyc, TrypanoCyc, and YeastCyc, A composite golden dataset, referred to as SixDB, 194

consisted of 63 permuted combinations of T1 PGDBs. In addition to datasets derived 195
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from the BioCyc collection, we evaluated performance using low complexity data from 196

Moranella (GenBank NC-015735) and Tremblaya (GenBank NC-015736) symbiont 197

genomes encoding distributed metabolic pathways for amino acid biosynthesis [24], the 198

Critical Assessment of Metagenome Interpretation (CAMI) initiative low complexity 199

dataset [25], and whole genome shotgun sequences from the Hawaii Ocean Time Series 200

(HOTS) at 25m, 75m, 110m (sunlit) and 500m (dark) ocean depth intervals [26]. More 201

information about the datasets are summarized in Supplementary S3 Appendix. 202

mlLGPR performance was compared to four additional prediction methods including 203

Baseline, Näıve v1.2 [17], MinPath v1.2 [17] and PathoLogic v21 [10]. In the baseline 204

method, the enzymatic reactions of x(i) for an instance i are mapped directly onto the 205

true representation of all known pathways Y. In the Näıve method, reactions are 206

randomly predicted from MetaCyc and linked together to construct pathways that are 207

accepted or rejected based on a specified cut-off threshold, typically set to 0.5. If one or 208

more enzymatic reactions are assigned to a pathway then that pathway is identified as 209

present; otherwise, it is rejected. MinPath recovers the minimal set of pathways that 210

can explain observed enzymatic reactions through an iterative constrained optimization 211

process using an integer programming algorithm [38]. PathoLogic uses a rule-based 212

approach to metabolic inference incorporating manually curated biochemical 213

information in a two step process that first produces a reactome that is in turn used to 214

predict metabolic pathways within a PGDB [10]. 215

For training purposes Synset-1 and Synset-2, where subdivided in three subsets: 216

(training set, validation set, and test set), using a stratified sampling approach [39] 217

resulting in 10, 869 training, 1, 938 validation and 2, 193 testing samples for Synset-1 218

and 10, 813 training, 1, 930 validation, and 2, 257 instances for Synset-2. Features 219

extraction was implemented for each dataset in Table 1, resulting in total feature vector 220

size of 12, 452 for each instance, where |φa| = 3650, |φf | = 68, |φy| = 32, |φc| = 3650, 221

and |φd| = 5052. Integral parameter settings included Θ initialized to a uniform random 222

value in the range [0, 1], batch-size set to 500, epoch number set to 3, adaptive 223

prediction parameter β in the range (0, 1], regularization parameters λ and α set to 224

10000 and 0.65, respectively. The learning rate η was adjusted based on 1
λ+u , where u 225

denotes the current step. The development set was used to determine critical values of 226

λ and α. Default parameter settings were used for MinPath and PathoLogic. All tests 227

were conducted using a Linux server using 10 cores on an Intel Xeon CPU E5-2650. 228

Performance Metrics 229

The following metrics were used to report on performance of prediction algorithms used 230

in the experimental framework outlined above: average precision, average recall, average 231

F1 score (F1), and Hamming loss, [40]. 232

Formally, let us denote y(i) and ŷ(i) to be the true and the predicted pathway set for 233

the i-the sample, respectively. Then, the four measurements can be defined as: 234

Average Precision (Pr) =
1

n

n∑
i=1

(
y(i)>ŷ(i)∑

j∈t ŷ
(i)
j

)
(10)

Average Recall (Rc) =
1

n

n∑
i=1

(
y(i)>ŷ(i)∑

j∈t y
(i)
j

)
(11)

Average F1 =
2Pr× Rc

Pr + Rc
(12)

Hamming Loss (hloss) =
1

nt

n∑
i=1

t∑
j=1

1(y
(i)
j 6= ŷ

(i)
j ) (13)

February 3, 2020 8/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.02.02.919944doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.919944
http://creativecommons.org/licenses/by/4.0/


Table 1. Experimental dataset properties The notations |S|, L(S), LCard(S), LDen(S), DL(S), and PDL(S)
represent number of instances, number of pathway labels, pathway labels cardinality, pathway labels density, distinct
pathway labels set, and proportion of distinct pathway labels set for S, respectively. The notations R(S), RCard(S),
RDen(S), DR(S), and PDR(S) have similar meanings as before but for the enzymatic reactions E in S. PLR(S)
represents a ratio of L(S) to R(S). The last column denotes the domain of S.

Dataset |S| L(S) LCard(S) LDen(S) DL(S) PDL(S) R(S) RCard(S) RDen(S) DR(S) PDR(S) PLR(S) Domain

EcoCyc 1 307 307 1 307 307 1134 1134 1 719 719 0.2707

Escherichia
coli K-
12 sub-
str.MG1655

HumanCyc 1 279 279 1 279 279 1177 1177 1 693 693 0.2370
Homo
sapiens

AraCyc 1 510 510 1 510 510 2182 2182 1 1034 1034 0.2337
Arabidopsis
thaliana

YeastCyc 1 229 229 1 229 229 966 966 1 544 544 0.2371
Saccharomyces
cere-
visiae

LeishCyc 1 87 87 1 87 87 363 363 1 292 292 0.2397
Leishmania
major
Friedlin

TrypanoCyc 1 175 175 1 175 175 743 743 1 512 512 0.2355
Trypanosoma
brucei

SixDB 63 37295 591.9841 0.0159 944 14.9841 210080 3334.6032 0.0159 1709 27.1270 0.1775
Composed
from six
databases

Symbiotic 3 119 39.6667 0.3333 59 19.6667 304 101.3333 0.3333 130 43.3333 0.3914

Composed
of
Moranella
and
Trem-
blaya

CAMI 40 6261 156.5250 0.0250 674 16.8500 14269 356.7250 0.0250 1083 27.0750 0.4388

Simulated
micro-
biomes
of low
complex-
ity

HOT 4 2178 311.1429 0.1429 781 111.5714 182675 26096.4286 0.1429 1442 206.0000 0.0119

Metagenomic
Hawaii
Ocean
Time-
series
(10m,
75m,
110m,
and
500m)

Synset-1 15000 6801364 453.4243 0.00007 2526 0.1684 30901554 2060.1036 0.00007 3650 0.2433 0.2201

Synthetically
gener-
ated
(uncor-
rupted)

Synset-2 15000 6806262 453.7508 0.00007 2526 0.1684 34006386 2267.0924 0.00007 3650 0.2433 0.2001

Synthetically
gener-
ated
(cor-
rupted)
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Table 2. Predictive performance of mlLGPR on T1 golden datasets. mlLGPR-L1: the mlLGPR with L1
regularizer, mlLGPR-L2: the mlLGPR with L2 regularizer, mlLGPR-EN: the mlLGPR with elastic net penalty, L2: AB:
abundance features, RE: reaction evidence features, and PE: pathway evidence features. For each performance metric, ‘↓’
indicates the lower score is better while ‘↑’ indicates the higher score is better.

Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.0776 0.0645 0.1069 0.0487 0.0412 0.0602 0.1365
mlLGPR-L2 (+AB+RE+PE) 0.0606 0.0515 0.1112 0.0412 0.0234 0.0344 0.1426
mlLGPR-EN (+AB+RE+PE) 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.6253 0.6686 0.7390 0.6815 0.4525 0.5395 0.7391
mlLGPR-L2 (+AB+RE+PE) 0.7437 0.7945 0.8418 0.7934 0.6186 0.7268 0.8488
mlLGPR-EN (+AB+RE+PE) 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.9023 0.8244 0.7275 0.8690 0.9310 0.8971 0.6738
mlLGPR-L2 (+AB+RE+PE) 0.7655 0.7204 0.5529 0.7380 0.8391 0.8057 0.5211
mlLGPR-EN (+AB+RE+PE) 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-L1 (+AB+RE+PE) 0.7387 0.7384 0.7332 0.7639 0.6090 0.6738 0.6919
mlLGPR-L2 (+AB+RE+PE) 0.7544 0.7556 0.6675 0.7647 0.7122 0.7642 0.6306
mlLGPR-EN (+AB+RE+PE) 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098

where 1(.) denotes the indicator function, respectively. Each metric is averaged based 235

on sample size. 236

The values of average precision, average recall, and average F1 vary between 0− 1 237

with 1 being the optimal score. Average Precision relates the number of true pathways 238

to the number of predicted pathways including false positives, while recall relates the 239

number of true pathways to the total number of expected pathways including false 240

negatives. While recall tells us about the ability of each prediction method to find 241

relevant pathways, precision tells us about the accuracy of those predictions. Average 242

F1 represents the harmonic mean of average precision and average recall by taking the 243

trade-off between the two metrics into account. The hloss is the fraction of pathways 244

that are incorrectly predicted providing a useful performance indicator. From Eq 13, we 245

observe that when all of the pathways are correctly predicted, then hloss = 0, whereas 246

the other metrics will be equal to 1. On the other hand, when the predictions of all 247

pathways are completely incorrect hloss = 1, whereas the other metrics will be equal to 248

0. 249

Results 250

Four types of analysis including parameter sensitivity, features selection, robustness, 251

and pathway prediction potential were used to tune and evaluate mlLGPR performance 252

in relation to other pathway prediction methods. 253

Parameter Sensitivity 254

Experimental setup. Three consecutive tests were performed to ascertain: 1)- the 255

impact of L1, L2, and elastic-net (EN) regularizers on mlLGPR performance using T1 256

golden datasets, 2)- the impact of changing hyper-parameter 257

λ ∈ {1, 10, 100, 1000, 10000} using T1 golden datasets, and 3)- the impact of adaptive 258

beta β ∈ (0, 1] using Synset-2 and the sixDB golden dataset. 259
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Experimental results. Table 2 indicates test results across different mlLGPR 260

parameter settings. Although the F1 scores of mlLGPR-L1, mlLGPR-L2 and 261

mlLGPR-EN were comparable, precision and recall scores were inconsistent across the 262

T1 golden datasets. For example, high precision scores were observed for mlLGPR-L2 263

on AraCyc (0.8418) and YeastCyc (0.7934) with low recall scores of 0.5529 and 0.7380, 264

respectively. In contrast, high recall scores were observed for mlLGPR-L1 on AraCyc 265

(0.7275) and YeastCyc (0.8690) with low precision scores of 0.7390 and 0.6815, 266

respectively. The increased recall with reduced precision scores by mlLGPR-L1 267

indicates a low variance model that may eliminate many relevant coefficients. The 268

impact is especially observed for datasets encoding a small number of pathways as is the 269

case for LeishCyc (87 pathways) and TrypanoCyc (175 pathways). Similarly, the 270

increased precision with reduced recall scores by mlLGPR-L2 is a consequence of the 271

existence of highly correlated features present in the test datasets [41], resulting in a 272

high variance model. The impact is especially observed for LeishCyc and TrypanoCyc 273

suggesting that mlLGPR-L2 performance declines with increasing pathway number. 274

mlLGPR-EN tended to even out the scores relative to mlLGPR-L1 and mlLGPR-L2 275

providing more balanced performance outcomes. 276

Fig 3. Average F1 score of mlLGPR-EN on a range of regularization
hyper-parameter λ ∈ {1, 10, 100, 1000, 10000} values on EcoCyc, HumanCyc,
AraCyc, YeastCyc, LeishCyc, TrypanoCyc, and SixDB dataset. The x-axis is
log scaled.
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Based on these results, hyper-parameters λ and β were tested to tune mlLGPR-EN 277

performance. Fig 3 indicates that the relationship between F1 score and the 278

regularization hyper-parameter λ increases monotonically for the T1 golden datasets 279

peaking at λ = 10000 (having an F1 score of > 0.6 for all datasets). For the adaptive β 280

test, Fig 4 shows the performance of mlLGPR-EN on Synset-2 test samples across a 281

range of β ∈ (0, 1] values, indicating that this hyper-parameter has minimal impact on 282

performance. 283

Taken together, parameter testing results indicated that mlLGPR-EN provided the 284

most balanced implementation of mlLGPR, and the regularization hyper-parameter λ at 285
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Fig 4. Performance of mlLGPR-EN according to the β adaptive decision
hyper-parameter on datasets. (a)- Synset-2 test dataset. (b)- SixDB dataset.

10000 resulted in the best performance for T1 golden datasets. This hyper-parameter 286

should be tuned when applied to new datasets to reduce false positive pathway 287

discovery. Minimal effects on prediction performance were observed when testing the 288

adaptive hyper-parameter β. 289

Features Selection 290

Experimental setup. mlLGPR-EN was trained using Synset-2 on T1 golden datasets. 291

A series of feature set “ablation” tests were conducted in a reverse manner, starting 292

with only reaction abundance features (AB), a fundamental feature set consisting of 293

3650 features and then successively aggregating additional feature sets while recording 294

predictive performance using the settings and metrics described above. Because testing 295

individual features is not practical, this form of aggregate testing provides a tractable 296

method to identify the relative contribution of feature sets to pathway prediction 297

performance. 298

Experimental results. Table 3 indicates ablation test results. The AB feature set 299

promotes the highest average recall on EcoCyc (0.9511) and a comparable F1-score of 300

0.6952. This is not unexpected given the ratio of pathways to the number of enzymatic 301

reactions (PLR) indicated by EC numbers for EcoCyc is high. However, although 302

functional annotations with EC numbers increase the probability of predicting a given 303

pathway, pathways with few or no EC numbers such as pregnenolone biosynthesis 304

require additional feature sets to avoid false negatives. As additional feature sets are 305

aggregated, mlLGPR-EN performance tends to improve unevenly for different T1 306

organismal genomes. For example, adding the enzymatic reaction evidence (RE) feature 307

set consisting of 68 features to the AB features set improves F1 scores for YeastCyc 308

(0.7394), LeishCyc (0.5830), and TrypanoCyc (0.6753). Further aggregating the pathway 309

evidence (PE) feature set, consisting of 32 features to the AB feature set improves the 310

F1 score for AraCyc (0.7532) but reduces the F1 score for the remaining T1 organismal 311

genomes. Aggregating AB, RE and pathway evidence (PE) feature sets resulted in the 312

highest F1 scores for HumanCyc (0.7468), LeishCyc(0.6220), TrypanoCyc (0.6768), and 313

SixDB (0.7078) with only marginal differences between the highest F1 scores for 314

EcoCyc (0.7275) and AraCyc (0.73432). Additional combinations of features did not 315

improve overall performance across the T1 golden datasets 3 Taken together, ablation 316

testing results indicated that mlLGPR-EN in combination with AB, RE and PE feature 317
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Table 3. Ablation tests of mlLGPR-EN trained using Synset-2 on T1 golden datasets. AB: abundance
features, RE: reaction evidence features, PP: possible pathway features, PE: pathway evidence features, and PC: pathway
common features. mlLGPR is trained using a combination of features, represented by mlLGPR-*, on Synset-2 training
set. For each performance metric, ‘↓’ indicates the lower score is better while ‘↑’ indicates the higher score is better.

Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.1013 0.0887 0.1025 0.0907 0.1124 0.1073 0.1412
mlLGPR-AB-RE 0.0788 0.0697 0.1101 0.0558 0.0447 0.0598 0.1348
mlLGPR-AB-PP 0.2835 0.2922 0.2898 0.2724 0.2553 0.2759 0.2842
mlLGPR-AB-PE 0.1017 0.0835 0.1002 0.0891 0.1172 0.1089 0.1387
mlLGPR-AB-PC 0.1041 0.0938 0.1409 0.0879 0.1081 0.0899 0.1844
mlLGPR-AB-RE-PP 0.2815 0.2882 0.2961 0.2648 0.2526 0.2759 0.2825
mlLGPR-AB-RE-PE 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281
mlLGPR-AB-RE-PC 0.0966 0.0732 0.1394 0.0677 0.0515 0.0625 0.1793
mlLGPR-AB-PE-PC 0.1029 0.0899 0.1441 0.0914 0.1148 0.0903 0.1820
mlLGPR-AB-PP-PC 0.2019 0.2070 0.2142 0.1876 0.1884 0.1880 0.2299
mlLGPR-AB-RE-PE-PP 0.2894 0.2993 0.2953 0.2736 0.2530 0.2755 0.2838
mlLGPR-AB-RE-PE-PC 0.0954 0.0816 0.1441 0.0673 0.0451 0.0641 0.1806
mlLGPR-AB-RE-PE-PP-PC 0.2003 0.2063 0.2209 0.1924 0.1924 0.1928 0.2317

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.5478 0.5610 0.7390 0.5000 0.2316 0.3873 0.7323
mlLGPR-AB-RE 0.6205 0.6373 0.7275 0.6410 0.4293 0.5414 0.7412
mlLGPR-AB-PP 0.2755 0.2508 0.3926 0.2303 0.1037 0.1855 0.4300
mlLGPR-AB-PE 0.5473 0.5773 0.7495 0.5048 0.2257 0.3843 0.7402
mlLGPR-AB-PC 0.5618 0.5673 0.7810 0.5113 0.2265 0.4217 0.7650
mlLGPR-AB-RE-PP 0.2795 0.2536 0.3845 0.2375 0.1081 0.1885 0.4322
mlLGPR-AB-RE-PE 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561
mlLGPR-AB-RE-PC 0.6019 0.6926 0.7992 0.6330 0.3862 0.5362 0.7761
mlLGPR-AB-PE-PC 0.5681 0.5844 0.7645 0.4969 0.2188 0.4223 0.7727
mlLGPR-AB-PP-PC 0.3241 0.3000 0.4730 0.2761 0.1309 0.2283 0.5122
mlLGPR-AB-RE-PE-PP 0.2706 0.2482 0.3870 0.2301 0.1068 0.1873 0.4309
mlLGPR-AB-RE-PE-PC 0.6065 0.6466 0.7744 0.6277 0.4237 0.5291 0.7715
mlLGPR-AB-RE-PE-PP-PC 0.3299 0.2997 0.4580 0.2701 0.1285 0.2244 0.5084

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.9511 0.9068 0.7608 0.9258 0.9770 0.9429 0.6775
mlLGPR-AB-RE 0.9055 0.8566 0.7275 0.8734 0.9080 0.8971 0.6774
mlLGPR-AB-PP 0.8176 0.8280 0.7961 0.8559 0.8391 0.8800 0.7696
mlLGPR-AB-PE 0.9414 0.9104 0.7569 0.9170 0.9885 0.9486 0.6795
mlLGPR-AB-PC 0.6515 0.6344 0.4196 0.6900 0.8851 0.8000 0.3827
mlLGPR-AB-RE-PP 0.8339 0.8280 0.7765 0.8690 0.8736 0.9029 0.7768
mlLGPR-AB-RE-PE 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904
mlLGPR-AB-RE-PC 0.6059 0.6057 0.4137 0.6026 0.8391 0.7200 0.3820
mlLGPR-AB-PE-PC 0.6384 0.6452 0.4137 0.6900 0.9080 0.8229 0.3923
mlLGPR-AB-PP-PC 0.6091 0.6559 0.5333 0.6594 0.7931 0.7200 0.5053
mlLGPR-AB-RE-PE-PP 0.8143 0.8423 0.7922 0.8603 0.8621 0.8914 0.7758
mlLGPR-AB-RE-PE-PC 0.6124 0.5771 0.4039 0.6332 0.8621 0.6743 0.3776
mlLGPR-AB-RE-PE-PP-PC 0.6287 0.6487 0.5137 0.6594 0.7931 0.7257 0.5074

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
mlLGPR-AB 0.6952 0.6932 0.7498 0.6493 0.3744 0.5491 0.6754
mlLGPR-AB-RE 0.7364 0.7309 0.7275 0.7394 0.5830 0.6753 0.6938
mlLGPR-AB-PP 0.4122 0.3850 0.5259 0.3630 0.1846 0.3065 0.5386
mlLGPR-AB-PE 0.6922 0.7065 0.7532 0.6512 0.3675 0.5470 0.6802
mlLGPR-AB-PC 0.6033 0.5990 0.5459 0.5874 0.3607 0.5523 0.4683
mlLGPR-AB-RE-PP 0.4186 0.3882 0.5143 0.3730 0.1924 0.3119 0.5422
mlLGPR-AB-RE-PE 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098
mlLGPR-AB-RE-PC 0.6039 0.6463 0.5452 0.6174 0.5290 0.6146 0.4853
mlLGPR-AB-PE-PC 0.6012 0.6133 0.5369 0.5777 0.3527 0.5581 0.4779
mlLGPR-AB-PP-PC 0.4231 0.4117 0.5014 0.3892 0.2248 0.3466 0.4857
mlLGPR-AB-RE-PE-PP 0.4062 0.3834 0.5199 0.3631 0.1901 0.3095 0.5407
mlLGPR-AB-RE-PE-PC 0.6094 0.6098 0.5309 0.6304 0.5682 0.5930 0.4805
mlLGPR-AB-RE-PE-PP-PC 0.4327 0.4100 0.4843 0.3832 0.2212 0.3428 0.4847
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sets result in the most even pathway prediction performance for T1 golden datasets. 318

Robustness 319

Experimental setup. robustness also known as accuracy loss rate was determined for 320

mlLGPR-EN with AB, RE and PE feature sets using the intact Synset-1 dataset and a 321

”corrupted” or noisy version of the Synset-2 dataset. Relative Loss of Accuracy (RLA) 322

and equalized loss of accuracy (ELA) scores [42] were used to describe the expected 323

behavior of mlLGPR-EN in relation to introduced noise. The ELA score explained in 324

Supplementary S3 Appendix, encompasses i)- the robustness of a model determined at a 325

controlled noise threshold ρ, and ii)- the performance of a model without noise, i.e., 326

s(M0), where s represents the F1 score for a model M0 without noise (any performance 327

metrics can be employed). A low robustness score indicates that model continues to 328

exhibit good performance with increasing background noise. 329

Table 4. Performance and robustness scores for mlLGPR-EN with AB, RE and PE feature sets trained
on both Synset-1 and Synset-2 training sets at 0 and ρ noise. The best performance scores are highlighted in
bold. The ‘↓’ indicates the lower score is better while ‘↑’ indicates the higher score is better.

Dataset
Average F1 Score ↑ Robustness Score ↓

mlLGPR-EN0 mlLGPR-ENρ RLAρ s(M0) ELAρ

EcoCyc 0.7280 0.7275 0.0007 0.3736 0.3743
HumanCyc 0.7111 0.7468 −0.0502 0.4063 0.3561
AraCyc 0.7662 0.7343 0.0416 0.3051 0.3468
YeastCyc 0.7176 0.7392 −0.0301 0.3935 0.3634
LeishCyc 0.5559 0.6220 −0.1189 0.7989 0.6800
TrypanoCyc 0.6667 0.6768 −0.0151 0.4999 0.4848
SixDB 0.7448 0.7098 0.0470 0.3426 0.3896

Experimental results. Table 4 indicates robustness test scores. mlLGPR-EN with 330

introduced noise performed better for HumanCyc (−0.0502), YeastCyc (−0.0301), 331

LeishCyc (−0.1189), and TrypanoCyc (−0.0151), but was less robust for AraCyc 332

(0.0416) and SixDB (0.0470) based on RLAρ scores. This suggests that noise inversely 333

correlates with the pathway size. The more pathways present within a dataset can upset 334

correlations among features. However, the impact of negative correlations is minimized 335

when a dataset contains fewer pathways. Note that the average number of ECs 336

associated with pathways has little or negligible effects on robustness. 337

Taken together, the RLA and ELA results for T1 golden datasets indicate that 338

mlLGPR-EN trained on noisy datasets is robust to perturbation. This is a prerequisite 339

for developing supervised ML methods tuned for community-level pathway prediction. 340

Pathway Prediction Potential 341

Experimental setup. Pathway prediction potential of mlLGPR-EN with AB, RE and 342

PE feature sets trained on Synset-2 training set was compared to four additional 343

prediction methods including Baseline, Näıve v1.2 [17], MinPath v1.2 [17] and 344

PathoLogic v21 [10] on T1 golden datasets using the settings and metrics described 345

above. For community-level pathway prediction on the T4 datasets including symbiont, 346

CAMI low complexity, and HOT datasets, mlLGPR-EN and PathoLogic (without 347

taxonomic pruning) results were compared. 348

Experimental results. Table 5 shows performance scores for each pathway prediction 349

method tested. The BASELINE, Näıve, and MinPath methods infer many false positive 350

pathways across the T1 golden datasets, indicated by high recall with low precision and 351
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Table 5. Pathway prediction performance between methods using T1 golden datasets. mlLGPR-EN: the
mlLGPR with elastic net penalty, L2: AB: abundance features, RE: reaction evidence features, and PE: pathway evidence
features. For each performance metric, ‘↓’ indicates the lower score is better while ‘↑’ indicates the higher score is better.

Methods
Hamming Loss ↓

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.2217 0.2486 0.3230 0.2458 0.1591 0.2526 0.3096
Näıve 0.3856 0.4113 0.4592 0.4216 0.3215 0.4319 0.4392
MinPath 0.2257 0.2530 0.3266 0.2482 0.1615 0.2561 0.3124
PathoLogic 0.0610 0.0633 0.1188 0.0424 0.0368 0.0424 0.1141
mlLGPR-EN (+AB+RE+PE) 0.0804 0.0633 0.1069 0.0550 0.0380 0.0590 0.1281

Methods
Average Precision Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.3531 0.3042 0.3832 0.2694 0.1779 0.2153 0.4145
Näıve 0.2384 0.2081 0.3035 0.1770 0.0968 0.1382 0.3357
MinPath 0.3490 0.3004 0.3806 0.2675 0.1758 0.2129 0.4124
PathoLogic 0.7230 0.6695 0.7011 0.7194 0.4803 0.5480 0.7522
mlLGPR-EN (+AB+RE+PE) 0.6187 0.6686 0.7372 0.6480 0.4731 0.5455 0.7561

Methods
Average Recall Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860
Näıve 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860
MinPath 0.9902 0.9713 0.9843 1.0000 1.0000 1.0000 0.9860
PathoLogic 0.8078 0.8423 0.7176 0.8734 0.8391 0.7829 0.7499
mlLGPR-EN (+AB+RE+PE) 0.8827 0.8459 0.7314 0.8603 0.9080 0.8914 0.6904

Methods
Average F1 Score ↑

EcoCyc HumanCyc AraCyc YeastCyc LeishCyc TrypanoCyc SixDB
BASELINE 0.5205 0.4632 0.5516 0.4245 0.3021 0.3543 0.5784
Näıve 0.3843 0.3428 0.4640 0.3007 0.1765 0.2429 0.4939
MinPath 0.5161 0.4589 0.5489 0.4221 0.2990 0.3511 0.5763
PathoLogic 0.7631 0.7460 0.7093 0.7890 0.6109 0.6447 0.7479
mlLGPR-EN (+AB+RE+PE) 0.7275 0.7468 0.7343 0.7392 0.6220 0.6768 0.7098

F1 scores. In contrast, high precision and F1 scores were observed for PathoLogic and 352

mlLGPR-EN across the T1 golden datasets. Although both methods gave similar 353

results, Pathologic F1 scores for EcoCyc (0.7631), YeastCyc (0.7890) and SixDB 354

(0.7479) exceeded those for mlLGPR-EN. Conversely, mlLGPR-EN F1 scores for 355

HumanCyc (0.7468), AraCyc (0.7343), LeishCyc (0.6220) and TrypanoCyc (0.6768) 356

exceeded those for Pathologic. 357

To evaluate mlLGP-EN performance on distributed metabolic pathway prediction 358

between two or more interacting organismal genomes a symbiotic system consisting of 359

the reduced genomes for Candidatus Moranella endobia and Candidatus Tremblaya 360

princeps, encoding a previously identified set of distributed amino acid biosynthetic 361

pathways [24], was selected. mlLGPR-EN and Pathologic were used to predict pathways 362

on individual symbiont genomes and a composite genome consisting of both, and 363

resulting amino acid biosynthetic pathway distributions were determined (Fig 5). 364

mlLGPR-EN predicted 8 out of 9 expected amino acid biosynthetic pathways while 365

PathoLogic recovered 5 on the composite genome. The missing pathway for 366

phenylalanine biosynthesis (L-phenylalanine biosynthesis I was not included in the 367

training data set, and was therefore excluded from analysis. False positives were 368

predicted for individual symbiont genomes in Moranella and Tremblaya using both 369

methods although pathway coverage was low compared to the composite genome. 370

Additional feature information restricting the taxonomic range of certain pathways or 371

more restrictive pathway coverage could reduce false discovery on individual organismal 372

genomes. 373

To evaluate pathway prediction performance of mlLGPR-EN on more complex 374
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Fig 5. Predicted pathways for symbiont datasets between mlLGPR-EN
with AB, RE and PE feature sets and PathoLogic. Red circles indicate that
neither method predicted a specific pathway while green circles indicate that both
methods predicted a specific pathway. Blue circles indicate pathways predicted solely by
mlLGPR. The size of circles scales with reaction abundance information.

community-level genomes the CAMI low complexity and HOTS datasets were selected. 375

Table 2 in Supplementary S3 Appendix shows performance scores for mlLGPR-EN on 376

the CAMI dataset. Although recall was high (0.7827) precision and F1 scores were low 377

when compared to the T1 golden datasets. Similar results were obtained for the HOTS 378

dataset (data not shown). In both cases it is difficult to validate most pathway 379

prediction results without individual organismal genomes that can be replicated in 380

culture. Moreover, the total number of expected pathways per dataset is relatively large, 381

encompassing metabolic interactions at different levels of biological organization. On 382

the one hand, these open conditions confound interpretation of performance metrics 383

while on the other they present numerous opportunities for hypothesis generation and 384

testing. To better constrain this tension, mlLGPR-EN and Pathologic prediction results 385

were compared for a subset of 39 pathways previously reported in the HOTS 386

dataset [14]. Fig 6 shows pathway distributions spanning sunlit and dark ocean waters 387

predicted by PathoLogic and mlLGPR-EN, grouped according to higher order functions 388

within the MetaCyc classification hierarchy. Between 25 and 500 m depth intervals, 7 389

pathways were exclusively predicted by PathoLogic and 6 were exclusively predicted by 390

mlLGPR-EN. Another 20 pathways were predicted by both methods, while 6 pathways 391

were not predicted by either method including glycine biosynthesis IV, thiamine 392

diphosphate biosynthesis II and IV, flavanoid biosynthesis, 2-methylcitrate cycle II and 393

L-methionine degradation III. In several instances, the depth distributions of predicted 394

pathways were also different from those described in [14] including L-selenocysteine 395

biosythesis II and acetate formation from acetyl-CoA II. It remains uncertain why 396

current implementation of Pathologic resulted in inconsistent pathway prediction 397

results, although changes have accrued in PathoLogic rules and the structure of the 398

MetaCyc classification hierarchy in the intervening time interval. 399

Taken together, the comparative pathway prediction results indicate that 400

mlLGPR-EN performance equals or exceeds other methods including PathoLogic on 401

organismal genomes but diminishes with dataset complexity. 402
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Fig 6. Comparison of predicted pathways for HOTS datasets between
mlLGPR-EN with AB, RE and PE feature sets and PathoLogic. Red circles
indicate that neither method predicted a specific pathway while green circles indicate
that both methods predicted a specific pathway. Blue circles indicate pathways
predicted solely by mlLGPR and gray circles indicate pathways solely predicted by
PathoLogic.The size of circles scales with reaction abundance information.
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Discussion 403

We have developed mlLGPR, a new method using multi-label classification and logistic 404

regression to predict metabolic pathways at different levels in the genomic information 405

hierarchy (Fig 1). mlLGPR effectively maps annotated enzymatic reactions using EC 406

numbers onto reference metabolic pathways sourced from the MetaCyc database. We 407

provide a detailed open source process from features engineering and the construction of 408

synthetic samples, on which the mlLGPR is trained, to performance testing on 409

increasingly complex real world datasets including organismal genomes, nested 410

symbionts, CAMI low complexity and HOTS. With respect to features engineering, five 411

feature sets were adapted from Dale and colleagues [18] to guide the learning process. 412

Feature ablation studies demonstrated the usefulness of aggregating different 413

combinations of feature sets using the elastic-net (EN) regularizer to improve mlLGPR 414

prediction performance on golden datasets. Using this process we determined that 415

abundance (AB), enzymatic reaction evidence (RE) and pathway evidence (PE) feature 416

sets contribute disproportionately to mlLGPR-EN performance. After tuning several 417

hyper-parameters to further improve mlLGPR performance, pathway prediction 418

outcomes were compared to other methods including MinPath and PathoLogic. The 419

results indicated that while mlLGPR-EN performance equaled or exceeded other 420

methods including PathoLogic on organismal genomes, its performed more marginally 421

on complex datasets. This is likely due to multiple factors including the limited 422

validation information for community-level metabolism as well as the need for more 423

subtle features engineering and algorithmic improvements. 424

Several issues were identified during testing and implementation that need to be 425

resolved for improved pathway prediction outcomes using machine learning methods. 426

While rich feature information is integral to mlLGPR performance, the current 427

definition of feature sets relies on manual curation based on prior knowledge. We 428

observed that in some instances the features engineering process is susceptible to noise 429

resulting in low performance scores. Moreover, individual enzyme reactions may 430

participate in multiple pathways, e.g. multiple mapping problem, resulting in increased 431

false discovery without additional feature sets that relate the presence and abundance of 432

EC numbers to other factors. This problem has been partially addressed by designing 433

features based on side knowledge of a pathway, such as information about 434

“key-reactions” in pathways that increase the likelihood that a given pathway is present. 435

Additional factors including taxonomy, gene expression, or environmental context 436

should also be considered in features engineering for specific information structures. For 437

example, taxonomic constraints on metabolic potential are difficult to use when 438

predicting pathways at the community level given the limited number of closed genomes 439

present in the data. In contrast, environmental context information such as physical 440

and chemical parameter data could be used to constrain specific metabolic potential e.g. 441

aerobic versus anaerobic or light- versus dark-dependent processes. Missing EC numbers 442

also present a challenge especially when trying to define “key-reactions” in pathways 443

with less biochemical validation. An alternative method might be to apply 444

representational learning [43], e.g. learning features from data automatically that can be 445

supplemented with side knowledge to improve pathway prediction outcomes. Finally, 446

alternative algorithms used to analyze high dimensional datasets such as graph based 447

learning [44] has potential to provide even more accurate models needed to inform 448

future experimental design and pathway engineering efforts. 449

Supporting information 450

S1 Appendix. Mathematical derivations of mlLGPR. This file describes the 451
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process of deriving the objective cost function in Eq 9. [PDF] 452

S2 Appendix. Features used for mlLGPR. This file describes features 453

engineering aspects of the work. Given a set of enzymatic reactions with abundance 454

information, we extract sets of features to capture salient aspects of metabolism for 455

pathway inference. [PDF] 456

S3 Appendix. Additional Experiments. This file contains additional test results 457

that are not presented in the main article including more in-depth information related 458

to datasets and the ELA robustness metric. [PDF] 459

S1 Table. Pathway abundance information from Symbiont data. [CSV] 460

S2 Table. Pathway abundance information from HOTS data. [CSV] 461

Acknowledgments 462

We would like to thank Connor Morgan-Lang, Julia Glinos, Kishori Konwar and Aria 463

Hahn for lucid discussions on the function of the mlLGPR model and all members of 464

the Hallam Lab for helpful comments along the way. Funding: This work was 465

performed under the auspices of Genome Canada, Genome British Columbia, the 466

Natural Science and Engineering Research Council (NSERC) of Canada, and 467

Compute/Calcul Canada. ARB and RM were supported by UBC four-year doctoral 468

fellowships (4YF) administered through the UBC Graduate Program in Bioinformatics. 469

Conflict of Interest: none declared. 470

References

1. Oltvai ZN, Barabási AL. Life’s complexity pyramid. Science.
2002;298(5594):763–764.

2. Hahn AS, Konwar KM, Louca S, Hanson NW, Hallam SJ. The information
science of microbial ecology. Current opinion in microbiology. 2016;31:209–216.

3. Toubiana D, Puzis R, Wen L, Sikron N, Kurmanbayeva A, Soltabayeva A, et al.
Combined network analysis and machine learning allows the prediction of
metabolic pathways from tomato metabolomics data. Communications Biology.
2019;2(1):214.

4. Ansorge WJ. Next-generation DNA sequencing techniques. New biotechnology.
2009;25(4):195–203.

5. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research.
2017;45(D1):D353–D361.

6. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al.
The reactome pathway knowledgebase. Nucleic acids research.
2017;46(D1):D649–D655.

7. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE,
et al. The MetaCyc database of metabolic pathways and enzymes-a 2019 update.
Nucleic acids research. 2019;.

February 3, 2020 19/22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.02.02.919944doi: bioRxiv preprint 

mg_symbionts_processed_abd.csv
mg_hots_4_processed_abd.csv
https://doi.org/10.1101/2020.02.02.919944
http://creativecommons.org/licenses/by/4.0/


8. Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, et al.
The BioCyc collection of microbial genomes and metabolic pathways. Briefings in
Bioinformatics. 2017;20(4):1085–1093. doi:10.1093/bib/bbx085.

9. Karp PD, Paley S, Romero P. The pathway tools software. Bioinformatics.
2002;18(suppl 1):S225–S232.

10. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R,
et al. Pathway Tools version 19.0 update: software for pathway/genome
informatics and systems biology. Briefings in bioinformatics. 2016;17(5):877–890.

11. Karp PD, Ong WK, Paley S, Billington R, Caspi R, Fulcher C, et al. The
EcoCyc Database. EcoSal Plus. 2018;8(1).

12. Caspi R, Billington R, Foerster H, Fulcher CA, Keseler I, Kothari A, et al.
BioCyc: Online Resource for Genome and Metabolic Pathway Analysis. The
FASEB Journal. 2016;30(1 Supplement):lb192–lb192.
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