ABSTRACT
The yeast galactose switch operated by the Gal4p-Gal80p-Gal3p regulatory module is a textbook model of transcription regulation in eukaryotes. The Gal80 protein inhibits Gal4p-mediated transcription activation by binding to the transcription activation domain. Inhibition is relieved by formation of an alternative Gal80-Gal3 complex. In yeasts lacking a Gal3p ortholog the Gal1 protein combines regulatory and enzymatic activity. The data presented here reveal a so-far unknown role of the Gal80 N-terminus in the mechanism of Gal4p activation. The N-terminus contains an NLS, which is responsible for nuclear accumulation of KlGal80p and galactokinase inhibition in vitro. Herein we propose a model where the N-terminus of KlGal80p reaches into the catalytic center of KlGal1p of the nuclear fraction of KlGal1p triggering dissociation of the KlGal80-KlGal4 complex. We corroborate this model by genetic analyses and structural modelling and provide a rationale for the divergent evolution of the mechanism activating Gal4p.
Summary blurb Activation of gene expression by Gal4p in K. lactis requires an element in the N-terminus of KlGal80 that mediates nuclear import, KlGal1 interaction and galactokinase inhibition