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Summary

Across a range of motor and cognitive tasks, cortical activity can be accurately described by low-dimensional
dynamics unfolding from specific initial conditions on every trial. These “preparatory states” largely determine
the subsequent evolution of both neural activity and behaviour, and their importance raises questions regarding
how they are — or ought to be — set. Here, we formulate motor preparation as optimal prospective control of
future movements. The solution is a form of internal control of cortical circuit dynamics, which can be implemented
as a thalamo-cortical loop gated by the basal ganglia. Critically, optimal control predicts selective quenching of
variability in components of preparatory population activity that have future motor consequences, but not in others.
This is consistent with recent perturbation experiments performed in mice, and with our novel analysis of monkey
motor cortex activity during reaching. Together, these results suggest optimal anticipatory control of movement.

Fast ballistic movements (e.g. throwing) require spa-1

tially and temporally precise commands to the mus-2

culature. Many of these signals are thought to arise3

from internal dynamics in the primary motor cortex4

(M1; Figure 1A; Evarts, 1968; Todorov, 2000; Scott,5

2012; Shenoy et al., 2013; Omrani et al., 2017). In6

turn, consistent with state trajectories produced by a7

dynamical system, M1 activity during movement de-8

pends strongly on the “initial condition” reached just9

before movement onset, and variability in initial condi-10

tion predicts behavioural variability (Churchland et al.,11

2006a; Afshar et al., 2011; Pandarinath et al., 2018). An12

immediate consequence of this dynamical systems view13

is the so-called “optimal subspace hypothesis” (Church-14

land et al., 2010b; Shenoy et al., 2013): the network15

dynamics that generate movement must be seeded with16

an appropriate initial condition prior to each movement.17

In other words, accurate movement production likely re-18

quires fine adjustment of M1 activity during a phase of19

movement preparation (Figure 1B, green).20

The optimal subspace hypothesis helps to make sense of21

neural activity during the preparation epoch, yet several22

unknowns remain. What should the structure of the op-23

timal preparatory subspace be? How does this structure24

depend on the dynamics of the cortical network during25

the movement epoch, and on downstream motor pro-26

cesses? Must preparatory activity converge to a single27

movement-specific state and be held there until move-28

ment initiation, or is some slack allowed? What are the29

dynamical processes and associated circuit mechanisms30

responsible for motor preparation? These questions31

can be (and have been partially) addressed empirically,32

e.g. through analyses of neural population recordings33

in reaching monkeys (Churchland et al., 2010b; Ames34

et al., 2014; Elsayed et al., 2016) or optogenetic dissec-35

tion of circuits involved in motor preparation (Li et al.,36

2016; Guo et al., 2017; Gao et al., 2018; Sauerbrei et al.,37

2019). Yet, for lack of an appropriate theoretical scaf-38

fold, it has been difficult to interpret these experimental39

results within the broader computational context of mo-40

tor control.41

Here, we bridge this gap by considering motor prepara-42

tion as an integral part of motor control. We show that43

optimal control theory, which has successfully explained44

behaviour (Todorov and Jordan, 2002; Scott et al., 2015)45

and neural activity (Todorov, 2000; Lillicrap and Scott,46

2013) during the movement epoch, can also be brought47

to bear on motor preparation. Specifically, we argue48

that there is a prospective component of motor control49

that can be performed in anticipation of the movement50

(i.e. during preparation). This leads to a concrete nor-51

mative formulation of the optimal subspace hypothesis.52

Our theory specifies the inputs that must be given to53

the movement-generating network during preparation to54

ensure that (i) any subsequent motor errors are kept55

minimal and (ii) movements can be triggered rapidly.56

We provide a full circuit implementation of the opti-57

mal anticipatory control strategy, for a specific model of58

M1 that we have proposed previously (Hennequin et al.,59

2014 — though the framework is general). In particular,60

we propose that cortex is actively controlled via a tha-61
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Figure 1: Preparation & execution of ballistic movements. (A) Under a dynamical systems view of motor con-
trol (Shenoy et al., 2013), movement is generated by internal dynamics in M1. Prior to movement, the population activity
state x(t) must be controlled into an optimal, movement-specific subspace in a phase of movement preparation; this requires
internally generated control inputs u(t). (B) Schematic state space trajectory during movement preparation and execution.
(C) Schematics of our M1 model of motor pattern generation. The dynamics of an excitation-inhibition network (Hennequin
et al., 2014) unfold from movement-specific initial conditions, resulting in firing rate trajectories (left; 5 neurons shown) which
are linearly read out into joint torques (middle), thereby producing hand movements (right). The model is calibrated for the
production of eight straight center-out reaches; firing rates and torques are shown only for the movement colored black. To
help visualize initial conditions, firing rates are artificially clamped for the first 100 ms. (D) Effect of three qualitatively
different types of small perturbations of the initial condition on the three processing stages leading to movement, as already
shown in (C). Unperturbed traces are shown as solid lines, perturbed ones as dashed lines. Perturbations of all types on
the initial condition have the exact same size, but different consequences. “Potent” perturbations (top) result in errors at
every stage. “Readout-null” perturbations (middle) cause sizeable changes in internal network activity but not in the readout.
“Dynamic-null” perturbations are inconsequential at every stage.

lamocortical loop during motor preparation, with tha-62

lamic afferents providing the desired optimal control in-63

puts. This is consistent with the causal role of thalamus64

in the preparation of directed licking in mice (Guo et al.,65

2017). Moreover, we posit that the basal ganglia oper-66

ate an on/off switch on the thalamocortical loop (Jin67

and Costa, 2010; Cui et al., 2013; Halassa and Acsády,68

2016; Logiaco et al., 2019), thereby flexibly controlling69

the timing of both movement planning and initiation.70

We further analyze the model, and formulate predic-71

tions which we have successfully tested in data. At the72

most abstract level, our core prediction is that the “op-73

timal subspace” is likely high dimensional, with many74

different initial conditions giving rise to the same cor-75

rect movement. This has an important consequence for76

preparatory control: at the population level, only a few77

components of preparatory activity impact future mo-78

tor outputs, and it is these components only that need79

active controlling. In contrast, one expects substantial80

pre-movement variability in other, inconsequential com-81

ponents. Concretely, we predict that following a pertur-82

bation, preparatory activity should recover only in state83

space directions that matter for subsequent movement,84

but not (necessarily) in others. We find that this pre-85

diction agrees with the effects of optogenetic perturba-86

tions reported by Svoboda and colleagues, in a directed87

licking task in mice (Li et al., 2016). Furthermore, the88

existence of a preparatory nullspace predicts selective89

variability quenching at preparation onset: trial-by-trial90

variability should drop predominantly in components91

that have motor consequences. We perform novel analy-92

ses of monkey M1 and dorsal premotor cortex (PMd) ac-93

tivity recorded during reaching, and find that the struc-94

ture of variability quenching supports our main predic-95

tion. Finally, our model also predicts that population96

activity should evolve in orthogonal subspaces during97

preparation and movement, which is one of the most98

prominent features of perimovement activity in reaching99

monkeys (Kaufman et al., 2014; Elsayed et al., 2016).100

Beyond motor control, there is a broader set of corti-101

cal computations that are also thought to rest on low102

dimensional circuit dynamics, with initial conditions103

largely determining behaviour (Pandarinath et al., 2018;104

Sohn et al., 2019). These computations, too, may hinge105

on careful preparation of the state of cortex in appropri-106

ate subspaces. Our framework, and control theory more107
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generally, may provide a useful language for reasoning108

about putative algorithms and neural mechanisms (Kao109

and Hennequin, 2019).110

Results111

A model of movement generation112

We begin with a network model of motor cortex in which113

a detailed balance of excitation and inhibition enables114

the production of rich, naturalistic activity transients115

(Hennequin et al., 2014, Figure 1C). This network serves116

as a pattern generator for the production of movement.117

Specifically, the network directly controls the two joint118

torques of a two-link arm (Section S2.2), via a linear119

readout of the momentary network firing rates:120

m(t) = Cr(t). (1)

Here, m(t) is a vector containing the momentary121

torques, and r(t) is the population firing rate vector122

(described below). We assume that the output torques123

are artificially silenced during movement preparation.124

The network has N = 200 neurons, whose momentary125

internal activations x(t) = (x1, x2, . . . , xN )T evolve ac-126

cording to (Dayan and Abbott, 2001; Section S2.1):127

τ
dx

dt
= −x(t) + Wr(t) + h + h(t) (2)

r(t) = φ[x(t)] . (3)

Here, τ is the single-neuron time constant, W is the128

synaptic connectivity matrix, and φ[x] (applied to x129

element-wise) is a rectified-linear activation function130

converting internal activations into momentary firing131

rates. The network is driven by two different inputs132

shared across all movements: a constant input h re-133

sponsible for maintaining spontaneous activity, and a134

transient input h(t) arising at movement onset and de-135

caying through movement. The latter input models the136

dominant, condition-independent timing-related com-137

ponent of monkey M1 activity during movement (Kauf-138

man et al., 2016). We note that, while the network139

model is generally nonlinear, it can be well approxi-140

mated by a linear model (r = x) as only a small frac-141

tion of neurons are silent at any given time (see below);142

our formal analyses here rely on linear approximations,143

but all simulations are based on Equations 2 and 3 with144

nonlinear φ.145

We calibrated the model for the production of eight146

rapid straight reaches with bell-shaped velocity profiles147

(Figure 1C; details in Section S2.3, see also Figure S1).148

This would later enable comparison with data recorded149

in monkeys performing similar movements. To perform150

this calibration, we noted that—in line with the dy-151

namical systems view of movement generation (Shenoy152

et al., 2013)— movements produced by our model de-153

pend strongly on the “initial condition”, i.e. the cortical154

state x just before movement onset (Churchland et al.,155

2010b; Afshar et al., 2011). We thus “inverted” the156

model numerically, by finding eight different initial con-157

ditions and a common readout matrix C such that the158

dynamics of the nonlinear model (Equations 2 and 3),159

seeded with each initial condition, would produce the160

desired movement. Importantly, we constrained C so161

that its nullspace contained the network’s spontaneous162

activity state, as well as all eight initial conditions. This163

constraint ensures that movement does not occur spon-164

taneously, and is a minimum requirement (though not165

a guarantee) for movement not to occur prematurely166

during preparation.167

We re-analyzed population recordings of monkey168

M1/PMd during reaching (data courtesy of Mark169

Churchland, Matt Kaufman and Krishna Shenoy; Sec-170

tion S5), and found that our model captures several171

essential aspects of movement-related neural dynam-172

ics (Figure S5). First, kinematically similar reaches173

are produced from similar preparatory end-states in174

both model and monkey. Second, neurons exhibit het-175

erogeneous, multiphasic oscillatory activity that often176

grow transiently from the preparatory end-state before177

shrinking back to spontaneous levels (Hennequin et al.,178

2014). Third, these transients can be summarized as179

state-space rotations at the population level, as revealed180

by jPCA (Churchland et al., 2012). Finally, canonical181

correlations analysis (Sussillo et al., 2015) indicates sub-182

tantial overlap between monkey and model population183

activity across time and conditions (Section S5).184

Control of fast movements: preparatory185

control of cortical activity186

Having calibrated our network model of movement gen-187

eration, we now turn to preparatory dynamics. As188

stated previously, Shenoy et al.’s dynamical systems189

perspective suggests that accurate movement execution190

likely requires careful seeding of the generator’s dy-191

namics with an appropriate, reach-specific initial con-192

dition (Afshar et al., 2011). In our model, this means193

that the activity state x(t) of the cortical network must194

be steered towards the initial condition corresponding to195

the intended movement (Figure 1B, green). This pro-196

cess, which we call “preparatory control”, forms the core197

of this study.198

An important first step towards formalizing preparatory199

control and unravelling putative circuit mechanisms is200

to understand how deviations from “the right initial201

condition” impact the subsequent movement. Mathe-202

matical analysis of our model reveals that depending203

on the direction in state space along which the devia-204

tion occurs, there may be strong motor consequences or205

none at all (Figure 1D; Section S3). Some preparatory206

perturbations propagate through the dynamics of the207

generator network during the movement epoch, modi-208

fying its activity trajectories, eventually leading to er-209
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rors in torques and hand motion (“potent perturba-210

tions”; Figure 1D, top). Other preparatory perturba-211

tions cause subsequent deviations in cortical state tra-212

jectories, too, but these deviations are correlated across213

neurons in such a way that they cancel in the read-214

out, leaving the movement unaltered (“readout-null”;215

Figure 1D, middle). Yet other preparatory perturba-216

tions are outright rejected by the recurrent dynamics of217

the network. These perturbations have little impact on218

neuronal activity, let alone on torques and hand motion219

(“dynamic-null”; Figure 1D, bottom).220

The existence of readout-null and dynamic-null direc-221

tions imply that, for each movement, many initial condi-222

tions give rise to the correct hand trajectory. This sub-223

stantially lightens the computational burden of prepara-224

tory ballistic control: there are only a few potent direc-225

tions in state space along which cortical activity needs226

active controlling prior to movement. For our model227

with only two readout torques, the effective dimension-228

ality of this potent subspace is approx. 5 (Section S3,229

see also Figure S3 and Figure 4). Thus, taking into230

account the energetic cost of neural control, prepara-231

tory dynamics should aim at preferentially eliminating232

errors in preparatory states along those few directions233

that matter for movement.234

We now formalize these insights in a normative model235

of preparatory motor control. We assume that, prior236

to movement, the initial condition for cortical dynam-237

ics is progressively reached during a preliminary phase238

of movement preparation. In this phase, the cortical239

network receives additional movement-specific control240

inputs u(t) (Figure 1A and B, green) which are rapidly241

switched off to initiate movement:242

τ
dx

dt
= −x(t) + Wr(t) + h + h(t) + u(t) (4)

How should these preparatory inputs u(t) be chosen? At243

any time t during preparation, we can assign a “prospec-244

tive motor error” C(x) to the current cortical state x(t),245

equal to the total error in movement that would result246

if movement was initiated at this time (i.e. if control in-247

puts were suddenly switched off; Section S3). An ideal248

controller would supply the cortical network with such249

control inputs u(t) as necessary to lower the prospective250

motor error as fast as possible. This would enable accu-251

rate movement production in short order. We therefore252

propose the following cost functional:253

J [u(t)] =

∫ ∞
0

C(x(t)) + λR(u(t)) dt (5)

where R(u) is an energetic cost which penalizes large254

control signals, and λ sets its relative importance in the255

overall cost. Note that x(t) depends on u(t) via Equa-256

tion 4.257
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Figure 2: Optimal preparatory control. (A) Dynamics of the model during optimal preparation and execution of a straight
reach at 0-degree angle. Optimal control inputs are fed to the cortical network during preparation, and subsequently withdrawn
to elicit movement. Top: firing rates of a selection of ten model neurons. Middle: generated torques (black), compared to
targets (brown). Bottom: the prospective motor error C[x(t)] quantifies the accuracy of the movement if it were initiated at
time t during the preparatory phase. Under the action of optimal control inputs, C[x(t)] decreases very fast, until it becomes
small enough that an accurate movement can be triggered. The control input is calculated so as to minimize the green area
under the curve over an infinite preparation horizon (only 600 ms of which are shown here), plus an energy cost that prevents
control inputs from growing unrealistically large (Equation 5). The dashed line shows the evolution of the prospective cost for
the naive static strategy (see text). (B) Hand trajectories for each of the eight reaches (solid), following optimal preparation
over a window of 25 ms (left), 50 ms (center) and 200 ms (right). Dashed lines show target movements. (C) Firing rates of
six example neurons, for each movement (color-coded as in B). Green bars mark the 600 ms preparation window, black scale
bars indicate 20 Hz. (D) Prospective motor error (averaged over the eight reaches) during preparation for different values of
the energy penalty parameter λ. In (A-C), we used λ = 0.1.
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Figure 3: Optimal movement preparation via a gated thalamo-cortical loop. (A) Proposed circuit architecture for
the optimal movement preparation (cf. text). (B) Cortical activity (top; 10 example neurons), generated torques (middle), and
prospective motor error (bottom) during the course of movement preparation and execution in the circuit architecture shown
in (A). Prospective motor error for the naive strategy is shown with a dotted line as in Figure 2A. (C) Hand trajectories (solid)
compared to target trajectories (dashed) for the eight reaches, triggered after 100 ms (left), 200 ms (middle) and 600 ms (right)
of motor preparation. (D) Firing rates of six example cortical neurons in the model. Green bars mark the 600 ms preparation
window, during which the thalamus is disinhibited. Vertical scale bars denote 20 Hz.

Optimal preparatory control258

When (i) the prospective motor error C is quadratic259

in the output torques m, (ii) the energy cost R is260

quadratic in u, and (iii) the network dynamics are lin-261

ear, then minimizing Equation 5 corresponds to the262

well-known linear quadratic regulator problem in con-263

trol theory (Skogestad and Postlethwaite, 2007). The264

optimal solution is a combination of a constant input265

and instantaneous (linear) state feedback,266

uopt(t) = u? + K δx(t), (6)

where δx(t) is the momentary deviation of x from the267

desired initial condition. In Equation 6, the constant268

input u? is movement specific, but the optimal gain ma-269

trix K is generic; both can be derived in algebraic form270

(Section S4.2). Thus, even though the actual movement271

occurs in “open loop” (without corrective sensory feed-272

back), optimal movement preparation occurs in closed273

loop, with the state of the pattern generator being con-274

trolled via internal feedback in anticipation of the move-275

ment.276

When applied to our model system, the optimal control277

inputs lead to naturalistic transient dynamics in the cor-278

tical network during motor preparation (Figure 2A, top,279

and Figure 2C). The prospective motor error decreases280

very quickly to negligible values (Figure 2A, bottom;281

note the small green area under the curve) as x(t) is282

driven into the appropriate subspace. After the prepara-283

tory feedback loop is switched off and movement begins,284

the system accurately produces the desired torques and285

hand trajectories (Figure 2A, middle, and Figure 2B,286

right). Indeed, movements are ready to be performed287

after as little as 50 ms of preparation time (Figure 2B).288

We note, though, that it is possible to achieve an arbi-289

trarily small motor cost, and therefore arbitrarily fast290

preparation, by decreasing the energy penalty factor λ291

in Equation 5 (Figure 2D). However, this is at the price292

of unrealistically large control inputs, i.e. large energetic293

costs R(u) (Section S4.3).294

Importantly, feedback control vastly outperforms a295

naive preparation strategy which uses a simpler, con-296

stant feedforward input u(t) = u? and ignores the error297

feedback term (K = 0 in Equation 6). Under this naive298

strategy, network activity successfully settles in the de-299

sired initial condition eventually, but undergoes large300

initial transients in directions of high cost at preparation301

onset. These transients dramatically delay the eventual302

decay of the prospective motor error (Figure 2A, bot-303

tom, dashed line).304

Circuit model for preparatory control: a305

gated thalamocortical loop306

So far we have not discussed the source of optimal307

preparatory inputs u(t), other than saying that they308

close a feedback loop from the cortex onto itself (Equa-309

tion 6). While such a loop could in principle be ab-310

sorbed in local modifications of recurrent cortical con-311

nectivity (Sussillo and Abbott, 2009), this would pre-312

clude the flexible, near-instant on/off switching of the313

control loop required at onset of preparation (on) and314

movement (off). If, instead, the preparatory loop were315
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Top: 200 orthogonal state-space directions were identified, going from the most to the
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10-dimensional subspaces. The average motor potency in each subspace is shown here, as
measured by the prospective motor error C. Bottom: the state of the cortical network
in the thalamo-cortical model of Figure 3 was artifically set to deviate randomly from
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color code.

to pass through another brain area, fast modulation of316

excitability in that relay area would provide a rapid317

and flexible switch. We therefore propose the circuit318

model shown in Figure 3A, where the motor thala-319

mus acts as a relay station for cortical feedback (Guo320

et al., 2017; Nakajima and Halassa, 2017). The loop321

is gated on/off at preparation onset/offset by the322

(dis)-inhibitory action of basal ganglia outputs (Jin and323

Costa, 2010; Cui et al., 2013; Halassa and Acsády, 2016;324

Logiaco et al., 2019). Specifically, cortical excitatory325

neurons project to 160 thalamic neurons, which make326

excitatory backprojections to a pool of 100 excitatory327

(E) and 100 inhibitory (I) neurons in cortex layer 4. In328

turn, these layer 4 neurons provide both excitation and329

inhibition to the main cortical network, thereby closing330

the control loop. Here, inhibition is necessary to cap-331

ture the negative nature of optimal feedback. In addi-332

tion to thalamic input, the cortical network also receives333

a movement-specific constant drive during preparation334

(analogous to u? in Equation 6 for the standard LQR335

algorithm).336

The detailed patterns of synaptic efficacies in the337

thalamo-cortical loop are obtained by solving the same338

control problem as above, based on the minimization339

of the cost functional in Equation 5 (mathematical de-340

tails in Section S4). Importantly, the solution must now341

take into account some key biological constraints: (i)342

feedback must be based on the activity of the cortical343

E neurons only, (ii) thalamic and layer-4 neurons have344

intrinsic dynamics that introduce lag, and (iii) the sign345

of each connection is constrained by the nature of the346

presynaptic neuron (E or I).347

The circuit model we have obtained enables flexible,348

near-optimal anticipatory control of the reaching move-349

ments (Figure 3B). During spontaneous activity, thala-350

mic neurons are silenced due to strong inhibition from351

basal ganglia outputs (not explicitly modelled), keeping352

the thalamocortical loop open (inactive) by default. At353

the onset of movement preparation, rapid and sustained354

disinhibition of thalamic neurons restores responsive-355

ness to cortical inputs, thereby closing the control loop356

(on/off switch in Figure 3B, top). This loop drives the357

cortical network into the appropriate preparatory sub-358

space, rapidly reducing prospective motor errors (Fig-359

ure 3B). To trigger movement, the movement-specific360

tonic input to cortex is shut off, and the basal ganglia361

resume sustained inhibition of the thalamus. Thus, the362

loop re-opens, which sets off the uncontrolled dynamics363

of the cortical network from the right initial condition364

to produce the desired movement (Figure 3C).365

Selective elimination of preparatory er-366

rors367

The neural trajectories under optimal preparatory con-368

trol display a striking property, also observed in monkey369

M1 and PMd recordings (Ames et al., 2014; Lara et al.,370

2018; Discussion): by the time movement is ready to be371

triggered (approx. 100 ms), the firing rates of most neu-372

rons have not yet converged to the values they would373

attain after a long preparation time (Figure 3B and D)374

— that is, ‖δx(t)‖ � 0. We found we could readily375

explain this effect by systematically searching for po-376

tent and null directions (thus generalizing Figure 1D)377

and examining how much each direction contributes to378

preparatory deviations δx(t). Specifically, we calculated379

a full set of orthogonal directions ranking from most380

to least motor-potent, with “potency” measured by the381

prospective motor error C (an analytical solution exists382

for linear systems; Section S3). For easier visualiza-383

tion, we grouped these successive directions into twenty384

10-dimensional subspaces. We found that motor po-385

tency decreases steeply from one subspace to the next386

(Figure 4, top), indicating that preparatory deviations387

are inconsequential along most state-space directions.388

If this could explain early motor readiness despite un-389

settled firing rates, one would expect δx(t) to shrink390

very quickly along directions with motor consequences,391

while persisting (or even growing) along motor-null di-392

rections. To verify this, we artificially set x(t) at prepa-393

ration onset to deviate from the target initial state in a394

random direction in each trial. Examining the dynamics395

of δx(t) in the various subspaces (averaging squared con-396

tributions across many trials), we confirmed that errors397

are selectively eliminated along directions with motor398

consequences, while they linger or even grow in other,399

inconsequential directions (Figure 4, bottom).400
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Figure 5: Effect of perturbations. (A) Illustration
of perturbation via “photoinhibition”: a subset (60%) of I
neurons in the model are driven by strong positive input.
(B) Left: firing rates (solid: perturbed; dashed: unper-
turbed) for a pair of targeted I cells (top), untargeted I cells
(middle) and E cells (bottom). Green bars (1.6 s) mark the
movement preparation epoch, and embedded turquoise bars
(400 ms) denote the perturbation period. Right: population
histograms of firing rates observed at the end of the per-
turbation (turquoise), and firing rates observed at the same
time in unperturbed trials (gray). Error bars show one stan-
dard deviation across 300 experiments, each with a different
random set of targeted I cells. (C) Prospective motor error
(averaged across movements and perturbation experiments)
in perturbed (solid) vs. unperturbed (dashed) conditions.
Subsequent hand trajectories are shown for one experiment
of each condition (middle and bottom insets). These are
compared with the reaches obtained by randomly shuffling
the deviation of the final perturbed preparatory state from
target initial condition across neurons, and simulating the
cortical dynamics thereafter (top inset; see also text). Tar-
get reaches are shown as dashed lines. (D) Analysis of per-
turbation and recovery for the case of two movements (left
and right reaches; same color code as in (C)). Top: corti-
cal activity projected along the coding direction (left), the
persistent mode (middle), and the remaining mode (right;
see text). Traces are shown as mean (solid) ± std. (shaded)
across perturbation experiments, and compared with the un-
perturbed condition (dashed). Bottom: corresponding root-
mean-square deviation between perturbed and unperturbed
projections across experiments. Green and turquoise bars as
in (B).

Selective recovery from photoinhibition401

The selective elimination of preparatory errors also402

makes predictions for the manner in which the circuit403

should recover from perturbations. In recent years, neu-404

rophysiologists have begun to dissect the causal circuit405

mechanisms responsible for movement planning, by sys-406

tematically perturbing activity in various brain struc-407

tures (Li et al., 2016; Guo et al., 2017; Gao et al., 2018;408

Sauerbrei et al., 2019), and analyzing population record-409

ings during recovery. We performed similar perturba-410

tions and analyses in our circuit model of Figure 3 to411

shed new light on preparatory motor control (Figure 5).412

As our E/I cortical circuit model operates in the413

inhibition-stabilized regime (Hennequin et al., 2014;414

Tsodyks et al., 1997; Ozeki et al., 2009; Sanzeni et al.,415

2019), we were able to use the same photoinhibition416

strategy as used in these experimental studies to silence417

the cortical network (Figure 5A). We provided strong418

excitatory input to a random subset (60%) of inhibitory419

neurons, for a duration of 400 ms starting 400 ms after420

preparation onset. We found that “photoinhibition” has421

mixed effects on the targeted neurons: some are caused422

to fire at higher rates, but many are paradoxically sup-423

pressed (Figure 5B, top). For E cells and untargeted424

I cells, though, the effect is uniformly suppressive, as425

shown in Figure 5B (middle and bottom).426

The perturbation transiently resets the prospective mo-427

tor error to pre-preparation level, thus nullifying the428

benefits of the first 400 ms of preparation (Figure 5C).429

Following the end of the perturbation, the prospective430

motor error decreases again, but does not fully recover431

to its final value in unperturbed trials (Figure 5C, solid432

vs. dashed). Nevertheless, it recovers to sufficiently433

low values as to enable accurate movement produc-434

tion (compare middle and bottom hand trajectories in435

Figure 5C). This is due to the selective elimination of436

preparatory errors discussed earlier (Figure 4): indeed,437

shuffling the deviation of x(t) from the target initial438

state across neurons (i.e. uniformizing the distribution439

of errors in different state space directions) leads to a440

much higher prospective motor error, and eventually to441

impaired hand trajectories (Figure 5C, top right).442

We next performed an analysis qualitatively similar to443

that conducted by Li et al. in the context of a task444

where mice had to report the location of a tactile stim-445

ulus through directed licking after a delay period. For446

comparison with the lick-left and lick-right movement447

conditions, we trimmed our model to only two move-448

ments, the left and the right reaches. We identified a449

“coding direction” (CD) that maximally separates firing450
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rates in left and right reaches towards the end of move-451

ment preparation in unperturbed trials (Section S4.9).452

Similarly, we identified a “persistent” mode (PM) that453

maximally separates firing rates in perturbed and un-454

perturbed conditions towards the end of preparation,455

regardless of the reach direction. Finally, as in Li et al.456

(2016), we chose a third mode orthogonal to the PM and457

the CD which captures most of the remaining variance458

across the two reaches and perturbation conditions.459

As Li et al. observed in the anterior lateral motor460

cortex (ALM) of mice, the CD and the PM modes461

are nearly orthogonal (89-degree angle) even though462

not constrained to be so. Moreover, the perturbation463

causes cortical activity to transiently deviate from un-464

perturbed trajectories nearly equally along each of the465

three modes (Figure 5D). Remarkably, however, activ-466

ity recovers promptly along the CD, but not along the467

other two modes — as in Li et al. (2016). In fact, the468

perturbation even grows transiently along the PM dur-469

ing early recovery. Such selective recovery can again be470

understood from optimal preparation eliminating errors471

along directions with motor consequences, but (owing to472

energy constraints) not in other inconsequential modes.473

Indeed, the CD is by definition a motor-potent direc-474

tion: its contribution to the preparatory state is what475

determines whether the movement will be a left reach476

or a right reach. In contrast, the PM and the third477

mode are approximately motor-null (respectively 4339478

times and 2286 times less motor-potent than the CD, by479

our measure C of motor potency). Thus, the dynamics480

of the closed-loop circuit have no incentive to quench481

perturbation-induced deviations along these modes. In482

sum, the dynamics of mouse ALM during this task are483

consistent with our model of optimal preparatory con-484

trol.485

Selective quenching of variability during486

motor preparation487

The selective elimination of motor-potent preparatory488

errors is a central feature of the optimal control al-489

gorithm. Yet, experimental tests of this prediction490

in reaching monkeys would involve circuit perturba-491

tions analogous to those performed in mice (c.f. above),492

at a spatial resolution finer than currently achievable493

(O’Shea et al., 2018). Nevertheless, we reasoned that494

other signatures of this prediction might be present in495

the fine structure of trial-by-trial variability in popula-496

tion activity, which can be readily estimated in existing497

datasets.498

To flesh out the specific predictions of our optimal con-499

trol hypothesis for variability, we introduced stochastic-500

ity in the input to every neuron, in the form of inde-501

pendent Gaussian noise processes (Section S5.6). These502

noisy inputs propagate through the recurrent dynam-503

ics, and cause variability in the firing rate of each neu-504

ron across time and trials (Hennequin et al., 2018).505

We found that firing rate variability drops at prepara-506

tion onset (Figure 6A, lightest purple), consistent with507

the drop in Fano factor previously reported in monkey508

M1/PMd (Churchland et al., 2006b, 2010b) — and re-509

produced here in our own analysis of the monkey data510

(Figure 6B). Although variability suppression in the511

model was relatively mild on average, we found that512

the effect grew as we added “phantom muscles” to the513

model. Specifically, we noted that the solution to the514

optimal preparation problem (Equation 6) does not de-515

pend on the details of the desired “muscle” (i.e. torques)516

activities, but only on the way they are read out from517

the cortical population (the readout matrix C in Equa-518

tion 1). We thus artificially increased the dimension-519

ality of the network readout, and observed increasingly520

strong variability suppression (Figure 6A, shades of pur-521

ple).522

A formal mathematical analysis of variability in the523

model explains this quenching effect (Section S5.6), and524

can be summarized as follows. For a linearized model525

under white noise input (a useful limit), the momentary526

deviation from trial-average response (residual) at any527

time in any trial is the superposition of the network’s528

responses to a series of past consecutive noisy impulses529

(“impulse responses”). At preparation onset, the effec-530

tive recurrent connectivity of the cortical network is al-531

tered by the sudden addition of the thalamocortical loop532

pathway (Nakajima and Halassa, 2017). This modifies533

the impulse response of the system, such that activity is534

pulled towards the desired preparatory end-state more535

strongly than during spontaneous dynamics. Thus, in536

each of the superimposing responses contributing to the537

momentary activity fluctuations, residuals decay faster538

overall than they would normally outside the prepa-539

ration epoch. This results in overall variability sup-540

pression. Notably, with a higher-dimensional readout541

(more muscles), a greater number of state space direc-542

tions are constrained by the optimal control strategy, i.e.543

are caused to decay faster than usual by the thalamo-544

cortical loop. This explains why variability suppression545

grows with the number of muscles (Figure 6A, darker546

purples).547

Importantly, because prospective errors decay faster548

along motor-potent preparatory directions (Figure 4),549

the model should exhibit selective quenching of trial-550

by-trial variability in these directions. To verify this, we551

decomposed firing rate variability in the model into con-552

tributions from potent and non-potent state space di-553

rections, using the same orthogonal basis as used previ-554

ously in Figure 4. We confirmed that during the prepa-555

ration epoch, variability is more strongly quenched in556

potent directions than in null directions (Figure 6C).557

We then sought to test this model prediction by ana-558

lyzing the structure of variability in the monkey data.559

We reasoned that, although it is difficult to determine560

the motor potency of a given state space direction in561

the recorded population, one subspace is almost cer-562

tain potent: the subspace spanned by all pairwise differ-563
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Figure 6: Selective quenching of across-trial spike
count variability in model and monkey. (A) Across-
trial firing rate variance in the model, averaged across cells
and reach conditions. Different lines denote different numbers
of “muscles” involved in the movement (see text). (B) Fano
factor averaged over all neurons and reach conditions in the
monkey data (shaded area: ± s.e.m.). (C) Firing rate vari-
ance decomposed in the twenty 10-dimensional subspaces of
Figure 4 (same color code), in our base model with two “mus-
cles” (m = 2). Traces are normalized to the variance obtained
at preparation onset (t = 0). (D) Spike count co-variability
in the monkey data, projected onto the coding subspace (CS,
black), the early-change subspace (ECS, blue), and the late-
change subspace (LCS, green). Values are normalized by the
average projected variance in the 100 ms window preceding
preparation onset (t = 0). See text for details. Shaded areas
denote ± s.e.m. (boostrap). In (B) and (D), 123 neurons (sin-
gle and multi-units) were analyzed across 8 straight reaches.
Spikes were aligned onto target onset, and only trials with a
delay period longer than 400 ms were analyzed (an average of
≈ 26 per condition).

ences between the eight reach-specific preparatory end-564

points. Indeed, the contribution of this subspace to late565

preparatory activity is what determines the upcoming566

reach. Therefore we call this subspace the “coding sub-567

space”, in analogy with Li et al.’s “coding direction”568

(c.f. above). Conversely, since accurate reaches can be569

made as early as 100 ms after movement instruction,570

fluctuations in trial-averaged firing rates that occur late571

in the delay period are likely inconsequential. We thus572

extracted the state space directions corresponding to573

these late changes, to obtain a subspace we call the574

“late-change subspace” (LCS; Section S5.6). Finally,575

we also reasoned that another independent estimation576

of the potent subspace could be obtained by consider-577

ing early changes in mean preparatory activity. Indeed,578

under optimal control, these changes should occur pre-579

dominantly along potent dimensions (Figure 4). We580

thus collected the within-condition activity differences581

between early and mid-preparation, to obtain an “early-582

change subspace” (ECS), presumably potent. To avoid583

double-counting the CS (likely the most reliable esti-584

mate of potent directions), we further constrained the585

ECS and the LCS to be orthogonal to the CS.586

Having identified putative potent and null directions587

using trial-averaged responses only, we next partioned588

across-trial variability in these different subspaces.589

Specifically, for each time t, neuron i, reach condition590

m and trial k, we counted the number of spikes cimk(t)591

that fell in a 150 ms-long window centered on t. We592

then constructed normalized residuals,593

c̃imk(t) =
cimk(t)√
µim(t)

−
√
µim(t) (7)

where µim is the average of cimk across trials (note that594

in particular, the mean of c̃imk over trials is zero). This595

construction recovers the standard Fano factor as the596

across-trial mean of c̃2imk, but also lets us generalize the597

Fano factor to measure spike count co-variability more598

specifically along any state space direction d, as599

V(d, t) =
〈
(dT c̃•mk(t))2

〉
mk

. (8)

Here, c̃•mk = (c̃1mk, c̃2mk, . . . , c̃Nmk)
T

denotes the pop-600

ulation vector of normalized spike count residuals in601

condition m and trial k, and 〈·〉mk denotes an average602

over all conditions and trials. To compute variability603

in each of the three subspaces, we averaged V(d, t) over604

a set of orthogonal directions d defining the subpace,605

weighted by their contributions to the subspace (Sec-606

tion S5.6). We found that, as predicted by our model,607

the suppression of shared variability in M1/PMd activ-608

ity is selective. Spiking variability is most strongly re-609

duced in the two putative potent subspaces (Figure 6D,610

“CS” and “ECS”), but not in the presumed null sub-611

space (Figure 6D, “LCS”). Together, these results sup-612

port our optimal preparatory control hypothesis.613

Reorganization between preparatory and614

movement responses615

Finally, our model also accounts for a prominent fea-616

ture of monkey M1/PMd responses during motor prepa-617

ration and execution: across time and reach condi-618

tions, activity spans orthogonal subspaces during the619

two epochs. To show this, we followed Elsayed et al.620

and performed principal components analysis (PCA) on621

model and monkey trial-averaged activity during the622

two epochs separately (Section S5.4; Figure 7A). We623

then examined the fraction of variance explained by624

both sets of principal components (prep-PCs and move-625

PCs) during each epoch. Consistent with the monkey626

data, prep-PCs accounted for most of the activity vari-627
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Figure 7: Reorganization between preparatory and movement activity in model and monkey. (A) Example
single-neuron PSTHs in model (top) and monkey M1/PMd (bottom), for each of the eight movement conditions. For the
model, these were already shown in Figure 2B. The monkey performed similar, though not identical, straight reaches (Fig-
ure S5). (B) Fraction of variance explained during movement preparation (left) and execution (right) by principal components
calculated from preparatory (green) and movement-related (magenta) trial-averaged activity (Section S5.4). Only the first 10
components are shown for each. Variance is across reach conditions and time in 300 ms prep. and move. windows indicated by
green and magenta bars in (A). (C) Alignment index (calculated as in Elsayed et al., 2016) for the monkey data (square), our
optimal circuit model of Figure 3 (circle, overlapping with the square) and the naive control strategy based on static control
inputs (triangle). Control values refer to the average alignment index between random subspaces drawn as in Elsayed et al.,
2016 (see text and Section S5.4).

ance during preparation (by construction; Figure 7B,628

left), but accounted for little variance during move-629

ment (Figure 7B, right). Similarly, move-PCs captured630

little of the preparatory-epoch activity variance. We631

further quantified this (lack of) overlap using Elsayed632

et al.’s “alignment index”, defined as the amount of633

preparatory-epoch activity variance captured by the top634

K move-PCs. This is further normalized by the maxi-635

mum amount of variance that any K-dimensional sub-636

space can capture. Here, K is chosen such that the top637

K prep-PCs capture 85% of activity variance during the638

preparatory-epoch (model, K = 4; monkey, K = 12).639

Both model and monkey data had a low alignment in-640

dex (≈ 0.1), much below that expected if the prep. and641

move. subspaces had been chosen randomly within a642

relevant constrained subspace (“random” control in El-643

sayed et al., 2016; Figure 7C).644

In the model, orthogonality between prep. and move.645

subspaces arises primarily due to the “nonnormality”646

of the connectivity matrix W (Hennequin et al., 2014;647

Trefethen and Embree, 2005). As shown previously in648

Hennequin et al. (2014), the dynamics of our generator649

network amplify a select set of initial conditions, from650

which population activity quickly grows, rotates away,651

oscillates in new orthogonal dimensions, and eventually652

decays. Since multiphasic torque patterns must be as-653

sembled from the network’s activity during movement,654

our model calibration procedure (cf. above) tends to655

discover movement-specific initial conditions that be-656

long precisely to this special set. This explains why657

movement-related activity is orthogonal to late prepara-658

tory activity in our model. Under the optimal control659

law, activity converges fast to the relevant subspace,660

hence the low alignment index overall. Under the naive661

strategy, convergence is much slower (Figure 2A, dashed662

line), indeed yielding a comparatively large alignment663

index (Figure 7C, triangle).664

Discussion665

Neural population activity in cortex can be accu-666

rately described as arising from low-dimensional dy-667

namics (Churchland et al., 2012; Mante et al., 2013;668

Carnevale et al., 2015; Seely et al., 2016; Barak, 2017;669

Cunningham and Byron, 2014; Michaels et al., 2016).670

These dynamics unfold from a specific initial condition671

on each trial, and indeed these “preparatory states” pre-672

dict the subsequent evolution of both neural activity and673

behaviour in single trials of the task (Churchland et al.,674

2010b; Pandarinath et al., 2018; Remington et al., 2018;675

Sohn et al., 2019). In addition, motor learning may rely676

on these preparatory states partitioning the space of677

subsequent movements (Sheahan et al., 2016).678

How are appropriate initial conditions reached in the679

first place? Here, we have formalized movement prepa-680

ration as an optimal control problem, showing how681

to translate anticipated motor costs phrased in terms682

of muscle kinematics into costs on neural activity in683

M1. Optimal preparation minimizes these costs, and684

the solution is feedback control: the cortical network685

must provide corrective feedback to itself, based on686

the prospective motor error associated with its current687

state. In other words, optimal preparation may rely688

on an implicit forward model (Wolpert et al., 1995;689

Desmurget and Grafton, 2000; Scott, 2012), whereby690

the future motor consequences of preparatory activity691

(not motor commands, as in classical theories) are pre-692

dicted and fed back for online correction of the cortical693

trajectory.694

Thalamic control of cortical dynamics695

The mathematical structure of the optimal control696

solution suggested a circuit model based on cortico-697

cortical feedback. We have proposed that optimal feed-698
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back can be implemented as a cortico-thalamo-cortical699

loop, switched on during movement preparation and700

off again at movement onset. The on-switch occurs701

through fast disinhibition of those thalamic neurons702

that are part of the loop. Our model thus predicts a703

large degree of specificity in the synaptic interactions704

between cortex and thalamus (Halassa and Sherman,705

2019), as well as a causal involvement of the thalamus706

in movement preparation (Guo et al., 2017; Sauerbrei707

et al., 2019). Furthermore, the dynamical entrainment708

of thalamus with cortex predicts tuning of thalamic neu-709

rons to task variables, consistent with a growing body710

of work showing specificity in thalamic responses (Naka-711

jima and Halassa, 2017; Guo et al., 2017; Rikhye et al.,712

2018). For example, we predict that neurons in the713

motor thalamus should be tuned to movement proper-714

ties, for much the same reasons that cortical neurons715

are (Todorov, 2000; Lillicrap and Scott, 2013; Omrani716

et al., 2017).717

Thalamic control of cortical dynamics offers a particu-718

larly attractive way of performing nonlinear computa-719

tions (Sussillo and Abbott, 2009; Logiaco et al., 2019).720

Although both preparatory and movement-related dy-721

namics are approximately linear in our model, the tran-722

sition from one to the other (orchestrated by the basal723

ganglia) is highly nonlinear. Indeed, our model can be724

thought of as a switching linear dynamical system (Lin-725

derman et al., 2017). Moreover, gated thalamocortical726

loops are a special example of achieving nonlinear ef-727

fects through gain modulation. Here, it is the thalamic728

population only that is subjected to abrupt and binary729

gain modulation, but changes in gain could also affect730

cortical neurons. This was proposed recently as a way731

of expanding the dynamical repertoire of a cortical net-732

work (Stroud et al., 2018).733

Switch-like nonlinearities may have relevance beyond734

movement preparation, e.g. for movement execution. In735

our model, different movement patterns are produced736

by different initial conditions seeding the same gener-737

ator dynamics. However, we could equally well have738

generated each reach using a different movement-epoch739

thalamocortical loop. This would account for the re-740

cent demonstration that thalamus drives cortex during741

the production of skilled movements in mice (Sauerbrei742

et al., 2019). Logiaco et al. have recently explored this743

possibility, showing that gated thalamocortical loops744

provide an ideal substrate for flexible sequencing of mul-745

tiple movements. In their model, each movement is746

achieved by its own loop (involving a shared cortical747

network), and the basal ganglia orchestrate a chain of748

thalamic disinhibitory events, each spatially targetted749

to activate those neurons that are responsible for the750

next loop in the sequence (Logiaco et al., 2019). In-751

terestingly, their cortical network must still be properly752

initialized prior to each movement chunk, as it must in753

our model. For this, they proposed a generic prepara-754

tory loop similar to the one we have studied here. How-755

ever, theirs does not take into account the degenera-756

cies in preparatory states induced by prospective mo-757

tor costs, which ours exploits. In sum, our two models758

address complementary facets of motor control (prepa-759

ration and sequenching), and could be combined into a760

single model.761

Sloppy preparation for accurate movements762

Two elements might mitigate the need for exquisite con-763

trol of cortical preparatory states. First, ongoing move-764

ments can be corrected rapidly based on sensory feed-765

back, presumably enabling compensation for a “bad766

start” (Scott et al., 2015). Second, as we found, the767

mapping from initial condition to movement may be768

many-to-one, and optimal control dictates that only769

those components of the initial condition that matter for770

the subsequent movement ought to be controlled during771

preparation. Indeed, this feature of our model readily772

explains two distinctive features of preparatory activity773

in reaching monkeys: (i) that pre-movement activity on774

zero-delay trials needs not reach the state achieved for775

long movement delays (Ames et al., 2014), and (ii) that776

nevertheless movement is systematically preceded by ac-777

tivity in the same preparatory subspace irrespective of778

whether the reach is self-initiated, artifically delayed,779

or reactive and fast (Lara et al., 2018). In our model,780

preparatory activity converges rapidly in the subspace781

that matters, such that irrespective of the delay (above782

50 ms), preparatory activity is always found to have783

some component in this common subspace as in Lara784

et al. (2018). Moreover, exactly which of the many ac-785

ceptable initial conditions is reached by the end of the786

delay depends on the delay duration. Thus, our model787

predicts that different late-preparation states will be788

achieved for short and long delays, consistent with the789

results of Ames et al. (2014). Moreover, the state our790

model achieves at the end of a preparation epoch also791

depends on activity prior to preparation onset; there-792

fore, it also depends on whether preparation started793

from scratch, or was initiated by a change in target that794

interrupted a previous preparatory process half way, as795

observed by Ames et al..796

Selective suppression of cortical variability dur-797

ing preparation, and putative mechanisms798

Degeneracies are ubiquitous in biological control (Edel-799

man and Gally, 2001; Todorov and Jordan, 2002;800

O’Leary et al., 2014; Hennig et al., 2018). In motor con-801

trol, movement trajectories are highly degenerate w.r.t.802

the goal; e.g. there are very many ways to reach for a cup803

of coffee. Todorov and Jordan viewed motor variability804

through the lens of stochastic optimal control, arguing805

that only those motor fluctuations that interfere with806

task goals should be corrected, while other aspects of807

the movement can vary freely. Here, we have shown808

that principles of optimal control can also explain the809

structure of neural variability in M1/PMd during prepa-810
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ration, due to an analogous degeneracy in preparatory811

activity. In particular, optimal elimination of prospec-812

tive motor errors during preparation predicts suppres-813

sion of trial-by-trial variability, which occurs in monkey814

M1/PMd (Nawrot et al., 2001; Churchland et al., 2006b;815

Rickert et al., 2009; Churchland et al., 2010a) and mouse816

ALM (Inagaki et al., 2019). More importantly, variabil-817

ity suppression should be coordinated across the pop-818

ulation in such a way that fluctuations are suppressed819

faster along directions that matter more (“potent direc-820

tions”). Here, we have successfully verified this novel821

prediction in monkey data.822

In our model, selective quenching of variability arises823

from much the same mechanism as we have recently pro-824

posed for primary visual cortex (V1; Hennequin et al.,825

2018). There, we argued that external stimuli change826

the operating point of the network dynamics, and since827

these dynamics are nonlinear (Ahmadian et al., 2013;828

Rubin et al., 2015), the result is a modification of effec-829

tive connectivity. We went on to show that this resulted830

in greater inhibitory dominance (as in Stringer et al.,831

2016), and therefore to quenching of fluctuations. Here,832

variability suppression is also due to increased effective833

negative feedback (Section S4.10), but this occurs due834

to the sudden addition of a thalamocortical pathway at835

preparation onset — as opposed to an exogenous stim-836

ulus.837

Outlook838

To explore the ramifications of optimal control for mo-839

tor preparation, we had to commit to a concrete model840

of movement-generating dynamics in M1 (Hennequin841

et al., 2014). While our model captures several salient842

features of movement-related activity (Section S5), as843

well as key qualitative aspects of preparatory dynamics,844

more quantitative predictions would require detailed,845

data-driven modelling of M1 (Pandarinath et al., 2018).846

Such future extensions of our control-theoretic frame-847

work could help elucidate the role of the numerous brain848

areas that collectively control movement (Svoboda and849

Li, 2018), and make sense of their hierarchical organi-850

zation in nested loops.851
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