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Abstract
Motivation: A common strategy to infer and quantify in-
teractions between components of a biological system is to
deduce them from the network’s response to targeted pertur-
bations. Such perturbation experiments are often challenging
and costly. Therefore, optimising the experimental design is
essential to achieve a meaningful characterisation of biological
networks. However, it remains difficult to predict which com-
bination of perturbations allows to infer specific interaction
strengths in a given network topology. Yet, such a description
of identifiability is necessary to select perturbations that max-
imize the number of inferable parameters.
Results: We show analytically that the identifiability of net-
work parameters can be determined by an intuitive maximum
flow problem. Furthermore, we used the theory of matroids to
describe identifiability relationships between sets of parameters
in order to build identifiable effective network models. Collec-
tively, these results allowed to device strategies for an opti-
mal design of the perturbation experiments. We benchmarked
these strategies on a database of human pathways. Remark-
ably, full network identifiability was achieved with on average
less than a third of the perturbations that are needed in a ran-
dom experimental design. Moreover, we determined pertur-
bation combinations that additionally decreased experimental
effort compared to single-target perturbations. In summary, we
provide a framework that allows to infer a maximal number of
interaction strengths with a minimal number of perturbation
experiments.
Availability: IdentiFlow is available at github.com/
GrossTor/IdentiFlow.
Contact: nils.bluethgen@charite.de

Introduction
Rapid technological progress in experimental techniques allows
to quantify a multitude of cellular components in ever increas-
ing level of detail. Yet, to gain a mechanistic understanding of
the cell requires to map out causal relations between molecu-
lar entities. As causality cannot be inferred from observational
data alone (Pearl, 2009), a common approach is to observe
the system’s response to a set of localised perturbations (Sachs
et al., 2005) and reconstruct a directed interaction network
from such data. A recurring idea within the large body of ac-
cording network inference methods (Marbach et al., 2010) is to
conceive the system as ordinary differential equations and de-
scribe edges in the directed network by the entries of an inferred
Jacobian matrix (Gardner et al., 2003; Bonneau et al., 2006;
Tegner et al., 2003; Kholodenko, 2007; Bruggeman et al., 2002;
Timme, 2007). Such methods have been successfully applied
to describe various types of regulatory networks in different or-
ganisms (Ciofani et al., 2012; Arrieta-Ortiz et al., 2015; Lorenz
et al., 2009; Klinger et al., 2013; Brandt et al., 2019). They
are continuously improved, e.g. to reduce the effect of noise,
incorporate heterogeneous data sets, or allow for the analysis
of single cell data (Greenfield et al., 2013; Santra et al., 2018;

Klinger and Blüthgen, 2018; Santra et al., 2013; Kang et al.,
2015; Dorel et al., 2018) and have thus become a standard re-
search tool. Nevertheless, identifiability (Hengl et al., 2007;
Godfrey and DiStefano, 1985) of the inferred network parame-
ters within a specific perturbation setup has not yet been rig-
orously analysed, even though a limited number of practically
feasible perturbations renders many systems underdetermined
(De Smet and Marchal, 2010; Meinshausen et al., 2016; Bon-
neau et al., 2006). Some inference methods do apply different
heuristics, such as network sparsity, to justify parameter regu-
larisation (Gardner et al., 2003; Bonneau et al., 2006; Tegner
et al., 2003), or numerically analyse identifiability through an
exploration of the parameter space using a profile likelihood
approach (Raue et al., 2009). Yet, neither approach provides a
structural understanding on how parameter identifiability re-
lates to network topology and the targets of the perturbations.
However, such structural understanding is required to system-
atically define identifiable effective network models and to op-
timize the sequence of applied perturbations. The latter is of
particular interest because perturbation experiments are often
costly and laborious, which demands to determine the min-
imal set of perturbations that reveals a maximal number of
network parameters. To address these challenges, this work
derives analytical results that explain the identifiability of net-
work parameters in terms of simple network properties which
allow to optimize the experimental design.

Methods
We consider a network of n interacting nodes whose abun-
dances, x, evolve in time according to a set of (unknown) dif-
ferential equations

ẋ = f(x,p). (1)
The network can be experimentally manipulated by p different
types of perturbations, each represented by one of the p entries
of parameter vector p. We only consider binary perturbations
that can either be switched on or off. Without loss of general-
ity, we define f(x,p) such that the k-th type of perturbation
changes parameter pk from its unperturbed state pk = 0 to a
perturbed state pk = 1.

The main assumption is that after a perturbation the ob-
served system relaxes into stable steady state, ϕ(p), of Equa-
tion 1. Stability arises when the real parts of the eigenvalue
of the n×n Jacobian matrix, Jij(x,p) = ∂fi(x,p)/∂xj , evalu-
ated at these fixed points, x = ϕ(p), are all negative within the
experimentally accessible perturbation space (no bifurcation
points). This implies that J(ϕ(p),p) is invertible, for which
case the implicit function theorem states that ϕ(p) is unique
and continuously differentiable, and

∂ϕk

∂pl
= −

[
J−1S

]
kl
, (2)

where n × p Sensitivity matrix entry, Sij = ∂fi(x,p)/∂pj ,
quantifies the effect of the j-th perturbation type on node i.
Dropping functions’ arguments is shorthand for the evaluation
at the unperturbed state, x = ϕ(0) and p = 0.
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A linear response approximation
A perturbation experiment consists of q perturbations, each of
which involves a single or a combination of perturbation types,
represented by binary vector p, which forms the columns of the
p × q design matrix P . The steady states after each pertur-
bation, ϕ(p), are measured and their differences to the unper-
turbed steady state form the columns of the n × q global re-
sponse matrix R. Assuming that perturbations are sufficiently
mild, the steady state function becomes nearly linear within
the relevant parameter domain,

ϕk(p)− ϕk(0) ≈
p∑
l=1

∂ϕk

∂pl
pl. (3)

Replacing the partial derivative with the help of Equation 2
and writing the equation for all q perturbations yields

R ≈ −J−1S P. (4)

This equation relates the known experimental design matrix,
P , and the measured global responses, R, to quantities that
we wish to infer: the nodes’ interaction strengths, J , and their
sensitivity to perturbations, S.

A dynamic system defined by rates f̃(x,p) = W f(x,p),
with any full rank n× n matrix W , has the same steady states
but different Jacobian and sensitivity matrices, namely W J
and W S, as the original system, defined by Equation 1. It
is thus impossible to uniquely infer J or S from observations
of the global response alone, and prior knowledge in matrices
J and S is required to further constrain the problem. In the
following, we assume that prior knowledge exists about the net-
work topology, i.e. about zero entries in J , as they correspond
to non-existent edges. Likewise, we assume that the targets of
the different types of perturbations are known, which implies
known zero entries in S for non-targeted nodes. In line with
prior studies (Kholodenko, 2007), we also fix the diagonal of
the Jacobian matrix

Jii = −1.
Thus, for the i-th row of J we can define index lists µ̄i and µ̂i
to identify its known and unknown entries. The first indicates
missing edges or the self loop and the second edges going into
node i. These lists have |µ̄i| and |µ̂i| entries, respectively, with

|µ̄i|+ |µ̂i| = n. (5)

Analogously, for the i-th row of S we define index lists ν̄i and
ν̂i, with

|ν̄i|+ |ν̂i| = p, (6)
to report its unknown and known entries. These describe the
perturbations that do not target or respectively target node i.

We show in Supplementary Material S1 that Equation 4 can
be repartitioned to obtain a system of linear equations for each
row in J and S, exclusively in the

ui = |µ̂i|+ |ν̂i|

unknown parameters, which we collect in vector xi. Thus,
there is a ui × di matrix Vi, such that

xi = Viw + x̃i, ∀w ∈ Rdi , (7)

where x̃i is some specific solution to the equation system. We
further show in Supplementary Material S1 that Vi is a basis
of the kernel of

Ψi =
[
ŜiĴ
−1
i I|ν̂i|

S̄iĴ
−1
i 0|ν̄i|,|ν̂i|

]
, (8)

where I|ν̂i| and 0|ν̄i|,|ν̂i| are the identity and zero matrix of an-
notated dimensionality. The n×|µ̂i| matrix Ĵ−1

i consists of the

columns of (J−1)T that are selected by indices in µi. Finally,
|ν̄i|×n matrix S̄i and ν̂i×n matrix Ŝi shall be formed by tak-
ing rows of ST according to indices in ν̄i and ν̂i. These matrix
partitionings are demonstrated for a toy example in Supple-
mentary Figure S1. Furthermore, in Supplementary Material
S1 we derive the following expression for the solution space
dimensionality

di = |µ̂i| − rank
(
S̄iĴ
−1
i

)
.

Identifiability conditions
The system is underdetermined when di > 0. But independent
of di, a parameter is identifiable if the solution space is orthog-
onal to its according axis direction. This idea can be expressed
as algebraic identifiability conditions. Accordingly, we show
in Supplementary Material S1 that the unknown interaction
strength Jiµ̂ij

is identifiable if and only if

1 + rank(S̄iĴ−1
i\j ) = rank(S̄iĴ−1

i ), (9)

where Ĵ−1
i\j is matrix Ĵ−1

i with the j-th column removed. Fur-
thermore, the unknown sensitivity Siν̂ij

is identifiable if and
only if

rank
([

S̄i
Ŝji

]
Ĵ−1
i

)
= rank(S̄iĴ−1

i ), (10)

where Ŝji denotes the j-th row of matrix Ŝi. However, the
ranks depend on the unknown network parameters themselves
and can thus not be directly computed. Yet, we can show
how a reasonable assumption makes this possible and allows to
express the identifiability conditions as an intuitive maximum
flow problem.

First, we rewrite the identity J−1J = In as

[J−1]kl =
∑
m6=l

[J−1]km [J ]ml − δkl,

with δkl being the Kronecker delta (recall that Jll = −1). We
can view this equation as a recurrence relation and repeatedly
replace the [J−1]km terms in the sum. The sum contains non-
vanishing terms for each edge that leaves node l. Therefore,
each replacement leads to the next downstream node, so that
eventually one arrives at

[J−1]kl = l�k [J−1]kk, with

l�k =
∑

ω∈Ωl→k

|ω|−1∏
m=1

[J ]ωm+1 ωm ,

where the set Ωl→k contains elements, ω, for every path from
node l to node k, each of which lists the nodes along that
path. Strictly speaking, these elements are walks rather than
paths because some nodes will appear multiple times if loops
exist between l and k. In fact, with loops, Ωl→k contains
an infinite number of walks of unbounded lengths. But as
the real part of all eigenvalues of J are assumed negative, the
associated products of interaction strengths converges to zero
with increasing walk length.

To simplify our notation, we want to expand the network
by considering perturbations ν̄i as additional nodes, each with
edges that are directed towards that perturbation’s targets.
Furthermore, letting the interaction strength associated with
these new edges be given by the appropriate entries in S we
can rewrite the matrix product[

S̄iĴ
−1
i

]
kl

= ν̄ik� µ̂il [J−1]µ̂il µ̂il
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where µ̂il and ν̄il denote the l-th entry in µ̂i and ν̄i, respec-
tively. As every finite-dimensional matrix has a rank decom-
position, we can further write

S̄iĴ
−1
i = Υi Yi, (11)

where |ν̄i| × rank(S̄iĴ−1
i ) matrix Υi and rank(S̄iĴ−1

i ) × |µ̂i|
matrix Yi have full rank. Finding such a decomposition there-
fore reveals the rank of S̄iĴ−1

i . To this end, we propose

[Υi]kn = ν̄ik�yin, and [Yi]nl = yin� µ̂il [J−1]µ̂il µ̂il
,

where yin denotes the n-th component of a certain list of nodes
yi. In order for Equation 11 to hold, it must be possible to split
each path from any perturbation ν̄il to any node µ̂il into a sec-
tion that leads from the perturbation to a node in yi and a
subsequent section that leads from this node to µ̂il. For an
extended graph that includes an additional source node, with
outgoing edges to each perturbation in ν̄i, and an additional
sink node, with incoming edges from all nodes in µ̂i (see Fig-
ure 1B), yi thus constitutes a vertex cut whose removal dis-
connects the graph and separates the source and the sink node
into distinct connected components. Next, we want to show
that if yi is a minimum vertex cut, the rank of S̄iĴ−1

i equals
the size of yi. Because Equation 11 is a rank decomposition
this is equivalent to showing that the according matrices Υi
and Yi have full rank. To do so, we apply Menger’s theorem
(Menger, 1927), which states that the minimal size of yi equals
the maximum number of vertex-disjoint paths from the source
to the sink node. This also implies that each of these vertex-
disjoint paths goes through a different node of the vertex cut
yi. Recall that entries in Υi constitute sums over paths from
perturbation to vertex cut nodes, so that we could write

Υi = Ῡi + Υ̂i,

where Ῡi only contains the vertex-disjoint paths and Υ̂i the
sums over the remaining paths. As each of these vertex disjoint
paths ends in a different vertex cut node, any column in Ῡi can
contain no more than a single non-zero entry. Furthermore, as
a consequence of Menger’s theorem there are exactly |yi| non-
zero columns. Because these paths are indeed vertex disjoint
also no row in Ῡi has more than a single non-zero entry. Thus,
the non-zero columns are independent, showing that Ῡi has
full rank. The crucial assumption we want to make now is that
the values of the interaction strengths lie outside a specific
algebraic variety, which would render Ῡi + Υ̂i rank deficient.
This would for example be the case if for a given vertex disjoint
path there also is an alternative path whose associated product
of interaction strengths has the same magnitude as that of
the vertex disjoint path but opposite sign, making their sum
vanish. This effect corresponds to a perfectly self-compensating
perturbation. Most biological networks however cannot fine-
tune their interactions to such a degree that they could achieve
perfect self-compensation, which justifies this non-cancellation
assumption.

The same line of reasoning will demonstrate a full rank for
matrix Yi as well, which implies that indeed

rank(S̄iĴ−1
i ) = |yi|, (12)

where yi is a minimum vertex cut between source and sink
node. This equation has the crucial benefit that |yi| does not
depend on any unknown parameters and can be computed as
the maximum flow from source to sink node with all nodes
having unit capacity (Ahuja et al., 1993), as detailed in Fig-
ure 1B. This maximum flow problem can be solved in only
O
(
n1/2

∑n
i
(|µ̂i|+ |ν̂i|)

)
, as shown in Theorem 6.3 in (Even

and Even, 2012). More importantly though, it allows to ex-
press the algebraic identifiability conditions 9 and 10 in terms

of network properties, providing an intuitive relationship be-
tween network topology, perturbation targets and identifiabil-
ity. Specifically, Jiµ̂ij

is identifiable if and only if the removal of
the edge from node µ̂ij to the sink node reduces the maximum
flow of the network, see Figure 1C, and Siν̂ij

is identifiable if
the maximum flow does not increase when an additional edges
connects the source node with perturbation node ν̂ij , see Fig-
ure 1D.

Identifiability relationships
Often, network inference is an underdetermined problem
(De Smet and Marchal, 2010; Gross et al., 2019). Thus, to
achieve identifiable effective network models, certain parame-
ters have to be set to constant values, such that the remain-
ing parameters become uniquely determinable. This requires
an understanding of the identifiability relationships between
parameters, i.e. we need to know which parameter becomes
identifiable when other parameters are fixed. Supplementary
Equation 16 formally relates these relationships to the ranks
of certain linear subspaces of the range of V Ti as defined in
Equation 7. It shows that for each network node there is a
set of parameters amongst which identifiability relationships
can exist. Such a set contains those interaction strengths that
quantify the edges, which target the associated node, and the
associated node’s sensitivities to perturbations. Furthermore,
we show in Supplementary Material S2 that the identifiability
relationships of such parameter groups can be described as a
matroid (Whitney, 1935). Matroids can be defined in terms of
their circuits. Here, a circuit is a set of parameters with the
property that any of its parameters becomes identifiable after
fixing all of the others. Therefore, circuits describe all minimal
parameter subsets that could be fixed to obtain an identifiable
network.

We enumerated the set of circuits with an incremental
polynomial-time algorithm (Boros et al., 2003). This algorithm
requires an independence oracle that indicates linear depen-
dence of subsets of columns of V Ti . Supplementary Material
S2 shows that we can construct such an oracle by considering
linear dependence within the dual matroid, which amounts to
determining

rank
([
P̃T2 Ŝi
S̄i

]
Ĵ−1
i P1

)
.

Matrices P2 and P1 are truncated identity matrices defined in
Supplementary Equations 16 and 17. Yet, the crucial point of
this expression is that it has the same form as the left hand
side of Equation 12. We can therefore conveniently determine
it by solving a simple maximum-flow problem.

Supplementary Material S2 shows how to transform the cir-
cuits into cyclic flats. These provide a more convenient rep-
resentation of the identifiability relationships, which we clarify
at an example in the next section. Finally, certain scenarios
constrain the choice of fixable parameters, for example when
quantifying multiple isogenic cell lines (Bosdriesz et al., 2018).
Supplementary Material S2 describes a greedy algorithm that
takes such preferences into consideration.

Experimental design strategies
We assume that we are given a set of p perturbations, each
of which targets a different subset of nodes. From these we
want to select one or multiple perturbation sequences, accord-
ing to a certain strategy, s. By means of our understanding of
identifiability, we can determine ξi, the number of identifiable
edges after having performed the first i perturbations in such a
sequence. Our goal is to find a strategy for which this number
of identifiable edges increases fastest. Thus, as a measure of
optimality of s, we can define an identifiability area under the

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.02.03.931816doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.931816
http://creativecommons.org/licenses/by-nc-nd/4.0/


curve
1
p

p∑
i=1

〈ξi〉s
ξ

, (13)

where 〈ξi〉s denotes the average of ξi over the ensemble of s-
associated sequences, and ξ is the number of edges in the net-
work. For any network and set of perturbations this score
ranges between zero and one.

An obvious approach to design an optimal computational
strategy is to simply consider the entire set of possible se-
quences and to select the ones that maximize the identifia-
bility area under the curve. This is what we refer to as the
exhaustive strategy. Clearly, it quickly becomes computation-
ally intractable when the set of perturbations becomes large.

This is why we also propose strategies that build up the per-
turbation sequence in a stepwise manner and are therefore com-
putationally efficient. At each step, the next perturbation is
selected from a small set of perturbations that are deemed opti-
mal according to a chosen strategy. Thus, identifying perturba-
tion sequences in such a greedy optimisation approach amounts
to performing a graph search over perturbation sets. We thus
implemented a depth-first search to enumerate all strategy-
conforming sequences. This sequence set might still be exces-
sively large, when the number of possible perturbations is big.
Therefore, we also implemented the option to randomly sam-
ple a fixed number of conforming sequences. A dynamic pro-
gramming approach that avoids solving the same maximum-
flow problem multiple times optimizes the search performance.
Amongst the set of conforming strategies we eventually select
the ones with the best performance according to Equation 13
(also see Figure 3A).

We suggest three different strategies to determine the set of
the best next perturbations. The single-target approach se-
lects those perturbations that minimize the overall dimension-
ality of the solution space,

∑
i
di, amongst the perturbations

that maximize the number of identifiable edges. An alternative
idea that does not make use of solution space considerations,
is to assume that perturbations are the most informative when
they cause a response at a maximal number of nodes. Accord-
ingly, the naive strategy chooses perturbations that reach the
largest number of nodes per perturbation target. Finally, we
also want to allow for a combination of perturbations in a single
experiment. Thus, we propose a multi-target strategy, which
is similar to the single-target approach, except that it not only
considers a single but any combination of perturbations. How-
ever, the entire power set of perturbation combinations might
be too large to consider in practice. Therefore, we implemented
an option for the multi-target strategy to build up combina-
tions in a step-wise manner, where additional perturbations
are only added to a combination if the enlarged combination
increases performance. Additional details are provided in the
documentation of the IdentiFlow package.

Results

Identifiability and identifiability relationships
Perturbation experiments are frequently used to infer and
quantify interactions in biological networks. But whether a
given network edge can indeed be uniquely quantified depends
on the specific targets of the perturbations and the topology of
the network. Yet in order to build interpretable network mod-
els and guide experimental design, we need to elucidate this
identifiability status of the network parameters. Here, we view
a biological system as a weighted directed network, and assume
that perturbations are sufficiently mild to cause a linear steady
state response. This allows to relate the interaction strengths
between nodes (i.e. the entries in the Jacobian matrix J) and

1 2
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Figure 1: A maximum flow problem determines the identifiability
of interaction strengths and perturbation sensitivities when recon-
structing a network from perturbation data. (A) Example network
with three perturbations (yellow squares) to illustrate the algo-
rithm. (B) The corresponding flow network to determine the iden-
tifiability of the edges into node 3 and the sensitivity of node 3 to
perturbations. A path carrying the maximal flow of one is denoted
in red (note that it is not unique). (C) The interaction strength
between a given node and node 3 is identifiable if and only if the
maximum flow is reduced after removing that node’s edge to the
sink node. In this example, there are alternative max-flow paths
that re-establish a unit-flow after removal of the according edges.
Thus, the respective interaction strengths are non-identifiable. (D)
Similarly, the sensitivity of node 3 to perturbation 3 is identifiable,
if and only if the depicted extension of the flow network does not
increase the maximum flow. In this example, the maximum flow
is increased by one, again revealing non-identifiability. Note that
such flow representations provide an intuitive understanding on
how alterations in the network or perturbation setting affect iden-
tifiability. For example, it is obvious that if the toy model would
not contain an edge from node 3 to 4, the edge from 2 to 3 would
become identifiable.

the sensitivity to perturbations (i.e. the entries in the Sensi-
tivity matrix S) to the measured responses (Equation 4), an
approach that is widely known as Modular Response Analysis
(Kholodenko, 2007). We derived analytical identifiability con-
ditions (Equations 9 and 10) that describe whether this relation
allows to uniquely determine the network parameters for the
given network topology and the experimental setting. How-
ever, these conditions can not be directly evaluated, as they
depend on the (unknown) network parameters themselves. But
instead, they can be reformulated as intuitive maximum flow
problems, if one disregards singular conditions of self-cancelling
perturbations.

The derivation and details are given in the Methods section
but briefly, to determine the identifiability of either the inter-
action strength from node j to node i, or the sensitivity of node
i to perturbation p, the following flow network is considered:
The original network is extended by (i) adding a node for each
perturbation that does not target node i and connecting it to
the respective perturbation’s target(s), (ii) adding a “source”
node that connects to all those perturbation nodes, and (iii)
having all nodes that target node i connect to an additional
“sink” node, see Figure 1B. Furthermore, all nodes (except
source and sink) and all edges have a flow capacity of one.
To reveal identifiability, we need to determine the network’s
maximum flow from source to sink. This is a classic problem
in computer science, which we solve using the Edmonds-Karp
algorithm (Dinic, 1970; Edmonds and Karp, 1972) as imple-
mented in the Networkx package (Hagberg et al., 2008). Then,
the interaction strength from node j to node i is identifiable
if and only if the removal of the edge from node j to the sink
node reduces the maximum flow, see Figure 1C. Similarly,
node i’s sensitivity to perturbation p is identifiable if and only
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Figure 2: (A) An example network with three perturbations
(yellow squares), where nodes 4 and 5 are associated with non-
identifiable parameters (grey). (B) Their identifiability relation-
ships are represented by the lattices of cyclic flats of rank r. Each
cyclic flat consists of the annotated elements in addition to ele-
ments from its preceding cyclic flats. All parameters of a cyclic
flat with rank r become identifiable if at least r independent flat
parameters are fixed.

if the maximum flow does not increase after linking the source
to an additional node that is in turn connected to all targets
of perturbation p, see Figure 1D.

Often, experimental settings do not allow determining all un-
known parameters (De Smet and Marchal, 2010; Gross et al.,
2019). Nevertheless, they constrain the solution space such
that after fixing one or multiple parameters, others become
identifiable. We found that such identifiability relationships
can be described by matroids, which are combinatorial struc-
tures that generalize the notion of linear dependence (see Meth-
ods). This is demonstrated for an example perturbation exper-
iment on the network displayed in Figure 2A.

Each node is associated with a set of parameters amongst
which identifiability relationships can exist. Such a set con-
tains those interaction strengths, which quantify the edges that
target the associated node, and that node’s sensitivities to per-
turbations. Here, nodes 4 and 5 are associated with sets of
non-identifiable parameters. For example for node 5, these are
J56 and S53. We represent the matroid for such a parameter
set as a hierarchy (lattice) of cyclic flats, as show in Figure 2B.
A cyclic flat is a set of parameters with an associated rank r. It
has the property that all of its parameters become identifiable,
if amongst them at least r independent parameters are fixed.
Parameters are independent if none of them becomes identifi-
able after fixing the others. For node 5, parameters J56 and S53
only form a single cyclic flat with r = 1, and thus fixing either
one parameter makes the other identifiable. The identifiability
relationships among the six parameters associated with node 4
are more complex. For example, J43 and S41 form a cyclic flat
with r = 1 and thus fixing one, fixes the other. Yet together
with J45 and S43, they form a cyclic flat with r = 2, thus
fixing e.g. S41 and S43 will allow unique determination of J43
and J45. In contrast, fixing J43 and S41 does not render any
other parameter identifiable because they are not independent.
This illustrates how the matroid description allows to gener-
ate effective models, i.e. models where a minimum number of
parameters has to be set to fixed values to allow for a unique
estimation of all other parameters. Importantly, the lattice of
cyclic flats can be derived without specifying unknown param-
eters by solving a sequence of maximum flow problems (see
Methods).

Collectively, our results provide a concise framework to al-
gorithmically determine identifiability of network parameters
and to construct identifiable effective networks when the ex-
perimental setting does not suffice to uniquely determine the
original network structure.

Experimental design
Next, we applied our identifiability analysis to optimize ex-
perimental design, i.e. to minimize the number of perturba-
tion experiments that is required to uniquely determine a net-
work’s interaction strengths. For this, we designed the fol-
lowing strategies to determine an optimal sequence from a set
of available perturbations: The exhaustive strategy considers
all possible sequences and selects the best performing amongst
them. As this approach entails a prohibitive computational
effort for larger networks, we also designed approaches that se-
lect perturbation sequences in a step-wise manner: First, the
single-target strategy chooses the next perturbation such that
it increases the number of identifiable edges most. Second, the
multi-target strategy is similar to the single-target strategy ex-
cept that it not only considers a single but any combination of
perturbations. We then compared these strategies to a naive
strategy that does not use our identifiability analysis. Rather,
it chooses perturbations first that cause a response at a larger
number of nodes (see Methods for details).

We first scrutinised the proposed experimental design strate-
gies on the example network shown in Figure 2. We defined
six different types of perturbations, each of which targets a
(different) single node, or any combination of such for the
multi-target strategy. Figure 3A shows how the number of
identifiable edges increases with the number of performed per-
turbations for each strategy. A single strategy might propose
multiple sequences, as described in Methods. Accordingly, Fig-
ure 3A shows the performance distribution over all such con-
forming sequences. In practice, we would only select the best
performing sequence amongst them. Nevertheless, the depicted
distributions are informative because for larger networks we
can no longer enumerate all but only a (random) subset of
conforming sequences.

When comparing the methods, we found that on average
all strategies outperform randomly chosen sequences (“all se-
quences” distribution). Moreover, the “naive” strategy that
did not use our framework mostly required all six perturba-
tions to fully identify all parameters, whereas the single-target
and exhaustive strategies only needed five, and the multi-target
strategy only four perturbations. Figure 3B and Figure 3C
display all perturbation sequences conforming to the single-
target strategy, and one sequence conforming to the multi-
target strategy respectively, and illustrate which network edge
becomes identifiable at which step in the sequence.

To systematically analyse if and how our approach improves
experimental design, we benchmarked the different strategies
on all 267 nontrivial human KEGG (Kanehisa et al., 2019)
pathways, ranging from 5 to 120 nodes (see Supplementary
Material S3 for details). Again, we assumed that perturbations
can target (all) single nodes. For each network, we sampled 10
conforming sequences per strategy and compared against the
performance of 10 randomly chosen sequences. As a perfor-
mance measure, we considered the number of identified pa-
rameters as a function of the number of perturbations and
computed a normalised area under the curve, as defined in
Equation 13. Figure 4A shows the result of this benchmark,
and confirms the trend already observed for the example in
Figure 3A: Compared to choosing perturbations randomly, the
naive strategy improved identifiability. Performance was fur-
ther increased when we applied our single-target strategy, yet
the multi-target strategy clearly performed best. An exhaus-
tive enumeration of all sequences is not feasible for all KEGG
networks. However, we found for a subset of small networks
that there is no performance difference between the exhaus-
tive and the single-target strategy, as shown in Supplementary
Figure S4A.

Furthermore, we determined the average number of pertur-
bations that is required for full network identifiability and com-
puted the fraction between a given strategy and the random
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Figure 3: (A) The same network topology as in Figure 2 was subjected to a set of perturbations that target each node individually. Shown
are distributions of numbers of identifiable edges for different experimental design strategies and an increasing number of perturbations.
(B) All optimal (exhaustive) single-target perturbation sequences and (C) one multi-target sequence.

sequences, see Figure 4B. We found that the average num-
ber of required perturbations can be reduced to less than one
third or even less than a quarter, when using a single-target or
multi-target strategy, respectively.

We next investigated which network properties led to a per-
formance increase using our strategies. Intuitively, perturba-
tions might be more informative if their response propagates
to large parts of the network. We therefore hypothesised that
a careful experimental design is particularly beneficial when
networks contain many isolated nodes with little connection
to the rest of the network because, in contrast to a random
choice, a good strategy could then avoid perturbing such non-
informative targets. On the contrary, the sequence of pertur-
bations is irrelevant in the extreme case of a fully connected
network. To investigate this hypothesis we defined a network’s
isolation score as

1−
n∑
ij

πij

n (n− 1)
, with πij =

{
1, ∃ path i→ j

0, @ path i→ j
. (14)

Figure 4C shows that indeed the isolation score negatively cor-
relates with the previously defined fraction of perturbations
required for full network identifiability. Furthermore, we also
observed a positive correlation between isolation score and the
difference in the identifiability AUC between non-random and
random strategies, as shown in Supplementary Figure S4B.
This suggests that indeed our experimental design strategies
increase their performance with increasing network isolation.

When response signals converge at a node, the individual
contribution from each incoming edge can not be distinguished.
Thus, the advantage of a multi-target perturbation to poten-
tially track signal propagation through larger parts of the net-
work is counter-balanced if it leads to more convergent signal
propagation. This is prevented when the (combined) pertur-
bations target isolated parts of the network. Therefore the

strongest correlation in Figure 4C is found for the multi-target
strategy because with higher isolation score we can expect to
find more such isolated subnetworks. And indeed, Figure 4D
shows that the multi-target strategy typically suggest combi-
nations of multiple single target perturbations, especially in
larger networks.

In summary, we have developed an algorithmic approach to
determine structural identifiability for a given network. This
approach allows to derive experimental design strategies that
drastically reduce experimental effort in perturbation stud-
ies. In particular, the multi-target strategy proved most effi-
cient. Potentially, this finding has practical relevance because
in many experimental contexts it easy to combine perturba-
tions, e.g. by pooling ligands or inhibitors.

Discussion

We have shown analytically that parameter identifiability in
linear perturbation networks can be described as a simple
maximum flow problem (summarised in Figure 1). This in-
tuitive result not only explains how to achieve fully identi-
fiable effective network models (Figure 2), but also enables
us to optimize the design of perturbation experiments (Fig-
ure 3). As a test case, we examined all human KEGG path-
ways and found that our method typically allows to cut down
the number of perturbations required for full identifiability
to one fourth compared to choosing perturbation targets ran-
domly (Figure 4). We provide a python implementation of
our results github.com/GrossTor/IdentiFlow, which allows to
determine identifiability, perform matroid computations that
display identifiability relationships between parameters, and
optimize experimental design. The package relies on standard
maximum flow algorithms from the Networkx package (Hag-
berg et al., 2008).
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Figure 4: Performance of different experimental design strategies
on 267 human KEGG pathways. (A) Identifiability AUC, defined
as area under the number of identified nodes vs. number of per-
turbation curve, see Eqn. 13, (B) For each network and strategy,
the average number of perturbations required for full identifiabil-
ity is shown relative to the average number required for a random
strategy. (C) The fraction of required perturbations correlated
against the isolation score of a network (Eqn. 14), r : Spearman’s
rank correlation. (D) The fraction of multi-target perturbations
with a specific number of targets to all multi-target perturbations
(experiments) in KEGG networks of the annotated size range.

Technically, it would be possible to cope with non-
identifiabilities numerically, as was done previously (Gardner
et al., 2003; Bonneau et al., 2006; Tegner et al., 2003; Dorel
et al., 2018) or even through the analysis of example networks.
For the latter, we could set unknown parameters to random val-
ues and numerically compute the according ranks in the iden-
tifiability conditions Equation 9 and Equation 10. The idea
is that a random example system is representative of all sys-
tems with the same topology and perturbation set-up. This ap-
proach would require to define certain thresholds to detect rank
deficiency and the validity of the non-cancellation assumption.
Even though it is therefore not guaranteed to work in general,
we would still expect it to correctly determine a parameter’s
identifiability in most cases. However, the crucial benefit of
the maximum flow perspective is that identifiability can be in-
tuitively understood in relation to the network topology and
the targets of the perturbations. This means that instead of
requiring numerical procedures on a case by case basis, we can
directly see how the maximum flow depends on the network
topology and perturbation set-up. This provides a comprehen-
sive overview on which edges become identifiable under which
perturbations. For one, this permits a straightforward optimi-
sation of the experimental design, as shown before. But even
in a situation where the set of perturbations is a priori fixed
because of experimental constraints, our approach concisely re-
veals which network topologies are in principle amenable to a
meaningful analysis. Thereby, it maps out the range of bi-
ological questions that are actually answerable with a given
experimental set-up.

It is central to our analysis to assume mild perturbations
that induce a linear steady state response. This also implies
that the rates in Equation 1 depend linearly on the magnitude
of the other nodes and the perturbations, as shown in Supple-
mentary Material S1. But clearly, biological systems generally
break linearity assumptions in varying degrees, which bears
asking how useful our description is. In principle, we could
expand the steady state function Equation 3 to higher orders
and attempt to also infer nonlinear rate terms, which are prod-
ucts of different node and perturbation magnitudes. However
such products no longer have any meaningful network inter-
pretation, as they cannot be reasonably assigned to any edge.
Therefore we argue that the linearity assumption is essential
to derive a useful effective network description, if we choose
to interpret the biological systems in terms of ordinary dif-
ferential equations. Thus the identifiability analysis presented
here stays valid even when the underlying system is highly
nonlinear. On the downside, the biological meaning of inter-
action strengths becomes increasingly obscure the more the
system violates the linearity assumption (Prabakaran et al.,
2014). Also, our assertions no longer hold if nonlinearities vio-
late the non-cancellation assumption. Especially combinations
of perturbations, as suggested by the multi-target experimen-
tal design strategy, might push the system into saturation and
thus break our analysis. We therefore need to carefully consider
such biological constraints as well.

Finally, we want to stress that our analysis solely describes
structural identifiability. In contrast, practical identifiability
concerns situations where parameters cannot be adequately
determined because of a limited amount or a poor quality
of experimental data (Raue et al., 2011). This means that
even when the identifiability condition for a specific parameter
holds, it does not necessarily mean that its value can be reliably
estimated. The maximum flow approach is currently agnos-
tic to information about noise that could potentially render a
structurally identifiable parameter practically non-identifiable.
Similarly, it cannot handle situations where a measurement of
a node’s steady state response is not only noisy but entirely
missing. As this is a common challenge in novel single cell per-
turbation studies (Jaitin et al., 2016; Datlinger et al., 2017),
we consider an according generalisation of our analysis as an
important line of future research.
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Bernards, R., Blüthgen, N., and Wessels, L. F. A. (2018). Com-
parative Network Reconstruction using mixed integer program-
ming. Bioinformatics, 34(17), i997–i1004.
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Robust network inference using response logic. Bioinformatics,
35(14), i634–i642.

Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network
structure, dynamics, and function using networkx. Technical
Report LA-UR-08-05495; LA-UR-08-5495, Los Alamos National
Lab. (LANL), Los Alamos, NM (United States).

Hengl, S., Kreutz, C., Timmer, J., and Maiwald, T. (2007). Data-
based identifiability analysis of non-linear dynamical models.
Bioinformatics, 23(19), 2612–2618.

Jaitin, D. A., Weiner, A., Yofe, I., Lara-Astiaso, D., Keren-Shaul,
H., David, E., Salame, T. M., Tanay, A., van Oudenaarden,
A., and Amit, I. (2016). Dissecting Immune Circuits by Link-
ing CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell,
167(7), 1883–1896.e15.

Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tan-
abe, M. (2019). New approach for understanding genome varia-
tions in KEGG. Nucleic Acids Res., 47(D1), D590–D595.

Kang, T., Moore, R., Li, Y., Sontag, E., and Bleris, L. (2015).
Discriminating direct and indirect connectivities in biological
networks. Proc. Natl. Acad. Sci. U.S.A., 112(41), 12893–12898.

Kholodenko, B. N. (2007). Untangling the signalling wires. Nat.
Cell Biol., 9(3), 247–249.
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