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Abstract 

Nanopore sequencers enable selective sequencing of single molecules in real time by 

individually reversing the voltage across specific nanopores. Thus DNA molecules can be 

rejected and replaced with new molecules enabling targeted sequencing to enrich, deplete 

or achieve specific coverage in a set of reads to address a biological question. We 

previously demonstrated this method worked using dynamic time warping mapping signal to 

reference, but required significant compute and did not scale to gigabase references. Using  

direct base calling with GPU we can now scale to gigabase references. We enrich for 

specific chromosomes mapping against the human genome and we develop pipelines 

enriching low abundance organisms from mixed populations without prior knowledge of 

sample composition. Finally, we enrich panels including 25,600 exon targets from 10,000 

human genes and 717 genes implicated in cancer. Using this approach we identify PML-

RARA fusions in the NB4 cell line in under 15 hours sequencing. These methods can be 

used to efficiently screen any target panel of genes without specialised sample preparation 

using a single computer and suitably powerful GPU.  
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Introduction 

Selective sequencing, or “Read Until”, is the ability of a nanopore sequencer to reject 

individual molecules whilst they are being sequenced. We first demonstrated this using 

dynamic time warping (DTW) against a synthetic reference and selecting for specific regions 

of a viral genome 1. This approach required significant compute resource even though DTW 

can make use of a number of optimisations 2. Others have explored using direct base calling 

of read chunks to enable Read Until to work direct from sequence 3. However, these 

methods demonstrated little benefit when compared with results obtained without 

intervention. A promising method currently under development in squiggle space is Uncalled 
4. Results presented around this method suggests it to have a lighter computational footprint 

than previous signal based methods, but still requires the use of additional computer 

resources.   

 

Ideally we would like to work in sequence space as demonstrated by Edwards and 

colleagues, but also within a reasonable compute framework 3. Oxford Nanopore 

Technologies (ONT) developed a number of base callers for nanopore sequence data, 

initially utilising Hidden Markov Models and available through the metrichor cloud service 5. 

Subsequently, neural network models were developed which could be run on CPU and then 

Graphical Processing Units (GPU). To provide real time basecalling, ONT have developed a 

range of computational platforms with integrated GPU including the minIT, Mk1C, GridION 

and PromethION 6. These devices can provide real time base calling able to keep pace with 

multiple flowcells generating data. Most recently, these base callers implemented a server-

client configuration, such that raw reads containing signal can be passed to the server and a 

base called sequence returned to the client. Here we show that this GPU base calling can be 

used to deliver a real time stream of nucleotide data from flowcells sequencing from up to 

512 channels simultaneously. At the same time, the GPU can base call the completed reads, 

enabling dynamic updating of the experiment as results change.  

 

Our method does not rely on comparison of raw current and so we do not have to convert 

references into signal space as we did for DTW based approaches 1. Highly optimised tools 

such as minimap2 7 can therefore be used to map reads as they are generated and so we 

can easily update or switch references during sequencing. In this way, selective sequencing 

can become adaptive sequencing as the sequencer can change its behaviour in response to 

the data being generated. Our method is only constrained by access to a sufficiently 

powerful GPU. The results presented here all utilise the ONT GridION MK-1 device which 

includes an NVIDIA GV100 GPU. 
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To illustrate the potential of direct GPU base calling for Read Until, we test a range of model 

problems. Firstly, we select for specific chromosomes from the human genome illustrating 

that gigabase sized references are not a constraint. Secondly, we investigate the enrichment 

of low abundance genomes from a mixed population and find we can improve both time-to-

answer and the ability to assemble poorly represented genomes. To illustrate adaptive 

sequencing, we provide a model workflow using centrifuge to identify the most abundant 

species present within a metagenomic sample, monitor depth of coverage for each in real 

time and so enrich for the least abundant genomes without a priori knowledge of content8. 

This method is necessarily limited by the composition of the reference database and also 

requires network access to retrieve references once identified. Finally, we enrich panels of 

genes including 25,000 target regions corresponding to approximately 10,000 genes from 

the human genome and 717 genes from the COSMIC (Catalog of Somatic Mutations in 

Cancer) panel 9. We demonstrate how Read Until can be used to capture information on key 

targets without the need for custom library preparation and show we can identify a known 

translocation in the NB4 cell line in less than 15 hours 10.  We provide a configurable toolkit 

which enables targeted sequencing of gigabase genomes including depletion of host 

sequences as well as example methods to ensure minimum coverage depth for genomes 

present within a mixed population. Configuration of these tools is relatively straightforward 

and requires no additional compute as long as sufficiently powerful GPU is available. Our 

method currently requires that users have access to the Read Until API (ONT).  

Results 

Methods Overview 

Selective sequencing requires bidirectional communication with a nanopore sequencer 

through an API (currently version 2, available from ONT). The API provides a stream of raw 

current samples from every sequencing pore on the flowcell. Previous API implementations 

served any signal seen by the Nanopore as a potential read and so required users to 

process many signals that may not be derived from a genuine read. This caused significant 

analysis challenges in previous implementations as described by Edwards et al 3. The 

current API version is able to discriminate true DNA signal from background noise more 

efficiently and so can be configured to only provide data for reads identified as DNA. This 

reduces the analysis burden on the client side significantly. We reasoned that we ought to be 

able to convert the signal served by the API into a format compatible with the Guppy 

basecaller and so retrieve short sequences that could be processed in base space.  
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Figure S1 illustrates the general workflow for basecalling reads as they are being 

sequenced. In brief, chunks of read data are grabbed from the Read Until API. The size of 

these chunks can be configured by the user with the default of 1 second representing 

approximately 450 bases. Although we have not exhaustively tested all possible values, we 

found that a chunk size of 0.4 seconds (see methods for configuration information) balanced 

our desire for the smallest possible chunk size for fast analysis with the possibility of 

overloading the API with requests for data. This chunk of data, which in theory may contain 

as many as 512 reads for a MinION flowcell, is processed in one batch by converting the raw 

signal to Guppy compatible reads and base calling using python bindings to Guppy 

(PyGuppy, ONT). The returned base called data can then be mapped to a reference using 

any suitable mapper. Here we use the python API for minimap2, mappy 7. Any given read 

may uniquely map to a specific location in the reference, map to multiple locations, or may 

simply not map at all. In response the user can choose to reject a read (unblock), acquire 

more data for that read (proceed) or stop receiving data for the remainder of that read (stop 

receiving).  

 

We note that 0.4 seconds of signal equates to approximately 180 bases of sequence data 

(at 450 bases per second) and that the start of a read contains adapter sequence as well as 

optional barcodes. Read starts can also include some delays as the DNA engages with the 

pore resulting in a stall signal before signal containing sequence data are available. Thus the 

first chunk of data may not provide the optimal base call and additional data may be 

required. However, calling any single chunk of data in isolation is presumably less 

informative than calling the entire signal. We therefore implement a read cache which 

concatenates adjacent signal data from the same read as it is acquired from the API. This 

cache can keep up with the 0.4 second API queries. This enables calling the complete 

available signal for each read since it began. In a typical experiment we find that 90% of 

reads can be called and mapped within 3 chunks (1.2 seconds) using this method (Figure 

S2).  

 

The ONT Guppy basecaller contains at least three models for basecalling. These models 

trade speed (fast) for accuracy (hac) and can optionally call methylation. For selective 

sequencing, the goal would appear to be speed and so we investigated the efficacy of 

selective sequencing using both the fast and hac models. However, we found that the high 

accuracy model (hac) was able to keep up with the rate of data generation on the GridION 

Mk1. Across all the experiments presented in this paper, the average time to call a single 
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batch of reads was 0.28s and the average batch contained 30 reads. Thus we can call at 

least 100 read chunks per second (see Figures S3-7).  

 

Depending on the experiment that a user is seeking to perform, the response to a read 

mapping to a specific sequence in a reference genome may vary (see online methods). 

Clearly, if a user is trying to deplete reads originating from a host then a read mapping to 

that host should be rejected. Likewise, when seeking to enrich for a target, reads mapping to 

that target should be sequenced. Less well considered are reads which do not map to a 

reference at all. If the goal of the experiment is to enrich low abundance or unknown targets, 

these reads should be sequenced. If enriching for subsets of a known reference, these reads 

might be best rejected in favour of sampling more molecules. Given the variety of options, 

we developed a configuration file which allows any mapping results to be mapped to any 

action. We have also included the option to dynamically update a TOML configuration file 

during a sequencing run, enabling targets to be changed on the fly. Optionally the TOML file 

can be configured to carry out different experiments on different regions of the same flowcell 

(see https://github.com/LooseLab/ru/blob/master/TOML.md).  

Read Until Performance 

Enrichment and Depletion 
To test the performance of our real time base calling approach, we sequenced the well 

studied NA12878 reference cell line 11. We configured the flowcell to operate in four separate 

quadrants. The first acted as a control (all reads accepted), the second sequenced reads 

derived from chromosomes 1-8 (50% of reads accepted), the third sequenced chromosomes 

9-14 (25% of reads accepted) and the fourth chromosomes 16-20 (12.5% of reads 

accepted). The only differences between quadrants are the targets for rejection: all reads are 

basecalled and mapped to the reference regardless of origin. The median read lengths per 

chromosome in each quadrant indicate which are being sequenced and which are being 

rejected (Figure 1A). Selectively sequenced reads have a median read length of 

approximately 15 kb. In contrast, rejected reads have a median length of approximately 500 

bases, equating to approximately 1.1 seconds of sequencing time. Thus reads have been 

basecalled, mapped and the unblock action sent and actioned within approximately 1 

second of the read starting. This run yielded 9.5 Gb of sequence data, but was not evenly 

distributed across the four quadrants. 3.47 Gb were generated in the control portion, 2.79 Gb 

in the 50% acceptance, 1.84 in the 25% acceptance and only 1.22 Gb in the 12%. This drop 

in efficiency can be seen in a heatmap of bases sequenced per channel over the course of 

the experiment (Figure 1B). For the quadrants, the optimal enrichment is 2-fold, 4-fold and 8-
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fold but we see lower enrichments by the end of the experiment, presumably due to the 

lower yield (Figure 1C). Importantly, we do see enrichment of our target sequences in all 

cases compared with the control region of the flowcell. Notably, relative enrichment is 

greater at the beginning of the sequencing run and is closer to the theoretical maximum 

enrichment we expect to see (Figure 1D). Analysis of the number of channels contributing to 

data generation over the course of the run shows that sequencing capacity is lost faster as 

more reads are rejected (Figure 1E). Although we did not use nuclease flush on this run we 

would anticipate improvements, in both yield and enrichment, with this method. Performance 

metrics for Read Until in this experiment are shown in Figure S3 and we were able to call all 

batches within our 0.4 second window. 

 

 
Figure 1. Human Genome Scale Selective Sequencing. A) Median read lengths for reads 

sequenced from GM12878 and mapped against HG38 excluding alt chromosomes. The four 

panels each represent a quadrant of the flowcell. In the control all reads are sequenced, in 

the second reads mapping to chromosomes 1-8, in the third reads mapping to chromosomes 

9-14 and the fourth reads mapping to chromosome 16-20. The combined length of each of 

these target sets equates to approximately ½, ¼ and ⅛ of the human genome respectively. 

B) Heatmap of throughput per channel in each quadrant from the flowcell illustrating reduced 

yield as the proportion of reads rejected is increased. C) Yield ratio for each chromosome in 

each condition normalised against yield observed for each chromosome in the control 

quadrant. D) Yield of on target reads calculated in a rolling window over the course of the 

sequencing run showing the loss of enrichment potential. E) Plot of the number of channels 

contributing sequence data over the course of the sequencing run. Channels are lost at a 

greater rate when more reads are rejected. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.926956doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.926956
http://creativecommons.org/licenses/by-nd/4.0/


Enrichment of metagenomes and “Run Until”. 
A common goal in sequencing library preparation is to remove host DNA and so enrich for a 

subpopulation of material 12,13. This is a common application for which selective sequencing 

might be beneficial, although most likely in conjunction with library preparation methods. We 

therefore considered metagenomics applications as a similar class of problem. Nicholls et al 

demonstrated reference sequencing of a mock microbial standard across both GridION and 

PromethION flowcells 14. Using a mock community available from ZymoBIOMICS they were 

able to generate sufficient data to assemble several of the bacteria into single contigs 

without an intermediate binning step. Notably the eukaryotic genomes which were present 

within the sample at lower abundance (2%) did not generate high contiguity assemblies. This 

is not particularly surprising as the coverage depth for Saccharomyces cerevisiae was only 

17x and Cryptococcus neoformans only reached 10x with data from a single GridION 

flowcell 14. Enriching for these low abundance components is conceptually similar to 

depleting host material from a sample. 

 

To maximise the benefit of selective sequencing, we used the ZymoBIOMICS high molecular 

weight DNA sample (ZymoBIOMICS). The use of this sample will a priori improve 

assemblies due to the longer read lengths obtained. This sample also differs from that used 

by Nicholls et al. as it does not include Cryptococcus neoformans. Saccharomyces 

cerevisiae is included at approximately 2%. To see if selective sequencing could improve the 

relative coverage of low abundance material we developed a simple pipeline (ru_iteralign) to 

drive our selective sequencing decisions (Figure S1). In brief, ru_iteralign maps base called 

reads that have been completely sequenced against a reference as they are generated. 

Once the depth of coverage for a particular reference sequence reaches a pre-specified 

mean coverage level, the sequence can be dynamically added to the Read Until TOML 

configuration file causing further reads mapping to this sequence to be rejected. Here, we 

rely on the GPU built into the GridION mk1 to simultaneously process both the real time data 

stream for Read Until and the normal base calling activity of the device. We utilised the 

MinKNOW API to log the point at which each reference reached the specified target 

coverage in the MinKNOW interface. We also implemented Run Until to stop the run 

automatically once all targets had reached a predetermined sufficient coverage.  

 

These experiments use a specific reference file for this community. Mean read lengths for 

each target genome reduce once the specific target is added to the rejection list (Fig 2A), as 

the mean read length becomes dominated by short, rejected reads. Plotting coverage over 

time for reads that were not rejected by Read Until shows a corresponding decrease in 

coverage accumulation for genomes which have reached the desired coverage level with an 
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increase in sequencing potential for the least abundant sample, Saccharomyces cerevisiae 

(Fig 2B). Visualising the proportion of bases mapping to each genome over the course of the 

run reveals the shift in sequencing capacity to Saccharomyces cerevisiae (Fig 2C). 

Illustrating that relative abundance in the sample can still be determined when running Read 

Until, the relative proportions of reads mapping to each genome does not change whilst 

reads are being rejected (Fig 2D). We configured this run to automatically stop once each 

genome represented in the ZymoBIOMICS sample reached a coverage of 40x, which took 

approximately 16 hours (performance metrics in Figure S4, this run used an earlier version 

of Guppy and was less performant). 

 

In order to reach 40x, this run generated 4.4 Gb of sequence data. According to 

ZymoBIOMICS, this sample should be 2% Saccharomyces cerevisiae by bases. This would 

yield approximately 88 Mb of sequence data for S. cerevisiae or approximately 7x coverage. 

Using selective sequencing we obtained 40x coverage for S. cerevisiae. Naively this 

represents a 5.7 fold increase in on target data generation. However, given a flowcell not 

implementing selective sequencing would likely have higher yield, real world enrichment is 

lower. For example, Nicholls et al report 16 Gb on a similar ZymoBIOMICS run 14,15. Similar 

yields here would have resulted in approximately 25x coverage of S. cerevisiae giving an 

effective enrichment of 1.6x. In theory, enrichment of a 2% subset of a sample should be 

greater than this, but as we saw with the human experiments above, there is a cost to 

rejecting an individual read. Even so, we find in multiple experiments (n=3) we could enrich 

the least abundant element compared with that expected from the sample composition. 

Although the enrichment over the whole run is low, we find we accelerate the time-to-answer 

at which a particular coverage depth can be achieved.  
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Figure 2. Adaptive sequencing enriching for the least abundant genome and ensuring 

uniform 40x coverage. A) Mean read lengths for reads sequenced from the ZymoBIOMICS 

mock metagenomic community mapped against the provided references (ZymoBIOMICS, 

USA). Read lengths are reported for the whole run, the deliberately sequenced reads and 

those which were actively unblocked. B) Shows cumulative coverage of each ZymoBIOMICS 

genome during the sequencing run. The total coverage still accumulated as unblocked 

reads, though short, still map. Sequencing was automatically terminated once each sample 

reached 40x. C) Stacked area graph illustrating how the proportion of bases mapping to 

each species changes over time. D) In contrast, the proportion of reads mapping to each 

species over time doesn’t change significantly. 

 

This approach assumes knowledge of the composition of the sample a priori and so is of 

limited practical relevance. Therefore we integrated a metagenomics classifier into our 

pipeline (ru_iteralign_centrifuge) 8. We chose centrifuge for its low memory footprint and the 

straightforward way in which it can be used iteratively. In this approach, we do not map 

reads to a reference until they have been classified by centrifuge. We track the numbers of 

reads mapping to specific taxonomic IDs and identify those that pass a user defined 

threshold (here set to 2000). Appropriate reference genomes corresponding to those 

identified by centrifuge are retrieved from RefSeq16 and subsequent reads are both classified 

with centrifuge and mapped against the expanding set of references. Once target coverage 

depth is reached (here set to 50x), the Read Until configuration TOML is updated with the 

reference sequences and list of targets to reject by updating the TOML files configuring the 

tool as with ru_iteralign. This illustrates the principle of adaptive sequencing. 

 

This run generated 5.995 Gb of sequence data and all bacterial genomes present within the 

sample were successfully identified. Rejected read lengths were slightly longer than our 
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previous experiments, but enrichment was still achieved although we did not obtain 50x 

coverage of S. Cerevisiae before the flowcell was completely blocked (Fig 3, Figure S5,S8). 

6 Gb of sequence data should result in approximately 10x coverage. However, a run 

achieving 16 Gb would result in approximately 26x coverage. Again, the benefit here is a 

combination of time-to-answer and slight enrichment. 50x coverage without selective 

sequencing would require a 24 Gb sequencing run likely to take 48 hours or more on a 

single flowcell. The experiment presented here was complete within 24 hours. As expected, 

improved coverage depth results in more contiguous assemblies using MetaFlye (Fig S9); 

however this is in part a consequence of the improved read lengths in these assays 14,17.  It 

is likely that subsequent nuclease flushing of the flowcell would increase effective 

throughput, but as our goal was to reach a target coverage within a time frame we did not 

need to test this. 

 
Figure 3. Adaptive sequencing enriching for the least abundant genome with centrifuge read 

classification and ensuring uniform 50x coverage. A) Mean read lengths for reads 

sequenced from the ZymoBIOMICS mock metagenomic community mapped against the 

provided references. Read lengths are reported for the whole run, the deliberately 

sequenced reads and those which were actively unblocked. B) Shows cumulative coverage 

of each ZymoBIOMICS genome during the sequencing run. The total coverage still 

accumulated as unblocked reads, though short, still map. Sequencing was automatically 

terminated once each sample reached 50x. The small overshoot in sequenced reads 

coverage is likely caused by the centrifuge step. C) Stacked area graph illustrating how the 

proportion of bases mapping to each species changes over time. D) In contrast, the 

proportion of reads mapping to each species over time doesn’t change significantly. 

Target Panel Enrichment. 

There are many methods available for target enrichment in sequencing panels including 

PCR amplification and bait capture methods 18,19. More recently methods for capturing 
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specific regions of genomes with CRISPR-Cas9 have been used to enrich DNA extractions 

and libraries prior to sequencing 20–22. These methods can provide reliable and cost effective 

screening panels when applied at scale, but have associated development, instrument and 

consumable costs. Unlike methods which capture native DNA 20, PCR based methods 

cannot be used to capture methylation information without additional processing of input 

samples. There is also no way of tuning a panel once a sample has been prepared.  

 

Selective sequencing is a tempting alternative and so we sought to capture targets from the 

human genome. Given we can scale to the human genome,  we selected 19,296 target 

genes annotated as protein coding with Transcript Name IDs from GCRh38 excluding those 

on alt chromosomes, X and Y 23,24. We extracted exon coordinates, extended 3kb either side 

and collapsed overlapping targets together. We then chose to enrich for only those targets 

found on odd numbered chromosomes. This gave a total search space of 176 Mb in the 

human genome (approx 5%) containing 25,600 target regions covering nearly 10,000 genes 

(Figure 4A). On a single GridION flowcell with 1,660 pores we obtained 6.1 Gb of sequence 

data in 24 hours. After a nuclease flush, loading additional library and sequencing for a 

further 24 hours gave an additional 5.573 Gb (total yield: 11.675 Gb, N50 9 kb). We found 

that our exon targets had mean coverage of 17.39x (median 17.23x) with 75%>14.15x and 

25%>20.42x. On the “control” even chromosomes, median coverage of depleted targets was 

0.98x (mean 1.2x). Detailed coverage plots of targets on ODD (Figure 4C,D) and EVEN 

(Figure 4E,F) chromosomes shows how coverage correlates with the target regions used in 

the experiment. Controlling for these experiments is complicated by flowcell variability. 

Therefore we compare with theoretical yields of 10, 20 and 30 Gb resulting in approximately 

3-10x coverage. On this basis, our effective enrichment is from 2.7-5.4x depending on 

flowcell performance, consistent with our earlier observations on the human genome. 

Nuclease flushing significantly assists in this enrichment and the effect of this can be seen in 

flowcell performance metrics (Figure S6). 
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Figure 4 - Half Exome Panel Targeted Sequencing. A) Mean coverage across each exon 
target in the genome ordered by chromosome. Exons on odd numbered chromosomes are 
enriched (green) and depleted on even numbered chromosomes (red). B) Mean coverage 
across each exon for genes within the COSMIC cancer panels. Horizontal lines represent 
approximate mean expected coverage for flowcells yielding 10, 20 or 30 Gb of data in a 
single run. Mean coverage calculated by mosdepth25. C,D,E,F) Coverage plots for 
highlighted genes including BRCA1 (C), PML (D), WIF1 (E) and HOXC13 and HOXC11 (F). 
C and D are enriched as they are found on chromosome 17 and 15 whilst E and F are 
depleted as genes are on chromosome 12. Exon target regions indicated by blue bars. In 
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this experiment, different targets were used for the watson and crick strands as illustrated by 
the offsets. 
 
Coincidentally, our initial exon panel contains 371 genes from the Catalogue of Somatic 

Mutations in Cancer (COSMIC) 9. Target sequences (exons and surrounding overlaps) had 

median coverage of 13.7x for these sequences (Figure 4B). Figure 4C and D illustrate the 

coverage obtained over BRCA1, PML and their surrounding targets. In our exon capture 

approach, we excluded intronic sequences to reduce the total search space (although this 

isn’t a requirement of our approach), however it would be preferable to sequence completely 

through these targets. To illustrate the flexibility of our approach, we therefore generated a 

target panel covering the entire COSMIC panel (717 genes) excluding those with no 

genomic coordinates in the COSMIC database (see Supplementary File 1). In total, this 

covers 82.75 Mb of target sequence including introns. We added an additional flanking 5 kB 

either side, resulting in a total search space of 89.9 Mb (approx 2.7%). We sequenced this 

panel using a flowcell with a high pore count (approx 1,724 at the start). The first run 

generated 3.7 Gb within 24 hours. After nuclease flush and reload a further 6.03 Gb were 

generated giving a total of 9.73 Gb (Performance metrics in Figure S7). The read N50 was 

940 bases reflecting the overall efficiency of read rejection. Deliberately rejected reads had 

an N50 of approximately 515 bases with the N50 of sequenced reads at 11,564 bases. Over 

gene target regions the median coverage was 32.2x (mean 30.7x) (Figure 5A, 

Supplementary File 1), with 75% of genes >28x, 25% of genes > 35x.  

 

Figure 5B-E shows the coverage observed for BRCA1, PML, WIF1 and HOXC13 and 

HOXC11. The specificity of selective sequencing can be clearly seen, particularly around the 

Hox genes where neighbouring members of the HOXC cluster are not sequenced. In this 

example, we did not alter the boundaries for sequencing on the forward and reverse strands 

meaning that additional gene panels can be generated from a simple BED file. As seen in 

Bowen et al these data could be used to assess methylation, structural variants and given 

sufficient depth, nucleotide variation 20. 
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Figure 5 - COSMIC Panel Targeted Sequencing. A) Mean coverage across the selected 
COSMIC gene regions ordered by chromosome. Horizontal lines represent approximate 
mean expected coverage for flowcells yielding 10, 20 or 30 Gb of data in a single run. Mean 
coverage calculated by mosdepth25. B,C,D,E) Coverage plots for highlighted genes including 
BRCA1 (B), PML (C), WIF1 (D) and HOXC13 and HOXC11 (E). COSMIC Target regions 
indicated by blue bars. 
 

To test if our method can be used to screen for structural variants we used DNA extracted 

from the NB4 acute promyelocytic leukemia (APL) cell line 10. We sequenced this sample 

using the same COSMIC cancer panel to determine if we could identify the translocation 

(Figure 6A, Figure S10). Sequencing was carried out on a flowcell with only 1,196 pores and 

generated 4.5 Gb of sequence data in less than 15 hours. Over gene target regions the 

median coverage was 11.46x (mean 11.78x) (Figure 5A, Supplementary File 1), with 75% of 
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genes >9.5x, 25% of genes > 13.4x. Analysis of these reads with svim looking for breakpoint 

ends, and ignoring in/dels, identified just two candidates passing default svim filtering (see 

methods) 26. This breakpoint can also be detected with sniffles (data not shown) 27. Of these, 

one captured the known breakpoint in this sample supported by six reads (compare Figure 

6B,C). Subsequent collection of additional data (24 hours of further sequencing generating 

3Gb more of sequence) resulted in median coverage of 17.37x (median 18x) with 11 reads 

supporting the variant. Within the reference NA12878 cell line material no complex 

rearrangements were reported in genes enriched with the COSMIC panel (Figure 6C). 

Notably we did observe several potential such events in the wider panel (see Supplementary 

Table 1). 

 
Figure 6 - COSMIC Panel Targeted Sequencing of NB4. A) Mean coverage across each of 

the COSMIC target regions ordered by chromosome. Horizontal dashed line indicates 

expected coverage from a flowcell yielding 10Gb of sequence data in a single run. B) Reads 

mapping to chromosomes 15 and 17 derived from the NB4 cell line indicating the fusion 

between PML and RARA. Mappings of two example individual reads shown below. C) 

Reads derived from NA12878 covering the breakpoints identified from analysis of the NB4 

cell line showing no rearrangement in RARA. D) As C but illustrating PML. Black vertical 
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lines illustrate the coordinates of breakpoint ends as identified in NB4. Breakpoints identified 

using svim, visualisations using Ribbon 26,28.  

Discussion 

The idea of selectively sequencing (‘Read Until’)  individual molecules using only 

computational methods is a unique aspect of Nanopore Sequencing 1. Here we exploit ONT 

tools to provide a true real-time stream of sequence data as nucleotide bases. This 

approach removes the need for complex signal mapping algorithms but does require a 

sufficiently performant base caller. Prior work by Edwards and colleagues illustrated that this 

method was a feasible approach, but required extensive additional compute and was unable 

to show significant enrichment over throughput achieved without running ‘Read Until’ 3. Here 

we demonstrate real enrichment over that expected from a similar control flowcell. We 

exploit techniques for enhancing flowcell yield such as nuclease flushing and loading 

additional library, but these same methods would also be required to maximise throughput 

on a standard sequencing flowcell.  

 

Key benefits of the approach shown here are that we utilise only compute resource available 

within the GridION Mk1. As we use current commercially provided base callers, we can 

utilise new algorithms and pores as they are developed. Thus, although not yet tested, we 

could use this method on RNA if sufficiently long reads require depletion. Similarly we could 

use methylation aware base callers to sequence regions of DNA from either high or low 

methylation regions. As we ultimately obtain sequence, rather than signal, data we 

dramatically simplify the construction of pipelines for downstream analysis of reads. 

Although we have only shown results for the GridION Mk1 this method should be applicable 

to any MinION configuration with sufficient GPU to basecall a sequencing run in real time. 

Early tests on systems configured with NVIDIA 2080 GPUs suggest they can keep up with a 

single flowcell in real time (J Tyson, Pers. Comm.). In principle this method should scale to 

the PromethION.  

 

We do find that increased rejection of reads on a flowcell negatively impacts the total 

sequencing yield and so impacts the enrichment observed. Although we have not 

extensively exploited methods to wash and reuse flowcells here, where we have tried this we 

do see increased yield and enrichment. As a consequence, the current main benefit of 

selective sequencing in metagenomics and host depletion is to improve time-to-answer. For 

samples which sequence well (i.e do not tend to block the flowcell), additional enrichment 

benefits may be observed. Notably running selective sequencing does not disrupt the 
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proportion of reads by count that map to a specific reference. Thus in the case of 

metagenomics type applications it is still possible to assess relative abundance whilst 

focussing sequencing length on specific subsets of reads. Future methods proposed by ONT 

to address blocking such as onboard nucleases might increase throughput in future.  

 

We demonstrate that selective sequencing of arbitrary targeted regions of the human 

genome results in actionable coverage and we can identify structural variants within the 

COSMIC cancer panel. In total, DNA extraction, library preparation, sequencing and analysis 

could be completed within 24 hours. When sequencing a subset of a large genome, large 

numbers of off-target reads are sampled whilst detecting those of interest and the precise 

parameters of optimal target size and coverage have yet to be defined. As a consequence, 

library preparation methods that enrich for regions of interest will likely result in higher 

coverage compared to ‘Read Until’. However, the design of such panels is relatively costly 

and inflexible once developed. Any method that relies on amplification results in the loss of 

methylation data which would otherwise be found in these samples. Of course, throughput 

achievable on platforms such as the PromethION at scale provide whole genome 

sequencing at relatively low cost29. Thus any effective method for enrichment must compete 

with these costs, including the additional compute required. By utilising the available GPU 

compute capacity during the sequencing run, we address this issue. There is no reason, in 

theory, why samples could not be multiplexed on a single flowcell as long as sufficient yield 

can be obtained to address the biological question. 

 

In selective sequencing, targets can be updated by configuring a single configuration file. 

Developing a new panel is as straightforward as compiling a list of target regions. Here we 

also illustrate the concept of adaptive sequencing, as in our metagenomics examples, where 

targets can be dynamically adjusted during a run. In theory a panel could be updated in 

response to observations of the data in real time, perhaps adding targets where candidate 

novel structural variants have been identified or removing targets where sufficient evidence 

is available to eliminate the possibility of an SV existing.  

 

Although we have focussed exclusively on applications for read until, we believe that a real 

time sequence data stream in bases has significant advantages for future pipelines. If 

sequence data can be streamed directly into an analysis pipeline and conclusions drawn 

without the requirements for data storage then field deployment of sequencing for detection 

of specific sequences might be accelerated. Ultimately it may be possible to stream 

sequence data for calling of structural variants and further analysis in real time. 
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Online Methods 

Library preparation and sequencing 

Standard LSK-109 (ONT) sequencing libraries were prepared from either the ZymoBIOMICS 

HMW DNA Standard (DS6322 ZymoBIOMICS USA) or DNA extracted from GM12878 cells 

(Coriell), or NB4 cells (gift from M. Hubank) as described in Jain et al 11. Human DNA for 

exon enrichment or gene targeting was sheared to approximately 12kb using g-TUBE 

(Covaris). All sequencing reported here was carried out on a GridION Mk1 (ONT). Standard 

scripts for sequencing were used with one modification, namely that the size of data chunk 

delivered by MinKNOW was reduced from 1 second to 0.4 seconds by changing the value of 

the break_reads_after_seconds parameter in the relevant TOML file (located in 

../minknow/conf/package/sequencing/ for MinKNOW core version 3.6). All sequencing used 

FLO-MIN106 R9.4.1 flowcells. 

Structural Variant Detection 

Reads from NB4 cells were filtered to remove those less than 750 bases using NanoFilt 30. 

For sequencing runs using NA12878 reads were not filtered. Reads were mapped to hg38 

removing ALTs with minimap2 using standard settings for ONT reads 7. Structural variant 

calling was performed with svim using default settings 26. Variant calls were filtered with the 

default filter pass and non BND (Breakpoint End) structural variant types were ignored. SVs 

were visualised with Ribbon 28.  

Code availability 

The ONT Read Until API is required for running Read Until. This available from ONT. We 

have made minor changes to this API available from our GitHub repo. These changes are 

required to run in Python3 and also change the behaviour of the read cache enabling 

consecutive chunks of data to be stored for calling. As the ONT tool chain matures to 

Python3 such changes will no longer be required and these tools will be able to be run within 

the MinKNOW Python environment directly. PyGuppy, a python interface to the Guppy Base 

Calling Server is currently available on request from ONT and we hope will soon be available 

via PyPI. Our code is available open source at (http://www.github.com/LosseLab/ru). 
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Read Until Implementation 

Mapping 
Condition 

Description 

multi_on Read fragment maps multiple locations including region of interest. 

mulit_off Read fragment maps to multiple locations not including region of interest. 

single_on Read fragment only maps to region of interest. 

single_off Read fragment maps to one location but it is not a region of interest. 

no_map Read fragment does not map to the reference. 

no_seq No sequence was obtained for signal fragment. 
Table 1. Description of possible read mapping conditions. 

 

 
Experiment 
Type 

 
Region of 
Interest for 
Alignments 

Mapping Condition 

multi_on multi_off single_on single_off no_map no_seq 

Host 
Depletion 

Known Host 
Genome 

unblock proceed unblock proceed proceed proceed 

Targeted 
Sequencing 

Known 
regions from 
one or more 
genomes. 

stop 
receiving 

proceed stop 
receiving 

unblock proceed proceed 

Target 
Coverage 
Depth 
(known 
sample 
composition) 

All known 
genomes 
within the 
sample, 
tracked for 
coverage 
depth.  

stop 
receiving 

proceed stop 
receiving 

unblock proceed proceed 

Low 
Abundance 
Enrichment 
(unknown 
sample 
composition) 

All genomes 
within the 
sample that 
can be 
identified as 
well as those 
that cannot. 

stop 
receiving 

proceed stop 
receiving 

unblock proceed proceed 

Table 2 - Example configurations for different experiment types. “Unblock” causes a read to be 

ejected from the pore, “proceed” means that a read continues to sequence and serve data 

through the API for later decisions, “stop receiving” allows the read to continue sequencing with 

no further data served through the API. 
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Read Until scripts 

ru_generators 

This script runs the core Read Until process as specified in the experiment TOML file. It can 
select for specific regions of a genome, mapping reads in real time using minimap2 and 
rejecting reads appropriately. This script should be started once the initial mux scan has 
completed. The experiment TOML file can be updated during a sequencing run to change the 
configuration of the Read Until process. It is through this mechanism that ru_iteralign and 
ru_iteralign_centrifuge can change Read Until behaviour during a run. Configuration parameters 
are available under the help flag for the script. Table 1 and 2 describe the mapping parameters 
and configuration options for various possible experiment types. 

ru_iteralign  
This script runs an instance of the “Run Until” monitoring system that watches as completed 
reads are written to disk. When new data is detected ru_iteralign will map the data against the 
target reference genome (specified in the experiment TOML file) and compute the cumulative 
coverage for the sequencing run. Once a genomic target reaches sufficient coverage, it will be 
added to the unblock list. Optionally, the user can provide additional targets from the start of the 
run to implement “host depletion”. Finally, the user can configure ru_iteralign to stop the entire 
run if all samples have reached the required coverage depth. At present, this coverage depth is 
uniform for all samples, so it is not possible to have variable coverage over a target set. 

ru_iteralign_centrifuge 
This script runs an instance of the “Run Until” monitoring system. As completed reads are 
written to disk ru_iteralign_centrifuge will classify the reads using centrifuge and a user defined 
index. When 2000 reads are uniquely classified the corresponding reference genome is 
downloaded from RefSeq and incorporated into a minimap2 index. At this point the same 
process as in ru_iteralign is used to determine coverage depth. The new alignment index is 
passed to the core Read Until script (ru_generators) by updating the experiment TOML file 
allowing dynamic updates for both the unblock list and the genomic reference. 

ru_unblock_all 
This script is provided as a test of the Read Until API where are all incoming read fragments are 
immediately unblocked. It allows a user to quickly determine if their MinKNOW instance is able 
to provide and process unblock signals at the correct rate.  Users should provide a bulk FAST5 
file for playback for this testing process. 

ru_validate 
This script is a standalone tool for validating an experiment TOML file. We provide a 
ru_schema.json (https://github.com/LooseLab/ru/blob/master/ru_toml.schema.json) that 
describes the required configuration format. 
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