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Abstract

The massive growth of single-cell RNA-sequencing (scRNAseq) and methods for its analysis still1

lacks sufficient and up-to-date benchmarks that would guide analytical choices. Moreover, current2

studies are often focused on isolated steps of the process. Here, we present a flexible R framework3

for pipeline comparison with multi-level evaluation metrics and apply it to the benchmark of4

scRNAseq analysis pipelines using datasets with known cell identities. We evaluate common steps5

of such analyses, including filtering, doublet detection (suggesting a new R package, scDblFinder),6

normalization, feature selection, denoising, dimensionality reduction and clustering. On the basis7

of these analyses, we make a number of concrete recommendations about analysis choices. The8

evaluation framework, pipeComp, has been implemented so as to easily integrate any other step9

or tool, allowing extensible benchmarks and easy application to other fields (https://github.10

com/plger/pipeComp).11
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Background12

Single-cell RNA-sequencing (scRNAseq) and the set of attached analysis methods are evolving13

fast, with more than 560 software tools available to the community [1], roughly half of which are14

dedicated to tasks related to data processing such as clustering, ordering, dimension reduction15

or normalization. This increase in the number of available tools follows the development of new16

sequencing technologies and the growing number of reported cells, genes and cell populations [2].17

As data processing is a critical step in any scRNAseq analysis, affecting downstream analysis and18

interpretation, it is critical to evaluate the available tools.19

A number of good comparison and benchmark studies have already been performed on various20

steps related to scRNAseq analysis and can guide the choice of methodology [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].21

However these recommendations need constant updating and often leave open many details of an22

analysis. Another missing aspect of current benchmarking studies is their limitation to capture all23

aspects of scRNAseq processing workflow. Although previous benchmarks already brought valuable24

recommendations for data processing, some only focused on one aspect of data processing (e.g.,25

[11]), did not evaluate how the tool selection affects downstream analysis (e.g., [14]) or did not26

tackle all aspects of data processing, such as doublet identification or cell filtering (e.g., [15]). A27

thorough evaluation of the tools covering all major processing steps is however urgently needed as28

previous benchmarking studies highlighted that a combination of tools can have a drastic impact29

on downstream analysis, such as differential expression analysis and cell-type deconvolution[15,3].30

It is then critical to evaluate not only the single effect of a preprocessing method but also its31

positive or negative interaction with all parts of a workflow.32

Here, we develop a flexible R framework for pipeline comparison and evaluate the various33

steps of analysis leading from an initial count matrix to a cluster assignment, which are critical in34

a wide range of applications. We collected real datasets of known cell composition (Table 1) and35

used a variety of evaluation metrics to investigate in a multilevel fashion the impact of various36

parameters and variations around a core scRNAseq pipeline. Although we use some datasets based37

on other protocols, our focus is especially on droplet-based datasets that do not include exogenous38

control RNA (i.e. spike-ins); see Table 1 and Figure 1 for more details. In addition to previously-39

used benchmark datasets with true cell labels [6,12], we simulated two datasets with a hierarchical40

subpopulation structure based on real 10x human and mouse data using muscat [19]. Since graph-41

based clustering [20] was previously shown to consistently perform well across several datasets42
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[6,12], we used the Seurat pipeline as the starting point to perform an integrated investigation43

of: 1) doublet identification, 2) cell filtering, 3) normalization, 4) feature selection, 5) dimension44

reduction, 6) clustering. We compared competing approaches and also explored more fine-grained45

parameters and variations on common methods. Importantly, the success of methods at a certain46

analytical step might be dependent on choices at other steps. Therefore, instead of evaluating47

each step in isolation, we developed a general framework for evaluating nested variations on a48

pipeline and suggest a multilevel panel of metrics. Finally, we evaluate several recent methods and49

provide concrete recommendations.50

Results51

A flexible framework for pipeline evaluation52

The pipeComp package defines a pipeline as, minimally, a list of functions executed consecu-53

tively on the output of the previous one (Figure 2A). In addition, optional benchmark functions54

can be set for each step to provide standardized, multi-layered evaluation metrics. Given such55

a PipelineDefinition object, a set of alternative parameters (which might include different56

subroutines) and benchmark datasets, the runPipeline function then proceeds through all com-57

binations of arguments, avoiding recomputing the same step twice and compiling evaluations58

(including running time) on the fly. Variations in a given parameter can be evaluated using all59

metrics from this point downward in the pipeline. This is especially important because end-point60

metrics, such as the adjusted Rand index (ARI) [21] for clustering, are not perfect. For example,61

although the meaning of an ARI score is independent of the number of true subpopulations [22],62

the number of clusters called is by far the most important determinant of the score: the farther63

it is from the actual number of subpopulations, the worse the ARI (Supplementary Figure 17).64

In this context, one strategy has been to cluster across various resolutions and only consider the65

results that have the right number of clusters [6]. While this has the virtue of making the results66

comparable, in practice the number of subpopulations is typically unknown and tools that operate67

well in this optimal context might not necessarily be best overall. Clustering results are also very68

sensitive and might not always capture improvements in earlier steps of the pipeline. We therefore69

favour monitoring several complementary metrics across multiple steps of the process.70

A clustering output is relatively fragile to variations in the pipeline. We therefore wanted to71

capture whether the effect of a given parameter alteration is robust to changes in the rest of the72
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Figure 1: Overview of the benchmark datasets used.
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Figure 2: Overview of the pipeComp framework and its application to a scRNAseq clus-
tering pipeline. A: The package is built around a PipelineDefinition S4 class which defines
a set of functions to be executed consecutively, as well as optional evaluation functions for each
step. Each step can accept of number of parameters whose alternative values are provided as a
list. All (or subsets of) combinations of parameters can then be simultaneously ran and evaluated
using the runPipeline function. B: Scheme representing the application of pipeComp to eval-
uate a range of methods that are commonly used in scRNAseq studies and some of the metrics
monitored at various steps.
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pipeline, or rather specific to a set of other pipeline parameters. We proceeded in a step-wise73

fashion, first testing a large variety of parameters at the early steps of the pipeline along with only74

a set of mainstream options downstream, then selecting main alternatives and proceeding to a75

more detailed benchmark of the next step (Figure 2B).76

Filtering77

Doublet detection78

Doublets, defined as two cells sequenced under the same cellular barcode (e.g., being captured79

in the same droplet), are fairly frequent in scRNAseq datasets, with estimates ranging from 1 to80

10% depending on the platform and cell concentration used [23,24]. While doublets of the same81

cell type are relatively innocuous for most downstream applications due to their conservation of82

the relative expression between genes, doublets formed from different cell types or states are likely83

to be misclassified and could potentially distort downstream analysis. In some cases, doublets84

can be identified through their unusually high number of reads and detected features, but this is85

not always the case (Supplementary Figure 2). A number of methods were developed to identify86

doublets, in most cases by comparing each cell to artificially-created doublets [25,26,27]. We first87

evaluated the capacity of these methods to detect doublets using the two 10x datasets with cells88

of different genetic identity [12], using SNP genotypes as the ground truth. For the sole purpose89

of this section, we included an additional dataset with SNP information but lacking true cell labels90

[24]. Of note, SNP-based analyses also call doublets created by cells of the same cell type (but91

from different individuals) and which are generally described as homotypic (as opposed to neotypic92

or heterotypic doublets, i.e. doublets from different cell types). These homotypic doublets might93

not be identifiable from the mere gene counts, and their identification is not generally the primary94

aim of doublet callers since they are often considered innocuous and, when across individuals, can95

be identified through other means (e.g., SNPs). We therefore do not expect a perfect accuracy96

in datasets involving cells of the same type across individuals (as in the demuxlet dataset).97

We tested DoubletFinder [25] and scran’s doubletCells [26], both of which use similarity98

to artificial doublets, and scds [27], which relies on a combination of co-expression and binary99

classification. DoubletFinder integrates a thresholding based on the proportion of expected dou-100

blets, while scran and scds return scores that must be manually thresholded. In these cases, we101

ensured that the right number of cells would be called doublets. In addition to these methods, we102
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reasoned that an approach such as DoubletFinder could be simplified by being applied directly on103

counts and by using a pre-clustering to create neotypic/heterotypic doublets more efficiently. We104

therefore developed a simple and fast Bioconductor package implementing this method for doublet105

detection, scDblFinder, with the added advantage of accounting for uncertainty in the expected106

doublet rate and using meta-cells from the clusters to even include triplets (see Methods).107

Figure 3: Identification of doublet cells. A: Receiver operating characteristic (ROC) curves
of the tested doublet detection methods for three datasets with SNP-identified doublets. Dots
indicate threshold determined by the true number of doublets. B: Running time of the different
methods (DoubletFinder failed on one of the datasets). C: Rate of misclassification of the cells
identified by scDblFinder as doublets (DBL) or singlets (SNG), across a large range of clustering
analysis. Even in datasets which should not have neotypic doublets, the cells identified as such
tend to be misclassified.

While most methods accurately identified the doublets in the 3 cell lines dataset (mixol-108

ogy10x3cl), the other two datasets proved more difficult (Figure 3A). scDblFinder achieved com-109

parable or better accuracy than top alternatives while being the fastest method (Figure 3B). Across110

datasets, cells called as doublets tended to be classified in the wrong cluster more often than other111
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cells (Figure 3C). We also found that scDblFinder improved the accuracy of the clustering across112

all benchmark datasets even when, by design, the data contained no heterotypic doublet (Figure113

4).114

Excluding more cells is not necessarily better115

Beyond doublets, a dataset might include low-quality cells whose elimination would reduce noise.116

This has for instance been demonstrated for droplets containing a high content of mitochondrial117

reads, often as a result of cell degradation and resulting loss of cytoplasmic mRNAs [28]. A118

common practice is to exclude cells that differ considerably from most other cells on the basis of119

such properties. This can for instance be performed through the isOutlier function from scater120

that measures, for a given control property, the number of median absolute deviations (MADs) of121

each cell from the median of all cells. Supplementary Figure 1 shows the distributions of some of122

the typical cell properties commonly used. Of note, these properties tend to be correlated, with123

some exceptions. For example, while a high proportion of mitochondrial reads is often correlated124

with a high proportion of the counts in the top features, there can also be other reasons for125

an over-representation of highly-expressed features (Supplementary Figure 3), such as an over-126

amplification in non-UMI datasets. In our experience, 10X datasets also exhibit a very strong127

correlation between the total counts and the total features even across very different cell types128

(Supplementary Figure 4). We therefore also measure the ratio between the two and treat cells129

strongly departing from this trend with suspicion.130

Reasoning that the cells we wish to exclude are the cells that would be misclassified, we131

measured the rate of misclassification of each cell in each dataset across a variety of clustering132

pipelines, correcting for the median misclassification rate of the subpopulation and then evaluated133

what properties could be predictive of misclassification (Supplementary Figures 5-7). We could134

not identify any property or simple combination thereof that would be consistently predictive of135

misclassification; the only feature that consistently stood out across multiple datasets (the Zheng136

datasets) was that cells with very high read counts have a higher chance of being misclassified.137

We next investigated the impact of filtering according to various criteria (see Methods). An138

important risk of excluding cells on the basis of their distance from the whole distribution of cells139

on some properties (e.g., library size) is that these properties tend to have different distributions140

across subpopulations. As a result, thresholds in terms of number of MADs from the whole141

distribution can lead to strong biases against certain subpopulations (Figure 4A). We therefore142
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Figure 4: A: Filtering on the basis of distance to the whole distribution can lead to strong bias
against certain subpopulations. The dashed line indicates a threshold of 2.5 median absolute
deviations (MADs) from the median of the overall population. B: Relationship between the
maximum subpopulation exclusion rate and the average clustering accuracy per subpopulation
across various filtering strategies. Of note, doublet removal appears to be desirable even when,
due to the design, there are no heterotypic doublets in the data. The PCA methods refer to
multivariate outlier detected as implemented in scater (see Methods for details).

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930578
http://creativecommons.org/licenses/by/4.0/


examined the tradeoff between the increased accuracy of filtering and the maximum proportion of143

cells excluded per subpopulation (Figure 4B and Supplementary Figure 8). Since filtering changes144

the relative abundance of the different subpopulations, global clustering accuracy metrics such145

as ARI are not appropriate here. We therefore calculated the per-subpopulation precision and146

recall using the Hungarian algorithm [29] and monitored their mean F1 score. A first observation147

was that, although the stringent filtering tended to be associated with an increase in accuracy, it148

could also become deleterious and most of the benefits could be achieved without very stringent149

filtering and minimizing subpopulation bias (Figure 4B). Applying the same filtering criteria on150

individual clusters of cells (identified through scran’s quickCluster method) resulted in nearly151

no cell being filtered out. This suggests that filtering on the global population tends to discard152

cells of subpopulations with more extreme properties (e.g. high library size), rather than low-153

quality cells. Finally, by changing the distributions, the doublet removal step in conjunction with154

filtering sometimes resulted in a net decrease in the proportion of excluded cells while retaining155

or improving accuracy. We therefore recommend the use of doublet removal followed by relatively156

mild filtering, such as is implemented in our ‘default’ filtering (see Methods).157

Filtering features by type158

Mitochondrial reads have been associated with cell degradation and there is evidence that riboso-159

mal genes can influence the clustering output, hiding other biological structure in the analysis [7].160

We therefore investigated whether excluding one category of features or the other, or using only161

protein-coding genes, had an impact on the ability to distinguish subpopulations (Supplementary162

Figure 9). Removal of ribosomal genes robustly reduced the quality of the clustering, suggesting163

that they represent real biological differences between subpopulations. Removing mitochondrial164

genes and restricting to protein-coding genes had a very mild impact.165

Normalization and scaling166

We next investigated the impact of different normalization strategies. Beside the standard log-167

normalization included in Seurat, we tested scran’s pooling-based normalization [30], sctransform’s168

variance-stabilizing transformation [31], and normalization based on stable genes [32,33]. In addition169

to log-normalization, the standard Seurat clustering pipeline performs per-feature unit-variance170

scaling so that the PCA is not too strongly dominated by highly-expressed features. We therefore171

included versions of the different normalization procedures, with or without a subsequent scal-172
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ing (sctransform’s variance-stabilizing transformation involves an approach analogous to scaling).173

Seurat’s scaling function also includes the option to regress out the effect of certain covariates.174

We tested its performance by using the proportion of mitochondrial counts and the number of175

detected features as covariates. Finally, it has been proposed that the use of stable genes, in par-176

ticular cytosolic ribosomal genes, can be used to normalize scRNAseq[33]. We therefore evaluated177

a simple linear normalization based on the sum of these genes, as well as nuclear genes.178

An important motivation for the development of sctransform was the observation that, even179

after normalization, the first principal components of various datasets tended to correlate with180

library size, suggesting an inadequate normalization [31]. However, as library size tends to vary181

across subpopulations, part of this effect can simply reflect biological differences. We therefore182

assessed to what extent the first principal component still retained a correlation with the library183

size and the number of detected features, removing the confounding covariation with the subpop-184

ulations (Figure 5A). The simple step of scaling tended to remove much of the correlation with185

these features and, in the absence of scaling, standard Seurat normalization resulted in fairly high186

correlation with technical covariates. sctransform led to the lowest correlation but most methods,187

including normalization based on stable genes, were able to remove most of the correlation when188

combined with scaling. The only exception is Seurat normalization with scaling regressing out189

covariates, which surprisingly increased the correlation in 8 of the 9 datasets.190

We further evaluated normalization methods by investigating their impact on the separability191

of the subpopulations (Figure 5B-C). Since clustering accuracy metrics such as the ARI are very192

strongly influenced by the number of clusters, we complemented it with silhouette width [34] and193

mutual information. We found most methods (including no normalization at all) to perform fairly194

well in most of the subpopulations. Scaling tended to reduce the average silhouette width of some195

subpopulations and to increase that of some less distinguishable ones and was generally, but not196

always, beneficial on the accuracy of the final clustering. Regressing out covariates systematically197

gave poorer performance on all metrics. sctransform systematically outperformed other methods198

and, even though it was developed to be applied to data with unique molecular identifiers (UMI),199

it also performed fairly well with the Smart-seq protocol (Koh and Kumar datasets).200

Finally, we monitored whether, under the same downstream clustering analysis, different201

normalization methods tended to lead to an over- or under-estimation of the number of clusters.202

Although some methods had a tendency to lead to a higher (e.g., sctransform) or lower (e.g., stable203

genes) number of clusters, the effect was very mild and not entirely systematic (Supplementary204
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Figure 5: Evaluation of normalization procedures. ‘Seurat.feat mt regress’ regresses out the
number of features and proportion of mitochondrial reads during scaling; ‘Seurat.feat regress‘
regresses out the number of features only. Residual correlation of the first principal component
with library size (left) and detection rate (right), after accounting for biological differences between
subpopulations. B: Average silhouette width per true subpopulation, where higher silhouette width
means a higher separability. C: Clustering accuracy (Seurat clustering), measured by the ARI at
the true number of cluster (left) and by the average mutual information (MI) of the cluster
assignment with true subpopulations.
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Figure 10).205

Feature selection206

A standard clustering pipeline typically involves a step of highly-variable genes selection, which207

is complicated by the digital nature and the mean-variance relationship of (sc)RNAseq. Seurat’s208

earlier approaches involved the use of dispersion estimates standardized for the mean expression209

levels, while more recent versions (≥3.0) rely on a different measure of variance, again standardized.210

While adjusting for the mean-variance relationship removes much of the bias towards highly-211

expressed genes, it is plausible that this relationship may in fact sometimes reflects biological212

relevance and would be helpful in classifying cell types. Another common practice in feature213

selection is to use those with the highest mean expression. Recently, [35] instead suggested to use214

deviance, while sctransform provides its own ordering of genes based on transformed variance.215

Reasoning that a selection method should ideally select genes whose variability is higher be-216

tween subpopulations than within, we first assessed to what extent each method selected genes217

with a high proportion of variance or deviance explained by (real) subpopulation. As the pro-218

portion of variability in a gene attributable to subpopulations can be measured in various ways,219

we first compared three approaches: ANOVA on log-normalized count, ANOVA on sctransform220

normalization, and deviance explained. The ANOVAs performed on a standard Seurat normaliza-221

tion and on sctransform data were highly correlated (Supplementary Figure 11A). These estimates222

were also in good agreement with the deviance explained, although lowly-expressed genes could223

have a high deviance explained without having much of their variance explained by subpopulation224

(Supplementary Figure 11B-D). We therefore compared the proportion of the cumulative vari-225

ance/deviance explained by the top X genes that could be retrieved by each gene ranking method226

(Supplementary Figures 12-13). We first focused on the first 1000 genes to highlight the differ-227

ences between methods, although a higher number of selected genes decreased the differences228

between methods (Supplementary Figures 12-14). The standardized measures of variability were229

systematically worse than their non-standardized counterparts in selecting genes with a high pro-230

portion of variance explained by subpopulation. Regarding the percentage of deviance explained231

however, the standardized measures were often superior (Figure 6A and Supplementary Figures232

12-13). Deviance proved the method of choice to prioritize genes with a high variance explained233

by subpopulations (with mere expression level proving surprisingly good) but did not perform so234

well to select genes with a high deviance explained.235
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Figure 6: Evaluation of feature selection methods. A: Ability of different feature ranking
methods to capture genes with a high proportion of variance (left) or deviance (right) explained by
real subpopulations. The asterix denotes the default Seurat method. B: Accuracy of clusterings
(at the true number of clusters) when selecting 1000 genes using the given methods. Based on
standard Seurat normalization (left) or sctransform (right). The vst.varExp and devianceExplained
methods correspond to the estimates used in A to evaluate the selection methods and were included
here only for validation purpose.
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We next evaluated how the use of different feature selection methods affected the clustering236

accuracy (Figure 6B). To validate the previous assay on the proportion of variance/deviance ex-237

plained by real populations, we included genes that maximized these two latter measures. Interest-238

ingly, while these selections were on average the top-ranking methods, they were not systematically239

best for all datasets. The previous observations were reflected in the ARI of the resulting clustering240

(Figure 6B): non-standardized measures of variability, including mere expression level, tended to241

outperform more complex metrics. In general, we found deviance and unstandardized estimates242

of variance to provide the best results across datasets and normalization methods. Increasing the243

number of features selected also systematically led to an increase in the accuracy of the clustering,244

typically plateauing after 4000 features (Supplementary Figure 14).245

Dimensionality reduction246

Since the various PCA approaches and implementations were recently benchmarked in a similar247

context [14], we focused on widely used approaches which had not yet been compared: Seurat’s248

PCA, scran’s denoisePCA, and GLM-PCA [35]. When relevant, we combined them with sctrans-249

form normalization. Given that Seurat’s default PCA weights the cell embeddings by the variance250

of each component, we also evaluated the impact of this weighting with each method.251

Figure 7: Evaluation of common dimensionality reduction methods. A: Average silhouette
width per subpopulation resulting from combinations of normalization and dimension reductions.
B: Clustering accuracy, mean proportion of the variance in the first 5 components explained by
real subpopulations (center), and median ARI of the resulting clustering (right).
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The impact of the choice of dimensionality reduction method was far greater than that of252

normalization or feature selection (e.g., Supplementary Figure 15). GLM-PCA tended to increase253

the average silhouette width of already well-defined subpopulations, but Seurat’s PCA procedure254

however proved superior on all metrics (Figure 7). Overall, weighting the principal components by255

their variance (as Seurat does) had a positive impact on silhouette widths and ARI scores.256

Estimating the number of dimensions257

A common step following dimension reduction is the selection of an appropriate number of di-258

mensions to use for downstream analysis. Since Euclidean distance decreases as the number of259

non-discriminating dimensions increases, there is usually a trade-off between selecting enough260

dimensions to keep most information and excluding smaller dimensions that may represent tech-261

nical noise or other unwanted sources of variation. Overall, increasing the number of dimensions262

robustly led to a decrease in the number of clusters (Supplementary Figures 10 and 15). This263

tended to affect the accuracy of the clustering (Supplementary Figure 16), although in both cases264

(number of clusters and ARI) Seurat’s resolution parameter had a much stronger impact.265

Different approaches have been proposed to select the appropriate number of dimensions,266

from the visual identification of an ’Elbow’ (inflexion point) of the variance explained, to more267

complex algorithms. We evaluated the performance of dimensionality estimators implemented in268

the intrinsicDimension package [36], as well as common procedures such as the ‘elbow‘ method269

(inflexion point in the variance explained by each component), some scRNAseq-specific methods270

such as the JackStraw procedure [37] or scran’s denoisePCA [26], and the recent application of271

Fisher Separability analysis [38].272

We compared the various estimates of dimensionality in their ability to retrieve the intrinsic273

number of dimensions in a dataset, based on Seurat’s weighted PCA space. As a first approx-274

imation of the true dimensionality, we computed the variance in each principal component that275

was explained by the subpopulations, which sharply decreased after the first few components in276

most datasets (Figure 8A). Figure 8B shows the difference between the dimension estimates of the277

above methods and that based on the subpopulations (i.e. from Figure 8A). Of note, the methods278

differ widely in view of their computing time (Figure 8B) and we saw no relationship between the279

accuracy of the estimates and the complexity of the method. Reasoning that over-estimating the280

number of dimensions is less problematic than under-estimating it, we kept the former methods for281

a full analysis of their impact on clustering (Figure 8C-D), when combined with sctransform or the282
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Figure 8: Estimating dimensionality. A: Estimated dimensionality using the proportion of vari-
ance in each component explained by the true subpopulations. B: Difference between ‘real’ dimen-
sionality (from A) and dimensionality estimation methods, along with computing time. C: Average
silhouette width per subpopulation across a selection of methods, combined with sctransform or
standard Seurat normalization. D: Clustering accuracy across the normalization/dimensionality
estimation methods.
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standard Seurat normalization. Although most methods performed well on the various clustering283

measures, the global maximum likelihood based on translated Poisson Mixture Model (maxLik-284

Global) provided the dimensionality estimate that best separated the subpopulations (Figure 8C)285

and resulted in the best clustering accuracy (Figure 8D). This method systematically selected286

many more components than were associated with the subpopulations, suggesting that although287

these additional components appear individually uninformative, in combination they nevertheless288

contribute to classification.289

Clustering290

The last step evaluated in our pipeline was clustering. Given previous works on the topic [6,7]
291

and the success of graph-based clustering methods for scRNAseq, we restricted our evaluation292

to Seurat’s method and two scran SNN-based clustering approaches, based on random walks293

(walktrap method) or on the optimization of the modularity score (fast greedy). Again, the294

tested methods were combined with Seurat’s standard normalization and sctransform, otherwise295

using the parameters found optimal in the previous steps.296

Since ARI is dominated by differences in the number of clusters (Supplementary Figure 17)297

and no single metric is perfect, we diversified them (Figure 9). Mutual information (MI) has the298

virtue of not decreasing when a true subpopulation is split into two clusters, which is arguably299

less problematic (and might well reflect unknown biological subgroups), but as a consequence it300

can be biased towards methods producing higher resolution clustering. Similarly, precision per301

true subpopulation is considerably more robust to differences in the number of clusters. We also302

tracked the mean F1 score and the ARI at the true number of clusters.303

Figure 9: Evaluation of clustering methods. Clustering accuracy of common clustering tools
in combination with sctransform and standard Seurat’s normalization.

The MI score and minimum precision, which are largely independent of the estimated num-304

ber of clusters, were overall higher for the walktrap method (Figure 9), while the mean F1 score305
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favored both scran methods (walktrap and fast greedy) over Seurat. Finally, the ARI score at the306

true number of clusters, when available, showed similar performances. However, because Seurat’s307

resolution parameter had a large impact on the number of clusters identified (Supplementary Fig-308

ure 18), Seurat could always be coerced into producing the right number of clusters. Instead, the309

number of clusters found by scran was considerably less influenced by the available parameters310

(number of nearest neighbors or steps in the random walk - see Supplementary Figure 18), and311

as a result scran-based clustering sometimes never produced a partitioning with the right number312

of clusters. This observation, along with scran’s higher MI score, suggest that scran sometimes313

simply divides a real subpopulation into two clusters (possibly tracking some unknown biolog-314

ical differences) rather than committing misclassification errors. Overall, the walktrap method315

appeared superior to the fast greedy algorithm and was generally less prone to misclassification316

than Seurat clustering, although the latter offered more control over the resolution. Finally, some317

poorly distinguishable subpopulations from both the Zhengmix8eq and simMix1 datasets remained318

very inaccurately classified by all methods and in regards to all metrics.319

Further extensions to the pipeline: imputation/denoising320

The basic pipeline presented here can be extended with additional analysis steps while keeping the321

same evaluation metrics. To demonstrate this, we evaluated various imputation or denoising tech-322

niques based on their impact on classification. Since preliminary analysis showed that all methods323

performed equally well or better on normalized data, we applied them after filtering and normal-324

ization, but before scaling and reduction. Although some of the methods (e.g., DRImpute process325

and alra norm) did improve the separability of some more elusive subpopulations, no method had326

a systematically positive impact on the average silhouette width across all subpopulations (Figure327

10A). When restricting ourselves to clustering analyses that yielded the ‘right’ number of clusters,328

all tested methods improved classification compared to a scenario with no imputation step (‘none’329

label, Figure 10B). However, the situation was not so straightforward with alternative metrics,330

where some methods (e.g., enhance) consistently underperformed. 10X datasets, which are typ-331

ically characterized by a lower per-cell coverage and feature detection rate, benefited more from332

imputation and, in this context, DrImpute and dca tended to show the best performance. On333

the contrary, imputing on normalized counts originating from Smart-seq technology was instead334

rather deleterious to the clustering accuracy.335
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Figure 10: Imputation/denoising methods Average silhouette width per subpopulation (A) and
clustering accuracy (B) with or without (indicated as none) application of a denoising/imputation
method.

Discussion336

Concrete recommendations337

On the basis of our findings, we can make a number of concrete analysis recommendations, also338

summarized in Figure 11:339

1. Filtering340

• Doublet detection and removal is advised and can be performed at little computing341

cost with software such as scDblFinder or scds.342

• Distribution-based cell filtering fails to capture doublets and should use relatively lenient343

cutoffs (e.g., 5 MADs, or 3 MADs in at least 2 distributions) to exclude poor-quality344

cells while avoiding bias against some subpopulations.345

• Features filtering based on feature type did not appear beneficial.346
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2. Normalization and scaling347

• Most normalization methods tested yielded a fair performance, especially when com-348

bined with scaling, which tended to have a positive impact on clustering.349

• sctransform offered the best overall performance in terms of the separability of the350

subpopulations, as well as removing the effect of library size and detection rate.351

• The common practice of regressing out cell covariates, such as the detection rate or352

proportion of mitochondrial reads nearly always had a negative impact, leading to353

increased correlation with covariates and decreased clustering accuracy. We therefore354

advise against this practice.355

3. Feature selection356

• Deviance [35] offered the best ranking of genes for feature selection.357

• Increasing the number of features included tended to lead to better classifications,358

plateauing from 4000 features in our datasets.359

4. Denoising/imputation360

• Denoising appeared beneficial to the identification of subpopulations in 10x datasets,361

but not in Smart-seq datasets.362

• We found especially alra (with prior normalization), DrImpute (with prior processing)363

and dca to offer the best performances.364

5. PCA365

• Similarly to previous reports [11], we recommend the irlba-based PCA using weighting366

of the components, as implemented in Seurat.367

• Instead of the common elbow or jackstraw methods for deciding on the components368

to include, we recommend the global maximum likelihood based on translated Poisson369

Mixture Model method (e.g., implemented in the maxLikGlobalDimEst function of370

intrinsicDimension).371

6. Clustering372

• We found scran-based walktrap clustering to show good performances.373
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• In cases where prior knowledge can guide the choice of a resolution, Seurat can be useful374

in affording manual control of it while, in the absence of such knowledge, scran-based375

walktrap clustering provided reasonable estimates.376

Figure 11: Recommendations of tools from filtering to clustering.

Limitations and open questions377

In this study, we evaluated tools commonly used for the processing of scRNAseq with a focus on378

droplet-based datasets, namely from the 10x technology. Although this platform has been used379
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in almost half of the scRNAseq studies in 2019 [2], other popular technologies such as Drop-380

seq, InDrops or Smart-seq2/3 were not represented in the present benchmarking. Differences381

between such protocols, even among droplet-based technologies, can have a very large impact on382

cell capture efficiency, cell numbers and clustering [39,40,41]. Although most top-ranking methods383

in our comparison performed well on both Smart-seq and 10x datasets that we tested, future384

benchmarking efforts should strive to include less represented technologies. In addition, we did385

not compare any of the alignment and/or quantification methods used to obtain the count matrix,386

which was for instance discussed in [15]. Some steps, such as the implementation of the PCA, were387

also not explored in detail here as they have already been the object of recent and thorough study388

elsewhere [11,14]. We also considered only methods relying on Euclidean distance, while correlation389

was recently reported to be superior[42] and would require further investigation.390

Here, we chose to concentrate on what could be learned from datasets with known cell la-391

bels (as opposed to labels inferred from the data, as in [39]). In contrast to Tian et al. [12],392

who used RNA mixtures of known proportions, we chose to rely chiefly on real cells and their393

representative form of variability. Given the limited availability of such well-described datasets394

however, several aspects of single-cell analysis could not be compared, such as batch effect cor-395

rection or multi-dataset integration. For these aspects of scRNAseq processing that are critical in396

some experimental designs, we refer the reader to previous evaluations [13,43]. In addition, a focus397

on the identification of the subpopulations might fail to reveal methods that are instead best398

performing for tasks other than clustering, such as differential expression analysis or trajectory399

inference. Several informative benchmarks have already been performed on some of these topics400

[19,5,9,44,10,16]. Yet, such evaluations could benefit from considering methods not in isolation, but401

as parts of a connected workflow, as we have done here. We believe that the pipeComp framework402

is modular and flexible enough to integrate new steps in the pipeline, as shown by an example403

with imputation/denoising methods.404

We developed pipeComp to address the need of a framework that can simultaneously evaluate405

the interaction of multiple tools. The work of Vieth and colleagues[15] already offered an important406

precedent in this respect, evaluating the interaction of various steps in the context of scRNAseq407

differential expression analysis, but did not offer a platform for doing so. Instead, the CellBench408

package was recently proposed to address a similar need [45], offering an elegant piping syntax409

to combine alternative methods at successive steps. A key additional feature of pipeComp is its410

ability to perform evaluation in parallel to the pipeline and offering on-the-fly evaluation at any411
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step. This avoid the need to store potentially large intermediate data for all possible permutations412

and thus allowing a combinatorial benchmark. In addition, the fact that benchmark functions413

are stored in the PipelineDefinition makes the benchmark more smoothly portable, making it414

easy to modify, extend with further methods, or apply to other datasets.415

With respect to the methods themselves, we believe there is still space for improvement416

in some of the steps. Concerning cell filtering, we noticed that the current approach based on417

whole-population characteristic (e.g., MAD cut-off) can be biased against certain subpopulations,418

suggesting that more refined methods expecting multimodal distributions should be used rather419

than relying on whole-population characteristics. In addition, most common filtering approaches420

do not harness the relationship between cell QC properties. Finally, imputation had a varied impact421

on the clustering analysis and seemed to be linked to the technology that was used to generate422

the data. Also, the good performance of DrImpute is in line with a previous study focused on the423

preservation of data structure in trajectory inference from scRNAseq [18] (alra was however not424

included in this previous benchmark). Our results also align with the hypothesis of this study on425

the respective strengths of linear and non-linear models and their use to different types of data,426

such as the highest performance of non-linear methods in developmental studies.427

Conclusion428

pipeComp is a flexible R framework for evaluating methods and parameter combinations in a429

complex pipeline, computing on-the-fly multilevel evaluation metrics. Applying this framework to430

scRNAseq clustering enabled us to make concrete recommendations on the steps of filtering, nor-431

malization, feature selection, denoising, dimensionality reduction and clustering. We demonstrate432

how a diversity of multilevel metrics can be more robust, more sensitive, and more nuanced than433

simply evaluating the final clustering performance. In addition, we provide a new and efficient434

Bioconductor package for doublet detection, scDblFinder. We hope that the pipeComp frame-435

work can be applied to extend the current field of benchmarking, as well as to apply it to other436

range of methods.437
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Methods438

Code and data availability439

All analyses were performed through the pipeComp R package, which implements the pipeline440

framework described here. All code to reproduce the simulations and figures is available in the441

https://github.com/markrobinsonuzh/scRNA_pipelines_paper repository, which also in-442

cludes the basic datasets with a standardized annotation.443

The gene counts for the two mixology datasets were downloaded from the CellBench reposi-444

tory, commit 74fe79e. For the other datasets, we used the unfiltered counts from [6], available on445

the corresponding repository https://github.com/markrobinsonuzh/scRNAseq_clustering_446

comparison. For simplicity, all starting SingleCellExperiment objects with standardized metadata447

are available on https://github.com/markrobinsonuzh/scRNA_pipelines_paper.448

Software and package versions449

Analyses were performed in R 3.6.0 (Bioconductor 3.9) and the following packages were installed450

from GitHub repositories: Seurat (version 3.0.0), sctransform (0.2.0), DoubletFinder (2.0.1),451

scDblFinder (1.1.1), scds (1.0.0), SAVERX (1.0.0), scImpute (0.0.9), ALRA (commit 7636de8),452

DCA (0.2.2), DrImpute (1.2), ENHANCE (R version, commit 1571696), SAVERX (1.0.0). The453

code for the glmPCA was obtained from https://github.com/willtownes/scrna2019 (com-454

mit 1ddcc30ebb95d083a685f12fe81d35dd1b0cb1b2).455

Simulated datasets456

The simMix1 dataset was based on the human PBMC CITE-seq data deposited under accession457

code GSE100866 of the Gene Expression Omnibus (GEO) website. Both RNA and ADT count458

data were downloaded from GEO and processed independently using Seurat. We then considered459

cells that were in the same cluster both in the RNA-based and ADT-based analyses to be real460

subpopulations and focused on the 4 most abundant ones. We then performed 3 sampling-based461

simulations with various degrees of separation using muscat [19] and merged the three simulations.462

The simMix2 dataset was generated from the mouse brain data published in [19] in a similar fashion.463

The specific code is available on https://github.com/markrobinsonuzh/scRNA_pipelines_464

paper.465
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Default pipeline parameters466

Where unspecified, the following default parameters or parameter sets were used:467

• scDblFinder was used for doublet identification468

• the default filter sets (see below) were applied469

• standard Seurat normalization was employed470

• Seurat (≥3.0) variable feature selection was employed, selecting 2000 genes471

• standard Seurat scaling and PCA were employed472

• To study the impact of upstream steps on clustering, various Seurat clustering analyses were473

performed, selecting different numbers of dimensions (5, 10, 15, 20, 30, and 50) and using474

various resolution parameters (0.005, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.8, 1,475

1.2, 1.5, 2, 4). The range of resolution parameters was selected to ensure that the right476

number of clusters could be obtained in all datasets.477

Denoising/imputation478

Most imputation/denoising methods were run with the default parameters with the following479

exceptions; DrImpute documentation advises to process the data prior to imputation by removing480

lowly expressed genes and cells expressing less than 2 genes. As it is not clear if this step is a hard481

requirement for the method to perform well, DrImpute was run with and without prior processing482

(DrImpute process and DrImpute noprocess labels, respectively). The dca method only accepts483

integers counts, while two of the datasets had non-integer quantification of expected counts. For484

these datasets, we rounded up the counts prior to imputation. alra is designed for normalized485

data but as we are evaluating normalization downstream to imputation, we used the method on486

both non-normalized (alra label) and normalized counts (alra norm label). scImpute requires an487

estimation of the expected number of clusters with the input data. As the estimation of the true488

number of cluster may not be known by the user, we evaluated the tool using the true number of489

clusters (scImpute label) and using an over/under-estimation of this number (scImpute plus5 and490

scImpute min5 labels, respectively). ENHANCE uses a k-nearest neighbor aggregation method491

and automatically estimates the number of neighbors to merge prior to the imputation. With492

the smallest datasets, this parameters was estimated to be 1, which lead to an early stop of the493

function. In such cases, we manually set this parameter to 2 for the method to work.494
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Dimensionality estimates495

For the methods that produce local dimensionality estimates, we used the maximum. For the496

elbow method, we implemented an automatic procedure by taking the farthest point from a line497

drawn between the variance explained by the first and last (i.e. 50th) components calculated. For498

the JackStraw method, since the Seurat documentation advises not to use a p-value threshold499

(which would typically yield a very large number of dimensions) but rather look for a drop in500

significance, we applied the same farthest point algorithm on the log10(p-values), which in our501

hands reproduced manual threshold selection.502

Doublet detection method503

Our doublet detection method is available at https://github.com/plger/scDblFinder. Briefly,504

after reducing the data to the most expressed genes, we cluster the cells using the fast-greedy505

algorithm, favouring overclustering. We then create artificial doublets by sampling the two cells506

specifically from different clusters and sum the counts of each pair of cells. We also create meta-507

cells from each cluster and use them to create additional doublets and triplets. We combine them508

with the real cells, perform PCA and build a KNN graph using BiocNeighbors. We then calculate,509

for each cell, the proportion of its neighbors that are artificial doublets, weighted by the distance.510

This ratio serves as a doublet score, which is then thresholded by simultaneously minimizing the511

error in classifying real vs artificial doublets and the deviation from the distribution of expected512

doublet rate (accounting for homotypic doublets as done by DoubletFinder).513

Filter sets514

The default set of filters excludes cells that are outliers according to at least two of the following515

thresholds: log10 total counts >2.5 MADs or <5 MADs, log10 total features >2.5 MADs or <5516

MADs, pct counts in top 20 features > or < 5 MADs, featcount dist (distance to expected ratio517

of log10 counts and features) > or < 5 MADs, pct counts Mt > 2.5 MADs and > 0.08.518

The stringent set of filters uses the same thresholds, but excludes a cell if it is an outlier on519

any single distribution.520

The lenient set of filters excludes cells that are outliers on at least two distributions by at521

least 5 MADs, except for pct counts Mt where the threshold is > 3 MADs and > 0.08.522

For cluster-wise filters, clusters were first identified with scran::quickCluster and the filters523

26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930578doi: bioRxiv preprint 

https://github.com/plger/scDblFinder
https://doi.org/10.1101/2020.02.02.930578
http://creativecommons.org/licenses/by/4.0/


were then applied separately for each cluster.524

The ‘pca’ and ‘pca2’ clusters refer to the multivariate outlier detection methods implemented525

in scater, running runPCA with use coldata=TRUE, detect outliers=TRUE. ‘pca‘ uses all co-526

variates, while ‘pca2‘ uses only the log10(counts), log10(features), proportion mitochondrial and527

proportion in the top 50 features.528

Variance and deviance explained529

Unless specified otherwise, the variance in gene expression explained by subpopulations was cal-530

culated on the data normalized and transformed through sctransform. For each gene, we fitted a531

linear model using the subpopulation as only independent variable (∼ subpopulation) and used532

the R-squared as a measure of the variance explained. The same method was used for principal533

components.534

The deviance explained by subpopulations was calculated directly on counts using the535

getDevianceExplained function of pipeComp. The function uses edgeR to fit two models,536

a full (∼ librarySize + population) and a reduced one (∼ librarySize). For each gene, the537

deviance explained is then the difference between the deviance of each models, divided by the de-538

viance of the reduced model. In the rare cases where this resulted in a negative deviance explained,539

it was set to zero.540

To estimate the correlation between the principal components and covariates such as library541

size, we first fitted a linear model on the subpopulations and correlated the residuals of this model542

with the covariate of interest.543

Tables544

Table 1: Overview of the benchmark datasets.

dataset source protocol description

Koh GSE85066 SMARTer FACS purified H7 hESC in different differention stages
Kumar GSE60749 SMARTer Mouse ESC cultured in different conditions

Zhengmix4eq [6] 10x Mixtures of FACS purified PBMCs

Zhengmix4uneq [6] 10x Mixtures of FACS purified PBMCs

Zhengmix8eq [6] 10x Mixtures of FACS purified PBMCs

mixology10x3cl [12] 10x Mixture of 3 cancer cell lines from CellBench

mixology10x5cl [12] 10x Mixture of 5 cancer cell lines from CellBench
simMix1 - 10x-based Simulation of 10 human cell subpopulations
simMix2 - 10x-based Simulation of 9 mouse cell subpopulations
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