
   1 
 

Comparative analysis based on transcriptomics and metabolomics data reveal differences 1 

between emmer and durum wheat in response to nitrogen starvation  2 

 3 

Romina Beleggia1, Nooshin Omranian2,3, Yan Holtz4, Tania Gioia5, Fabio Fiorani6, Franca M. Nigro1, 4 

Nicola Pecchioni1, Pasquale De Vita1, Urlich Schurr6, Jaques David4, Zoran Nikoloski2,3,7, Roberto 5 

Papa*1,8 6 

 7 

1 Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and 8 

Industrial Crops (CREA-CI), S.S. 673, Km 25+200, 71122 Foggia, Italy 9 

2 Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant 10 

Physiology, Am Muhlemberg 1, Potsdam, Germany 11 

3 Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, 12 

Germany 13 

4 Montpellier SupAgro, UMR Amelioration Genetique et Adaptation des Plantes, 2 place Viala, 14 

34060 Montpellier, France  15 

5 Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università degli Studi della 16 

Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy 17 

6 Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Julich 18 

GmbH, 52425 Julich, Germany 19 

7 Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria 20 

8 Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, via 21 

Brecce Bianche, 60131, Ancona, Italy 22 

 23 

*Correspondence: Roberto Papa (r.papa@univpm.it); Tel.: +39-071-2204984/4280  24 

 25 

Running Head: Nitrogen starvation in emmer and durum wheat 26 

Key words: plant nutrition, Triticum turgidum, transcriptomics, metabolomics, stress, GABA, 27 

Glutamate  28 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.931717doi: bioRxiv preprint 

mailto:r.papa@univpm.it
mailto:r.papa@univpm.it
https://doi.org/10.1101/2020.02.03.931717


   2 
 

Summary 29 

Mounting evidence indicates the key role of Nitrogen (N) on diverse processes in plant, including not 30 

only yield but also development and defense. Using a combined transcriptomics and metabolomics 31 

approach, we studied the response of seedlings to N starvation of two different tetraploid wheat 32 

genotypes from the two main domesticated subspecies, emmer (Triticum turgidum ssp. dicoccum) 33 

and durum wheat (Triticum turgidum ssp. durum). We found that durum wheat exhibits broader and 34 

stronger response in comparison to emmer as evidenced by the analysis of the differential expression 35 

pattern of both genes and metabolites and gene enrichment analysis. Emmer and durum wheat showed 36 

major differences in the responses to N starvation for transcription factor families. While emmer 37 

showed differential reduction in the levels of primary metabolites to N starvation, durum wheat 38 

exhibited increased levels of most metabolites, including GABA as an indicator of metabolic 39 

imbalance. The correlation-based networks including the differentially expressed genes and 40 

metabolites revealed tighter regulation of metabolism in durum wheat in comparison to emmer, as 41 

evidenced by the larger number of significant correlations. We also found that glutamate and GABA 42 

had highest values of centrality in the metabolic correlation network, suggesting their critical role in 43 

the genotype-specific response to N starvation of emmer and durum wheat, respectively. Moreover, 44 

this finding indicates that there might be contrasting strategies associated to GABA and Glutamate 45 

signaling modulating shoot vs root growth in the two different wheat subspecies.46 
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Introduction 47 

Availability and uptake of nitrogen (N) is considered a major driver of growth (Lea and Azevedo, 48 

2006). Indeed, N is an essential nutrient for all organisms, including plants, and is required for the 49 

biosynthesis of macromolecules, such as proteins, nucleic acids, and chlorophyll, and for the synthesis 50 

of many secondary metabolites with different roles in adaptation and signaling (Miller et al., 2007). 51 

As a result, N deficiency (limited availability) and starvation (complete absence) dramatically affects 52 

plant growth and metabolism (Obata and Fernie, 2012). 53 

However, only 30–50% of supplied N is taken up by crops (Raun and Johnson, 1999), and the 54 

remainder is lost by denitrification or leaching into terrestrial ecosystems, causing eutrophication and 55 

contamination of drinking water (Cassman et al., 2003). Therefore, plant breeding efforts should be 56 

combined with improvement of crop management towards a more efficient use of N also to limit the 57 

use of fossil energy and environmental pollution (Ayadi et al., 2014; Ruisi et al., 2015). Towards this 58 

key objective, it is necessary to understand how plants react and cope with low N availability and 59 

identify the molecular basis of the natural genetic variation for adaptation to low N conditions. 60 

Understanding the molecular mechanisms underlying the variation in traits responsible for the 61 

phenotypic plasticity in crop and wild species is a key step in addressing the challenges of modern 62 

agriculture, such as resilience to climate changes (Godfray et al., 2010). In particular, understanding 63 

the genetic variation in N metabolism in major crop species, such as wheat, is expected to provide 64 

novel strategies for crop improvement (Kant et al., 2011; Xu et al., 2012; Hawkesford, 2017).  65 

In an increasing number of model and crop species, transcriptome studies have highlighted the 66 

complexity of the regulatory mechanisms involved in the control of leaf or root gene expression under 67 

both N-limiting and non-limiting conditions (Krapp et al., 2011; Humbert et al., 2013; Simons et al., 68 

2014; Curci et al., 2017). In addition, studies about the response of several cereal (e.g. rice, barley, 69 

sorghum, and wheat) to N starvation have highlighted differentially expressed genes (DEGs) involved 70 

in the response (Curci et al., 2017; Zuluaga et al., 2017; Yang et al., 2015, Gelli et al., 2014; Guo et 71 

al., 2014). For instance, Gelli et al. (2014) compared transcriptomic levels in four tolerant and three 72 

sensitive sorghum genotypes to low N condition. Furthermore, Chen et al. (2011) and Hao et al. 73 

(2011) compared gene expression changes in response to N stress in two maize and soybean 74 

genotypes with contrasting low N tolerance.  75 

Several works reported the combination of different 'omics' approaches in the evaluation of different 76 

crops responses to N starvation (Scheible et al., 2004; Amiour et al., 2012; Bielecka et al., 2015; 77 

Vicente et al., 2016; Yu et al., 2017). Nevertheless, a limitation in these studies was the focus on a 78 

single genotype. 79 
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The analysis of gene expression can be complemented and expanded by using data on metabolite 80 

levels and their joint investigation with the help of network analysis approaches. The latter approaches 81 

have been useful in highlighting the role of metabolites in particular processes, but also for 82 

understanding the structure and regulation of the underlying metabolic and gene regulatory processes 83 

(Hirai et al., 2005; Caldana et al., 2011; Toubiana et al., 2012, 2016; Beleggia et al., 2016). 84 

The aim of this study was to investigate and compare the transcriptomic and metabolomics responses 85 

of two genotypes of tetraploid wheats (one emmer landrace and one elite durum wheat cultivar) to N 86 

starvation at the vegetative stage (seedling growth) that showed phenotypic responses to differences 87 

in N availability. Tetraploid wheats, (Triticum turgidum L. 2n=4x=28; AABB genome), alongside 88 

with einkorn and barley, were domesticated in the Fertile Crescent, and durum wheat derived from 89 

domesticated emmer (Triticum turgidum ssp. dicoccum) through a rather long human-driven selection 90 

process, including distinct and sequential domestication bottlenecks and continuous gene flow from 91 

wild emmer (Triticum turgidum ssp. dicoccoides) (Nesbitt and Samuel, 1998; Tanno and Willcox, 92 

2006; Luo et al., 2007; Nevo, 2014). Here we obtained transcriptomics and metabolomics data from 93 

one emmer and one durum wheat genotype—the parents of a RIL population developed at CREA-CI 94 

Foggia (Russo et al., 2014). Our integrative analyses facilitated an in-depth molecular 95 

characterization and the comparison of tetraploid wheats responses to N starvation. 96 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.931717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931717


   5 
 

Results 97 

Morphological and physiological differences under the two N conditions 98 

First, we investigated the effect of N-starvation on plant growth by the evaluation of 13 complex 99 

traits, namely 12 morphological traits, including: Total leaf number (TLN); Total leaf area (TLA); 100 

Shoot fresh weight (SFW); Primary visible root length (PRL); Lateral visible root length (LRL); Total 101 

visible root length (TRL); Visible root system depth (RSD); Visible root system width (RSW); Root 102 

dry weight (RDW); specific root length (SRL); Total visible root length/total leaf area ratio 103 

(TRL/TLA); Lateral visible root length/ Primary visible root length ratio (LRL/PRL), as well as one 104 

physiological trait, Leaf chlorophyll content (SPAD) in emmer (Molise Sel. Colli) and durum wheat 105 

(Simeto). Table 1 shows the significant changes according to a two-way ANOVA due to genotype 106 

(G), N treatment (N) and their interaction (GxN). The traits TLA and SFW showed significant 107 

differences due to G (higher values in durum wheat) and N effect (higher values under optimal N 108 

condition). There were three measured traits, namely TLN, RDW and TRL/TLA which were 109 

significantly affected by N starvation. Finally, for SRL and SPAD, a significant effect due to the GxN 110 

interaction was observed. For instance, emmer at optimal N exhibited the largest value of SRL in 111 

comparison to emmer at N starvation and durum wheat in both N conditions. The opposite held for 112 

SPAD, for which durum wheat showed the highest value at optimal N compared to durum wheat at -113 

N and for both treatments of emmer.  114 

 115 

Transcriptomic differences between the two N conditions 116 

A global transcriptome analysis for the comparison of the two analyzed tetraploid wheat genotypes 117 

was performed using RNA-Seq Illumina technology resulting in 9.9 to 19.5 million reads per 118 

genotype (Table S1). These numbers were reduced after additional processing steps (see Methods) 119 

by 4.3 to 7.5%, depending on the sample. The cleaned reads were mapped on the bread wheat 120 

reference covering, on average, 70% of all reads in the analyzed genotypes (Table S1). 121 

We used the mapped reads to assess the DEGs in each genotype between the two N conditions, i.e. 122 

N starvation and optimal N condition. The total number of genes expressed in emmer and durum 123 

wheat were 27,792 and 28,812, respectively. The number of significant DEGs for emmer was 1,788, 124 

while in durum wheat it was 3,129. The number of DEGs specific to durum wheat was ~3.2-fold 125 

larger than in emmer, and the number of DEGs common to the two genotypes was 1,095 (Figure 1A). 126 

In addition, the number of the up-regulated DEGs specific to durum wheat was 2.5-fold larger than 127 

those specific to emmer, while the number of down-regulated DEGs specific to durum wheat was 128 

3.5-fold larger than those specific to emmer (Figure 1B). Therefore, we found a stronger 129 

transcriptional response in durum wheat to the change in N availability in comparison to emmer. 130 
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Functions of DEGs in emmer and durum wheat between the two N conditions 131 

The functional annotation of DEGs either common or specific to one of the genotypes, were reported 132 

in Table S2. Several DEGs were directly involved in N metabolism and transport. The key DEGs 133 

involved in nitrate assimilation, i.e. the gene coding for asparagine synthetase and aspartate 134 

aminotransferase, were up-regulated in both genotypes. In durum wheat, the gene coding for nitrate 135 

reductase was up-regulated, while the genes orthologous to Arabidopsis glutamine synthetase and 136 

glutamate dehydrogenase family were down-regulated in response to N-starvation (Table S2). A 137 

similar result was reported by Curci et al. (2017) for the response of durum wheat leaves to N chronic 138 

starvation during grain filling. One nitrate transporter and two ammonium transporters were found 139 

among the DEGs in emmer (Table S2). Interestingly, other DEGs associated with the translocation 140 

of other nutrient (potassium (8 genes), phosphate (1- [PhO1]), sulfate (1), zinc (1), calcium (8), copper 141 

(2), magnesium (3) and ABC transporter (6)) also changed under N starvation (Table S2).  142 

A general alteration was observed for genes participating in carbon metabolism, especially for those 143 

involved in glycolysis, tricarboxylic acid cycle (TCA), photosynthesis and photorespiration, 144 

particularly in durum wheat (Table S2). Notably, gene coding for Phosphoglycerate kinase (PGK), 145 

Pyruvate kinase (PK), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and Fructose 146 

bisphosphate aldolase were up-regulated and specific to durum wheat, while Pyruvate dehydrogenase 147 

E1-component subunit alpha (PDHA), Pyrophosphate--fructose 6-phosphate 1-phosphotransferase 148 

subunit alpha (PFP-ALPHA), and ATP-dependent 6-phosphofructokinase (PFK1) were up-regulated 149 

and specific to emmer. Concerning the Pentose phosphate pathway, one DEG encoding for glucose-150 

6-phosphate dehydrogenase (G6PD) was up-regulated in both genotypes, while two orthologs to 151 

ribose-5-phosphate-isomerase (Rpi) were up-regulated only in durum wheat. Notably, orthologues to 152 

RuBisCO (5 DEGs) and ferrodoxin (3 DEGs) were up regulated only in durum wheat.  153 

Transcription factors from the ARFs (5 DEGs) and NF-Y (3 DEGs) families were found to be down-154 

regulated in both genotypes, while the MYB family (1 DEGs) was up-regulated in durum wheat and 155 

PTACs (5 DEGs) families were up-regulated in both genotypes (Table S2). In addition, 35 protein 156 

kinases (PKs) were identified as DEGs, of which 13 were common to the two genotypes, while six 157 

and 16 were found as DEGs specific to emmer and durum wheat, respectively. Generally, N starvation 158 

causes several stress responses. About two thirds of DEGs common or specific to each genotype were 159 

up-regulated, and among them there were several antioxidant enzymes encoding genes, such as: 160 

superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), peroxiredoxin (Prx), 161 

and lipoxygenases (LOXs), as well as enzymes of the ascorbate-glutathione cycle, such as: 162 

glutathione reductase (GR) or those involved in the biosynthesis of secondary metabolites (Table S2). 163 

 164 
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GO enrichment analysis of DEGs 165 

To investigate the transcriptomic changes in leaves of emmer and durum wheat under the two N 166 

conditions, we assessed the GO enrichment in the set of DEGs (see Methods).  167 

The GO terms identified were categorized into 21 and 23 categories for emmer and durum wheat, 168 

respectively (Figure 2, Table S3). In both genotypes, the highest number of DEGs up-regulated were 169 

included in the categories ‘cellular process’, ‘metabolic process’, ‘binding’ and ‘catalytic’ while those 170 

that were differentially down-regulated were principally grouped into ‘binding’ and ‘catalytic’ 171 

categories. Differences between the two genotypes were observed with respect to the molecular 172 

function category ‘transcription regulator’ which was enriched in both the down- and up-regulated 173 

DEGs in emmer and durum wheat, respectively, and in the GO terms associated with biological 174 

process categories ‘regulation of biological process’ and ‘reproductive process’, which were only 175 

enriched in durum wheat for up-regulated DEGs. 176 

Extended list of over represented GO terms with the p-value of at most 10-5 for emmer and durum 177 

wheat is reported in Table S4. Notably, all GO terms of the categories ‘cellular process’, ‘metabolic 178 

process’, ‘binding’ and ‘catalytic’ (e.g. those involving the nitrogen) which were enriched in emmer 179 

were also found in durum wheat. Durum wheat showed also specific over-represented GO terms in 180 

several categories; for instance, these included the cellular amino acid, oxoacid or organic acid 181 

metabolic processes, or the metabolic/biosynthetic process of isopentenyl diphosphate (Table S4). In 182 

addition, regarding the categories ‘binding’ and ‘catalytic activity’, durum wheat showed different 183 

over-represented GO terms among the DEGs differentially up- and down-regulated. For example, 184 

GO terms of oxidoreductase, ligase, hydrolase (on glycosyl bond or O-glycosyl compounds), lyase 185 

and transferase activity were not enriched in the down-regulated DEGs, while GO terms of kinase, 186 

protein kinase, protein serine/threonine kinase and phosphotransferase activity were not enriched on 187 

the up-regulated DEGs (Table S4). 188 

 189 

Metabolic differences between the two N conditions 190 

A total of 46 metabolites were identified and quantified using GC-MS (see Methods). These included 191 

41 polar and five non-polar compounds, divided into the following compound classes: amino acids, 192 

organic acids, sugars and sugar alcohols, fatty acids, polycosanol and phytosterols. The data were 193 

analyzed using two-way ANOVA and significant differences (P ≤ 0.05) for 23 metabolites including 194 

the TCA cycle intermediates, some sugars, shikimic and quinic acids, several amino acids and GABA 195 

were reported (Table S5). A higher content of metabolites was found in emmer under optimal N 196 

condition in comparison to durum wheat (see Figure 3 for illustrative comparison). For all 197 

metabolites, a strong significant effect due to the interaction of the genotype and N treatment (GxN) 198 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.931717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931717


   8 
 

was observed. Five metabolites (glutamic acid, aspartic acid, citric acid, saccharic acid and maltitol) 199 

showed also significant differences due to the effect of genotype (G) and treatment (N). Tryptophan 200 

showed only the genotype effect while aconitic and shikimic acids showed significant differences due 201 

to G apart from the GxN interaction. 202 

 203 

Network analysis of combined data sets 204 

In general, the correlation structure among the combined data sets (transcripts and metabolites) of 205 

each genotype can be represented by a network, where a node denotes a transcript, or a metabolite 206 

and an edge stand for the presence of significant Pearson correlation between the data associated to 207 

the nodes. Overall, durum wheat showed 2.8-fold more significant correlations in comparison to 208 

emmer (Table 2). The intersection of the networks from the two genotypes included ~397,000 edges, 209 

of which 99.3% did not demonstrate significant differences between the two networks (using Fisher’s 210 

z-transformation, see Methods). The latter set of edges (with no significant differences between the 211 

networks obtained for each genotype; by applying Fisher’s z transformation) is said to comprise the 212 

common network between the two genotypes that represents the 31.5% and 11.2% of the total 213 

correlations in the networks of emmer and durum wheat, respectively. 214 

Because we are interested in understanding if the differences in correlation could reflect the 215 

differences in regulation of transcripts and metabolites, we considered only the significant 216 

correlations between DEGs and significantly altered metabolites under the two N conditions; the 217 

number of such correlations in durum wheat was 2.3-fold larger than in emmer. Focusing the attention 218 

only on those metabolites that showed differential behavior between the two N conditions, as reported 219 

above, we observed that for emmer GABA is involved in the smallest number of edges (12), while 220 

maltitol participates in the largest number of edges (1,667). In durum wheat we find almost 221 

contrasting situation, isomaltose was involved in the smallest number of edges (28), while GABA 222 

exhibited the largest number of edges (2,954) (Table S6).  223 

The effect of the observed differences between the correlation structures (i.e. networks) obtained for 224 

both genotypes can be investigated for each node and can be summarized by its centrality in the 225 

network. In this context, we selected those nodes showing the centrality measures (i.e., degree and 226 

betweenness) greater than the corresponding mean values in each genotypic-specific network. 227 

Considering the nodes of the two genotype-specific networks, those with a central role included 260 228 

and 479 genes in emmer and durum wheat, respectively (Table 2). In durum wheat also the 229 

metabolites: myo-inositol, quinic acid and valine showed high values for both centrality measures. 230 

To refine the network, we next included only DEGs with high values of centrality and only 231 

metabolites that were significantly contrasted between the two N conditions. In general, the total 232 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.931717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931717


   9 
 

number of edges decreased of about 79% and 85% for emmer and durum wheat, respectively (Table 233 

S6). The total number of edges between central DEGs and differentially behaved metabolites in 234 

durum wheat is higher than those in emmer by 3.6-fold for alanine and 479-fold for GABA. In 235 

contrast, in emmer, the number of edges between central DEGs and significantly contrasted 236 

metabolites: glutamic acid, isocitric acid, isomaltose, saccharic acid, serine, succinic acid, and 237 

threonine, were higher than those in durum wheat. Noteworthy, with aspartic acid, citric acid, fumaric 238 

acid and maltitol the number of edges was the same in both genotype-specific networks.  239 

 240 

Function of DEGs having a central role in the networks 241 

To evaluate the common or specific responses to N starvation in the two genotypes, we looked for 242 

the annotated functions of the DEGs shared between the two genotype-specific networks with a 243 

central role in at least one of the two networks (Table S7). Several DEGs related to photosynthesis 244 

were expressed in both genotypes but in some cases, they showed a central role only in emmer-245 

specific network (e.g. Chlorophyll synthase (CHLG)) while, in contrast Carboxyl-terminal-246 

processing peptidase 3 (CTPA3), Cytochrome c biogenesis protein (CCS1), and magnesium-chelatase 247 

subunit ChlD (ChlD) were found to have a central role in the durum wheat-specific network. In the 248 

network specific to emmer the most central nodes coded for Pyruvate phosphate dikinase 1 (PPDK) 249 

and Pyruvate dehydrogenase E1component subunit alpha-3 (PDH-E1 ALPHA) which were down-250 

and up-regulated, respectively.  251 

In durum wheat-specific network, DEGs related to proteolysis as well as the synthesis of the cofactor 252 

FMN, that were up-regulated, had a central role in the network, and at the same time, Allantoinase 253 

(ALN), a key enzyme for biogenesis and degradation of allantoin and its degradation derivatives, 254 

essential in the assimilation, metabolism, transport, and storage of nitrogen in plants, was among the 255 

central nodes. 256 

In both genotype-specific networks, different DEGs involved in the chloroplast development showed 257 

central roles (Table S7). Among the central DEGs, there were several genes related to detoxification 258 

and plant stress responses caused by N starvation. Only one DEG (Traes_2BL_CCD296233, down-259 

regulated) encoding for the Stress Enhanced Protein 2 [SEP2], showed a central role in both genotype-260 

specific networks (Table S7). 261 

To highlight the differences between emmer and durum wheat, we also considered the putative 262 

annotation of the central DEGs in each genotype-specific network (see Table S8). In emmer, several 263 

genes involved in C metabolism or related to stress conditions responses were up-regulated; at the 264 

same time a DEG related to carbonic anhydrase (EC 4.2.1.1), involved in N metabolism, was down-265 

regulated. In contrast, in durum wheat, several DEGs related to photosynthesis were differently 266 
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regulated, i.e. chlorophyll synthase and the ferritin were up-regulated while the ferrochelatase was 267 

down-regulated. Importantly in durum wheat-specific network, there is also a central DEG 268 

(Traes_3AS_3CB8A9C01) for glutamate decarboxylase [GAD] which was up-regulated. 269 

Figure 4 represented the genotype-specific networks of DEGs-metabolites reported in Table S7 and 270 

Table S8 for emmer (A) and durum wheat (B), respectively. As illustrated, the network structure was 271 

different between the two genotypes; consistently emmer-specific network showed a higher number 272 

of negative correlations between DEGs and metabolites while durum wheat-specific network has 273 

higher number of positively correlated DEGs and metabolites pairs. Of note, glutamic acid and valine 274 

were the metabolites highly connected to the other nodes in emmer-specific network while GABA, 275 

quinic acid, myo-inositol and valine were highly connected to the rest of the nodes in durum wheat-276 

specific network. 277 

 278 

DEGs position on the genome 279 

We have also considered the position of DEGs in both genotypes on the physical map. In general, for 280 

each chromosome durum wheat showed a higher number of DEGs compared to emmer. In both 281 

genotypes, the larger number of DEGs was located on chromosome 2A, 2B, 4A, 5A and 5B, while 282 

lower number of genes was found in the chromosome 3B. Few genes were in chromosome 6B in 283 

emmer (Figure S1). 284 

Figure 5 illustrates the location of down- and up-regulated DEGs with central role in the 285 

corresponding genotype-specific networks. Observing the results, the higher number of central nodes 286 

in the emmer-specific network was located on chromosome 2B, 4B, and 5A, while for durum wheat-287 

specific network the higher number of central DEGs was located on chromosome 2A, 2B, 4A and 288 

5B.  289 
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Discussion 290 

In a preceding work we found that emmer and durum wheat showed contrasting phenotypic responses 291 

associated to N starvation (Gioia et al., 2015). Here we present the results of gene expression and 292 

metabolites levels of emmer and durum wheat using two representative genotypes which were part 293 

of the previous investigation. Indeed, a striking result showed by our study is the major differences 294 

in the response to N starvation between our emmer and durum wheat genotypes based on their gene 295 

expression and metabolite levels. Emmer responded to the stress condition by slowing down all the 296 

metabolic functions, probably limiting his energy expenditure. On the contrary, durum wheat 297 

responded to the stress condition by activating a much larger number of genes (e.g. triggering more 298 

defense responsive pathways) and mechanisms resulting in an accumulation of metabolites in the 299 

investigated tissues (leaves) most likely associated to a metabolic imbalance. Moreover, evaluating 300 

the differences in plant growth, a significant growth variation under N starvation was observed in 301 

both genotypes according to the results reported by Gioia et al. (2015) which was more evident in the 302 

aerial part in durum wheat and in the below-ground part in emmer.  303 

Durum wheat responded to N starvation with a much higher number of DEGs up-regulated. Some of 304 

these genes, directly involved in N metabolism, were differentially expressed exclusively in durum 305 

wheat (i.e. NR (up-regulated), GS and GDH (down-regulated)). In addition, the results of gene 306 

enrichment analysis indicate that emmer and durum wheat adapt to nitrogen starvation by a 307 

reprogramming of transcription. Transcription factors are important for controlling the expression of 308 

other genes in plant exposed to limited N condition or in complete starvation (Krapp et al., 2011; 309 

Yang et al., 2015; Curci et al., 2017) and, accordingly, our results showed as the regulation of 310 

transcripts was highly different and, in some case, with an opposite trend between emmer and durum 311 

wheat. In addition, some GO categories were only enriched for the DEGs in durum wheat, such as: 312 

the cellular amino acids, oxoacid or organic acids metabolism which were also highlighted by Huang 313 

et al. (2016) in their study on the transcriptomic evaluation in response to the imbalance of carbon: 314 

nitrogen ratio in rice seedling.  315 

Moreover, the levels of metabolites showed significant differences in response to the N starvation in 316 

both emmer and durum wheat. In general, in stressed conditions a reduction in plant growth and 317 

photosynthesis is expected (Shaar-Moshe et al., 2018) and, consequently, this should lead to a 318 

decrease in monosaccharides content. Nevertheless, an increase in the starch and soluble sugars 319 

content was reported in the shoot of Arabidopsis thaliana under N starvation (Krapp et al., 2011). 320 

Accordingly, an increase of total sugars in both genotypes was observed, with a pronounced effect in 321 

durum wheat (which also showed a significant decrease of photosynthetic efficiency).  322 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.931717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931717


   12 
 

Consistently to the differences observed at transcriptomic level, the content of amino acids, under N 323 

starvation was lower in emmer (fold change = -2.7), while in durum wheat a higher accumulation 324 

(fold change= 1.7) of these metabolites was observed. Tschoep et al. (2009) showed that when 325 

Arabidopsis plants were grown under continuous N limitation, the total amino acids levels were found 326 

to be higher than under high N condition due to a metabolic imbalance. The results obtained in our 327 

conditions suggest a reduced use of amino acids for protein synthesis and growth in durum wheat that 328 

links with the reduction of photosynthetic activity under N starvation. On the other hand, the lower 329 

accumulation in emmer may indicate an earlier phase of the N starvation syndrome which could result 330 

in a drastically reduced, but still efficient, metabolism.  331 

In this sense, it is also important to discuss carefully the behaviors of both glutamic acid and 332 

GABA, both altered in response to the N starvation condition in emmer and durum wheat. GABA is 333 

synthesized mainly from glutamate, closely associated with the TCA cycle, and having a signaling 334 

role (Bouchè and Fromm, 2004; Fait et al., 2008, Caldana et al., 2011). Two studies have suggested 335 

a signaling role of GABA during the nitrate uptake in both Brassica napus root (Beuve et al., 2004) 336 

and Arabidopsis thaliana (Barbosa et al., 2010). Moreover, Sulieman (2011) reported the important 337 

role of GABA in increasing of the efficiency of symbiotic N2 fixation in legumes. Michaeli and 338 

Fromm (2015), proposed that the metabolic and signaling functions of GABA has been evolved to be 339 

functionally entwined under nutrient starvation. Thus, it seems that GABA levels increase during 340 

plant nutrient starvation and energetically demanding stresses (Carillo, 2018), aspect that could be 341 

supported, from our data, by the negative correlation between the SPAD values (indicating reduced 342 

chlorophyll content) and the GABA content in durum wheat (r = -0.86; P = 0.0061). On the other 343 

hand, Forde and Lea (2007) reported the possible long-distance signaling role of glutamate between 344 

shoot and root as part of a network of N signaling pathways that enable the plant to monitor and adapt 345 

to changes in N status. In their model, when the shoot-derived glutamate arrive at the root tip, is 346 

sensed by plasma membrane glutamate receptors enabling meristematic activity in the root tip to 347 

respond to changes in the N/C status of the shoot. In our study the positive correlation in emmer 348 

between shoot glutamate and SRL (r = 0.97; P = 0.0001) could support this suggestion. In addition, 349 

the increase of the root morphological parameters in emmer under N starvation could be also 350 

sustained by a greater remobilization of the amino acids from the shoot to the root. The key role of 351 

GABA and glutamate is also supported by the results of the correlation-based network analysis 352 

integrating the information from both metabolites and transcripts. Indeed, durum wheat-specific 353 

network was characterized by the role of GABA that was associated to many (479) DEGs while in 354 

emmer-specific networks the glutamate was highly connected to many (201) other DEGs. This 355 

finding, on one hand, underlies their important role as signaling metabolites in stress conditions as 356 
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those occurring during nitrogen starvation and, on the other hand, it may suggest the occurrence of 357 

two contrasting strategies based on GABA and glutamate signaling that appear associated to shoot 358 

and root growth, respectively.  359 

The genotype-specific networks of the two tetraploid wheats showed different structures. Overall, 360 

only one DEG (down-regulated) common to both emmer and durum wheat showed a central role in 361 

the corresponding networks (i.e. Stress Enhanced Protein 2 -[SEP2]) which is a light-inducible gene 362 

as showed in Arabidopsis thaliana and rice (Umate, 2010). A previous work reported that the 363 

regulation of SEP gene expression by light stress is very specific while other physiological stresses, 364 

such as: cold, heat, wounding, desiccation, salt or oxidative stress, did not promote accumulation of 365 

SEP transcripts indicating that they were not triggered by photooxidative damage itself (Heddad and 366 

Adamska, 2000). Therefore, based on our results we can speculate that SEP2 is inducible by both 367 

light and N starvation. 368 

Among the genes having a central role in the durum wheat-specific network, there were some 369 

transcription factors (i.e. DEAD-box ATP-dependent RNA helicase 3[DEAD-box RH3] and the 370 

MIKC-type MADS-box transcription factor) as well as some stress responsive genes (i.e. peroxidase 371 

and protein detoxification). For example, as well documented, the DEAD-box RNA helicases are 372 

involved in RNA metabolism and have important roles in diverse cellular functions (e.g. plant growth 373 

and development, and in response to biotic and abiotic stresses (Vashisht and Tuteja, 2006; Li et al., 374 

2008; Linder and Jankowsky, 2011; Zhu et al., 2015). Recently, Gu et al. (2014) demonstrated the 375 

relevant role of the chloroplast DEAD-box RH3 on the growth and stress response in Arabidopsis 376 

thaliana. Interestingly, it is reported that in bread wheat the MIKC-type MADS-box TFs have key 377 

roles in plant growth (Ma et al., 2017; Li et al., 2018); however, even if one of these transcription 378 

factors (Traes_5AL_13E2DEC48) was a central node in the durum wheat-specific network, it was 379 

down-regulated under N starvation in comparison to the optimal N condition. 380 

Moreover, several studies reported that in wheat, grown in either in field or greenhouse conditions, 381 

activities of many enzymes in the antioxidant defense system (i.e. SOD, CAT, GPX, GR, Prx and 382 

LOX) are altered to control the oxidative stress induced by other factors and to maintain the balance 383 

between ROS production and detoxification which avoid potential damage to cellular components, 384 

metabolism, development and growth system (Mittler et al., 2004; Caverzan et al., 2016 and reference 385 

therein). For example, Kumar et al. (2013) reported an increase of SOD transcript in wheat in 386 

response to heat shock treatment that may indicate greater tolerance to environmental stresses. Also, 387 

in this study, many important genes related to the antioxidant defense system were up-regulated in 388 

both genotypes but with a ratio of 1:2 between emmer and durum wheat. 389 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.931717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931717


   14 
 

The up-regulation of genes involved in the defense-system and the increase in the content of 390 

metabolites under starvation observed in durum wheat suggest that a possible mechanism of response 391 

to the starvation may be linked to the autophagy. This process is inducible in different and multiple 392 

stress condition or development stages, and it is defined as a non-specific degradation process for the 393 

recycling of intracellular material that might be used as building blocks to temporarily overcome the 394 

absence of nutrients (Liu and Bassham, 2012; Pérez-Pérez et al., 2012). Nutrient limitation also 395 

increases ROS production, which in turn may stimulate autophagy functioning as signaling molecules 396 

as suggested by Liu et al. (2009). Taken together, these findings indicate that the absence of nutrients 397 

is a primary signal leading to autophagy activation in eukaryotes, but this stress signal is tightly 398 

associated with the production and accumulation of ROS. Because in plants the chloroplasts are 399 

primary source of ROS, their degradation through autophagic processes may be highly possible as 400 

also reported under carbon-limited conditions (Wada et al., 2009).  401 

To face environmental constrains, according to the plant-life history (the distribution of 402 

resources between growth, reproduction and defense), plants can combine acclimation mechanisms 403 

from different strategies defined as escape or resistance (Shaar-Moshe et al., 2018 and references 404 

therein). In this sense, probably, emmer as adaptive strategy to N starvation relied mainly on the 405 

below-ground part while the durum wheat reacts on the up-ground part. Although our experiment did 406 

not analyze the transcriptomic and/or metabolomics responses of the roots, it provides important 407 

information with respect to differential response on the level of gene and metabolites involving in the 408 

efforts of this crop to retain homeostasis under nutrient stress conditions. Indeed, the responses of 409 

emmer appear more plastic with enhanced activation of root growth under N starvation then durum 410 

which trigger to maintain growth rate even in absence of available N. 411 

 412 

Experimental Procedures 413 

Plant materials and experimental design 414 

Two genotypes of Triticum turgidum were considered: one emmer (T. turgidum ssp. dicoccum) 415 

named 'Molise Selezione Colli', a pure line selected from a local population, and one modern durum 416 

wheat cultivar (T. turgidum ssp. durum) named 'Simeto' (derived from Capeiti/Valnova), released in 417 

ltaly in 1988. They showed many contrasting traits including differences in grain yield (GY), heading 418 

date (HD), plant height (PH), test weight (TW), thousand kernel weight (TKW), protein content (PC), 419 

yellow index (YI), gluten index (GI), roots and shoot morphological parameters (De Vita et al., 2006, 420 

2007; Iannucci et al., 2017).  421 

Both genotypes were previously purified by two cycles of Single Seed Descent (SSD). The samples 422 

were part of a larger four-week-long experiment conducted in 2012 under N-optimal and N-starvation 423 
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conditions in the PhyTec Experimental Greenhouse at the Institute of Biosciences and Geosciences 424 

(IBG-2): Plant Sciences Institute, Forschungszentrum Julich GmbH, Germany (50°54’36’’N, 425 

06°24’49’’E) which included 12 genotypes for each tetraploid wheat subspecies. The resulting 36 426 

genotypes were grown under two different N conditions with two replicates per genotype in two 427 

subsequent growing conditions. Thus, for each treatment genotypes were replicated four times using 428 

two plants per replicate with overall 8 plants per genotype per treatment. Each rhizobox contained 429 

two different genotypes of the same subspecie, each represented by two plants arranged to avoid 430 

contacts between roots of different genotypes. This means that the two genotypes considered here 431 

were grown in four different rhizoboxes for each N condition.  Before sowing, for each genotype, 432 

grains of uniform size were visually selected, surface sterilized (1% NaClO (w/v) for 15 min and 433 

rinsed 10 times with deionized water), pre-germinated and then transplanted into the soil-filled 434 

rhizoboxes. The soil used to fill the rhizoboxes (volume of ~18 l) was a ‘Typ 0’ manually sieved peat 435 

soil (Nullerde Einheitserde; Balster Einheitserdewerk, Frondenberg, Germany), which provided low 436 

nutrient availability, with a pH of 6.1, and the available phosphate, potassium, magnesium, 437 

ammonium nitrogen, and nitrate nitrogen concentrations of 7.0, 15.0, 98.0, <1.0, and <1.0 mg l–1, 438 

respectively. All plants were watered regularly twice a day with 400 ml of tap water and supplied 439 

three times per week with 200 ml of modified Hoagland solution (Hoagland and Arnon, 1950) with 440 

or without added nitrogen. For the optimal nitrogen condition, the stock solution included 5 mM 441 

KNO3, 5 mM Ca(NO3)2, 2 mM MgSO4, 1 mM KH2PO4, plus trace elements while for the nitrogen-442 

starvation solutions, 1 mM KNO3 and 5 mM Ca(NO3)2 were replaced by 2.5 mM K2SO4 and 5 mM 443 

CaCl26(H2O), respectively. The experiments were carried out under natural lighting in a greenhouse, 444 

with the air temperature kept between 18 and 24 °C, and the relative humidity between 40 and 60%. 445 

For more details concerning the experiment and growth conditions see Gioia et al. (2015). At the end 446 

of the experiment, for each replicate, leaves of the two plants were pooled and immediately frozen in 447 

liquid nitrogen to obtain leaves tissues for RNA and metabolites extraction. 448 

 449 

Phenotypic traits 450 

The following traits were scored for both genotypes: the total leaf area (TLA), the total number of 451 

leaves (TLN), and the principal parameters of the root system architecture, such as: visible primary 452 

root length (PRL), visible lateral root length (LRL), total root length (TRL) of all visible roots, root 453 

system depth (RSD), and root system width (RSW). At the end of the experiment, at 28 days after 454 

sowing (DAS) (Zadoks stage 14–18 for optimal N; Zadoks stage 12–14 for N starvation; Zadoks et 455 

al., 1974), the chlorophyll content (SPAD units) was estimated with a SPAD-502 chlorophyll meter 456 

(Minolta Corp., Ramsey, NJ, USA). In addition, wheat plants were harvested to determine the shoot 457 
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fresh weight (SFW) and the root biomass (root dry weight; RDW) after a careful washing and oven 458 

drying. More details of each determination were reported in Gioia et al. (2015). 459 

 460 

Transcriptomic analysis 461 

RNA extraction was performed using 100 mg of frozen ground tissue (leaves) and treated with 462 

RNase-Free DNase by the On-Column DNase I Digestion Set (Sigma-Aldrich). For the subsequent 463 

analysis only RNA samples with integrity greater than 8.0 were used. Library construction and RNA 464 

sequencing were carried out at the Montpellier Genomix (http://www.mgx.cnrs.fr) sequencing 465 

facility. Libraries quantification, RNA-Seq data filtering and processing used in this study were 466 

essentially as those described previously by David et al. (2014). The bread wheat chromosome survey 467 

sequence for the cv. Chinese Spring (http://plants.ensembl.org/triticum_aestivum) generated by the 468 

International Wheat Genome Sequencing Consortium (IWGSC) was used as the reference assembly. 469 

The Biomart package of EnsEMBL were used to acquire the transcripts, and the physical genomic 470 

location of the 66,307 genes was predicted from the IWGSC on the genome A and B (Ensembl release 471 

22, http://plants.ensembl.org/biomart/martview/). Since these sequences were obtained by separately 472 

sequencing each bread wheat chromosome arm, the bread wheat reference helped to distinguish 473 

paralogous durum wheat copies. 474 

RNA-Seq reads were mapped on the bread wheat reference transcriptome using BWA (Li and Durbin, 475 

2009) while allowing 3 errors (-n 3 in the alignment step). Picard tools (http://picard.sourceforge.net) 476 

were used to remove PCR and optical duplicates. Rough read counts were computed at all sites for 477 

each individual using the idxstats function of the Samtools.  478 

 479 

Metabolite Profiling 480 

After collection, part of the frozen leaves of each replicate were freeze-dried and successively milled 481 

using a Pulverisette 7 Planetary Micro Mill (Classic Line, Fritsch) with an agate jar and balls, and 482 

stored a -20°C until analysis.  483 

A total of 30 mg dry weight (dw) of each replicate was used for the extraction, derivatisation and 484 

analysis by gas chromatography–mass spectrometry (GC-MS) of the polar and non-polar metabolites 485 

as previously described (Beleggia et al., 2013). Metabolites were identified by comparing the mass 486 

spectrometry data with those of a custom library obtained with reference compounds and with those 487 

of the National Institute of Standards and Technology (NIST 2011) database. The chromatograms 488 

and mass spectra evaluation and quantification were performed using the Mass Hunter software.  489 

The standards and all the chemicals used were HPLC grade (Sigma-Aldrich Chemical Co., 490 

Deisenhofen, Germany). 491 
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Statistical analysis 492 

Analysis of variance (ANOVA) was carried out with respect to each morphological trait and 493 

metabolite detected in the shoot of emmer and durum wheat lines considered. Mean discrimination 494 

between emmer and durum was performed applying Tukey’s test and statistically significant 495 

differences were determined at the significance level of 𝛼= 0.05. Statistical analysis of the data was 496 

performed using the JMP software (SAS Institute Inc., Cary, NC, USA version 8). 497 

 498 

Bioinformatics analysis and network construction 499 

Data preprocessing  500 

First, genes for which the count per million (cpm) for a single sample was smaller than one and the 501 

sum of cpms across all samples was smaller than the total number of samples were filtered out. Raw 502 

counts were first normalized using trimmed mean of M-values normalization method (R package 503 

edgeR (Robinson et al., 2010) and then voom normalized using the R package limma (Smyth, 2005). 504 

Analysis of differential expression  505 

Analysis of differential expression was conducted on the data after data preprocessing. DEGs were 506 

determined between N starvation and a control with optimal N level for the following scenarios: (i) 507 

for each genotype and (ii) between the two genotypes. For the two scenarios, a linear model was 508 

employed to determine differential behavior. To this end, we applied the R package limma (Smyth, 509 

2005).  510 

GO enrichment analysis 511 

Annotations were extracted from EnsemblPlants ( Kinsella et al., 2011) 512 

(http://plants.ensembl.org/biomart/martview/2ace56daacae40bad4af00cc25d51e4f) and agriGO 513 

(http://bioinfo.cau.edu.cn/agriGO/download.php) (Du et al., 2010). We used hypergeometric test 514 

(Kachitvichyanukul and Schmeiser, 1985) to identify enriched terms in the list of DEGs. The cut-off 515 

value for significance level was considered as 0.05 after FDR correction. 516 

Network analysis 517 

Co-expression networks were extracted by applying Pearson correlation on all pairs of data profiles, 518 

resulting in a similarity matrix  Sm×m . We then build a network G =  (V, E)  with m nodes, 519 

corresponding to the DEGs; there is an edge between two nodes i, j ∈  V(G) if and only if the 520 

entrysij of S is significant at the level of 0.05, after FDR correction.  521 

Co-expression networks are separately reconstructed for the data from each genotype (i.e., Molise 522 

Sel. Colli and Simeto), by identifying significant correlation coefficients between each pair of genes 523 

in the network (p value<0.05, FDR corrected). For each pair of genes in the network, the Fisher Z-524 

score test is used to assess the significance of the difference between the correlation coefficients 525 
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obtained from emmer and durum wheat data. The edge between a pair of genes is referred to as a 526 

significantly different edge if the obtained p-value from Fisher Z-score test is smaller than 0.05 after 527 

FDR correction. The degree and the betweenness centralities of all nodes (i.e. DEGs) in co-expression 528 

networks and the differential networks were calculated using the R package igraph (Csardi and 529 

Nepusz, 2006). The same analysis was repeated for metabolite data, and integration of metabolite and 530 

transcript data; however, the entire metabolite profiles were used in these cases. 531 

To find the nodes (i.e., genes and metabolites) which capture the differences between the two 532 

genotypes, we scored the nodes by the number of correlations of value larger than 𝜏 (𝜏 was considered 533 

to be 0.6 and 0.8) present in emmer but not in durum wheat co-expression network and vice versa. 534 
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Table 1. Summary statistics and differential behavior for 12 morphological and one physiological trait in emmer and durum wheat under two N 

conditions: N starvation (-N) and optimal N (+N) condition. Data are reported as mean ± SE 

 

 G N G x N 

 emmer durum wheat 
P 

value 
-N +N 

P 

value 

emmer 

x (-N) 

emmer 

x (+N) 

durum wheat 

x (-N) 

durum wheat 

x (+N) 

P 

value 

TLN  3.88±0.54 4.81±0.48 n.s. 3.50±0.19b 5.19±0.59a 0.0173 3.00±0.00 4.75±0.92 4.00±0.00 5.63±0.80 n.s. 

TLA (cm2) 24.85±5.66b 41.92±8.39a 0.0304 19.98±1.43b 46.79±8.35a 0.0023 17.22±1.21 32.48±10.45 22.74±1.75  61.10±8.94  n.s. 

SFW (g) 0.63±0.19b 1.17±0.30a 0.0453 0.42 ±0.05b 1.39 ±0.28a 0.0017 0.34±0.04 0.93±0.32 0.50±0.07  1.85±0.35 n.s. 

PRL (cm) 155.58±26.79 172.72±25.42 n.s. 191.72±21.60 136.59±26.47 n.s. 189.27±31.72 121.89±39.82 194.16±34.17 151.28±39.25 n.s. 

LRL (cm) 20.49±7.00 10.89±4.04 n.s. 15.28±5.19 16.10±6.70 n.s. 18.60±8.34 22.38±12.53 11.96±6.99 9.83±5.13 n.s. 

TRL (cm) 176.07±32.17 183.62±27.96 n.s. 206.99±24.99 152.69±31.39 n.s. 207.87±39.64 144.27±50.83 206.12±36.65 161.11±44.36 n.s. 

RSD (cm) 62.84±5.38 65.34± 3.66 n.s. 70.28±2.54 57.90±5.04 n.s. 68.69±4.09 56.98±9.76 71.86±3.41 58.82±4.74 n.s. 

RSW (cm) 23.31±3.26 22.82±3.22 n.s. 24.79±3.08 21.34±3.27 n.s. 28.72±3.47 17.89±4.25 20.87±4.68 24.78±4.89 n.s. 

RDW (g) 0.02±0.01 0.03±0.00 n.s. 0.03±0.00a 0.02±0.00b 0.0228 0.03±0.01 0.01±0.00 0.03±0.01 0.02±0.00 n.s. 

SRL  

(m g-1) 
107.31±15.77a 67.69±5.99b 0.0094 70.31±5.93b 104.69±16.65a 0.0201 75.75±7.06b 138.87±21.15a 64.87±9.72b 70.52±8.21b 0.0449 

TRL/TLA  

(cm cm-2) 
7.92±1.65 5.98±1.62 n.s. 10.57±1.28a 3.34±0.45b 0.0002 11.68±1.71 4.17±0.54 9.46±1.98 2.50±0.43 n.s. 

LRL/PRL 0.11±0.04 0.06±0.02 n.s. 0.07±0.02 0.10±0.04 n.s. 0.09±0.04 0.14±0.07 0.06±0.03 0.05±0.02 n.s. 

SPAD 26.55±1.22b 34.91±2.24a <0.0001 26.91±1.24b 34.55±2.41a 0.0001 24.35±0.91b 28.75±1.72b 29.48±1.40b 40.35±1.31a 0.0353 

TLN: Total leaf number; TLA: Total leaf area (cm2) Calculated on all the leaf as leaf length. maximum width.0.858 (Kalra and Dhiman. 1976); SFW: Shoot fresh weight (g); 

PRL: Primary visible root length (cm); LRL: Lateral visible root length (cm); TRL: Total visible root length (cm); RSD: Visible root system depth (cm); RSW: Visible root system 

width (cm); RDW: Root dry weight (g); TRL/TLA: Total visible root length/total leaf area (cm cm-2); SRL: specific root length (defined as TRL/RDW); SPAD: Leaf chlorophyll 

content (SPAD units).Values annotated in bold are significantly different (Tukey's test) and the character ‘a’/’b’ implies the higher/lower observed value for each significant change 

between the genotypes, the two N conditions and their interaction. 
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Table 2. Networks of emmer, durum wheat, intersection and common networks of transcripts and 

metabolites data. 

 emmer 
durum 

wheat 

 (durum 

wheat 

/emmer) 

intersection 

Common 
(accepting the 

Fisher z test 

NULL 

hypothesis) 

Number of edges in 

total 
1,249,637 3,500,971 2.8 396,571 393,779 

Number of edges 

DEG-DEG 
1,237,748 3,473,768 2.8 394,015 393,719 

Number of edges 

metabolite-metabolite 
185 157 0.85 65 60 

Number of edges 

DEG-metabolites 
11,704 27,046 2.3 2,491 0 

Number of nodes 1,829 3,167 1.7 1,129 1,127 

Number of central 

nodes 
260 479 1.8 367 398 

Number of edges to 

the central nodes: 

DEGs – significantly 

behaved metabolites* 

1,898 4,590 2.4 1,217 0 

*significantly behaved metabolites considering the effect of G, N and GxN of the ANOVA model. 
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Figure 1. Differentially expressed genes between N starvation (-N) and optimal N (+N) conditions 

in durum wheat and emmer. 
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Figure 2. Comparison of Gene Ontology classifications of DEGs in emmer and durum wheat. Blue and red color indicates the number of up- and 

down-regulated DEGs, respectively. All DEGs are categorized into 21and 23 functional groups based on GO classification for emmer and durum 

wheat, respectively.  
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Figure 3. Metabolites exhibiting significant variation for emmer (red bars) and durum wheat (blue bars) under starvation (-N) and optimal (+N) levels 

due to the effect of GxN interaction. Bars with different letters are significantly different (p < 0.05) 
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Figure 4. Genotype-specific DEGs-metabolites correlation networks, emmer (A) and durum wheat 

(B). 
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Figure 5. Position of the central DEGs in emmer- and durum wheat-specific networks on the physical 

map. DEGs having putative annotations were shown with filled triangles. 
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