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Abstract 23 

Alternative RNA splicing provides an important means to expand metazoan transcriptome 24 

diversity. Contrary to what was accepted previously, splicing is now thought to predominantly 25 

take place during transcription. Motivated by emerging data showing the physical proximity of 26 

the spliceosome to Pol II, we surveyed the effect of epigenetic context on co-transcriptional 27 

splicing. In particular, we observed that splicing factors were not necessarily enriched at exon 28 

junctions and that most epigenetic signatures had a distinctly asymmetric profile around known 29 

splice sites. Given this, we tried to build an interpretable model that mimics the physical layout 30 

of splicing regulation where the chromatin context progressively changes as the Pol II moves 31 

along the guide DNA. We used a recurrent-neural-network architecture to predict the inclusion 32 

of a spliced exon based on adjacent epigenetic signals, and we showed that distinct spatio-33 

temporal features of these signals were key determinants of model outcome, in addition to the 34 

actual nucleotide sequence of the guide DNA strand. After the model had been trained and tested 35 

(with >80% precision-recall curve metric), we explored the derived weights of the latent factors, 36 

finding they highlight the importance of the asymmetric time-direction of chromatin context 37 

during transcription. 38 

 39 

Author Summary 40 

In humans, only about 2% of the genome is comprised of so-called coding regions and can give 41 

rise to protein products. However, the human transcriptome is much more diverse than the 42 

number of genes found in these coding regions. Each gene can give rise to multiple transcripts 43 

through a process during transcription called alternative splicing. There is a limited 44 

understanding of the regulation of splicing and the underlying splicing code that determines cell-45 
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type-specific splicing. Here, we studied epigenetic features that characterize splicing regulation 46 

in humans using a recurrent neural network model. Unlike feedforward neural networks, this 47 

method contains an internal memory state that learns from spatiotemporal patterns – like the 48 

context in language – from a sequence of genomic and epigenetic information, making it better 49 

suited for characterizing splicing. We demonstrated that our method improves the prediction of 50 

spicing outcomes compared to previous methods. Furthermore, we applied our method to 49 cell 51 

types in ENCODE to investigate splicing regulation and found that not only spatial but also 52 

temporal epigenomic context can influence splicing regulation during transcription. 53 

 54 

Introduction 55 

Alternative splicing of pre-messenger RNA plays an integral role in diversifying the 56 

transcriptome. This process is more pervasive in higher eukaryotes and is estimated to affect 57 

approximately 95% of protein-coding genes in humans [1,2]. Accurate characterization of the 58 

process by which multiple functional protein products are produced from a single gene is crucial 59 

for understanding the function of the transcriptome [3]. 60 

Recent discoveries have revealed that splicing occurs predominantly during transcription in 61 

humans [4–8]. Nascent RNA is almost immediately spliced upon transcription [9,10] and introns 62 

are mostly spliced out during transcript elongation. This timing suggests that the recruitment of 63 

splicing factors and spliceosome assembly, detection of exon-intron boundaries, and modulation 64 

of alternative splicing must occur at the same time scale as transcription [9]. 65 

Co-transcriptional splicing indicates a key observation that splicing takes place progressively in 66 

the direction of RNA transcription, rather than processed simultaneously after transcription. As a 67 

result, the contexts of guide DNA, nascent RNA, and its immediate folded structure 68 
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progressively change as RNA polymerase II (Pol II) moves along the guide DNA strand [11] and 69 

may influence splicing regulation. Furthermore, co-transcriptional splicing signifies the physical 70 

proximity of the spliceosome assembly to Pol II and other transcriptional machinery [9]. Pol II 71 

physically interacts with nucleosomes and its histone modifications around them, modulating the 72 

transcription rate [12].  73 

DNA sequence alone may not contain sufficient information to process alternative splicing 74 

deterministically [13]. Djebali et al. [4] and many others have shown that there is an enrichment 75 

of chromatin marks around spliced exons, suggesting the role of epigenetic modifications during 76 

context-dependent modulation of alternative splicing [14,15]. For example, exonic boundaries 77 

are characterized by increased levels of nucleosome density and positioning [16–18], DNA 78 

methylation [19,20], and strong enrichment of specific histone modifications including 79 

H3K36me3, H3K79me1, H2BK5me1, H3K27me1, H3K27me2, and H3K27me3 [16,17,21–23]. 80 

In addition, a recent genome-wide survey of alternative splicing showed that DNA methylation 81 

can either enhance or silence exon recognition in a context-dependent manner [24]. Furthermore, 82 

studies have shown that there is significant regulatory crosstalk between histone modifications 83 

during transcriptional elongation [12]. 84 

Despite many efforts to characterize the splicing regulatory code both experimentally and 85 

computationally, we have yet to understand how the cell type-specific epigenomic context is 86 

utilized during co-transcriptional splicing. Previous computational methods on splicing have 87 

largely focused on discovering novel splice junctions based on RNA sequencing (RNA-seq) 88 

alignments [25,26], utilizing machine learning approaches [27,28] including deep neural 89 

networks [29]. Only a limited set of tools can model splicing regulation based on genomic 90 

sequences and select RNA features [30–32]. Moreover, studies on splicing regulation have 91 
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focused heavily on identifying mutations that land within splice sites (SSs), cis-acting splicing 92 

regulatory elements, and trans-acting splicing factors [30,33]. The extent, nature, and effects of 93 

the epigenetic context in splicing regulation remain unsolved. 94 

In this study, we propose a new computational approach to characterize the role of epigenetic 95 

modifications during co-transcriptional splicing. To build an interpretable model, we adopted a 96 

recurrent neural network (RNN) architecture, which to some degree resembles the physical 97 

characteristics of co-transcriptional splicing (Figure 1). The model can learn from a temporal 98 

sequence of epigenetic contexts, similar to how epigenetic contexts progressively change as Pol 99 

II moves forward along the guide DNA strand during co-transcriptional splicing. The RNN 100 

model allows us to predict the inclusion of exons based on adjacent DNA sequences and 101 

epigenetic modifications. Moreover, the physical resemblance of the model allows us to interpret 102 

the trained model weight parameters and explore the spatio-temporal links between the guide 103 

DNA elements and the surrounding epigenetic modifications. In summary, we leveraged the 104 

mechanistic properties of co-transcriptional splicing to build an interpretable splicing model, and 105 

we explored the trained model to understand the underlying characteristics of the epigenetic 106 

context during co-transcriptional splicing. 107 

 108 

Results 109 

We first explore the epigenetic data context around known splice sites in depth. We then describe 110 

the model and rationale for applying the specific architecture. Finally, we use the model to 111 

further examine the effect of epigenetic context during co-transcriptional splicing. 112 

 113 

Distinct epigenomic signatures characterize splicing regulation 114 
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We studied the epigenetic context of alternative splicing by examining the enrichment of 115 

multiple histone modifications and DNA methylations around the exon-intron boundary. We 116 

mapped the epigenomic signatures around SSs of cassette exons at a base-pair resolution. We 117 

aggregated multiple histone modifications across 49 cell types in ENCODE and observed their 118 

enrichment as a function of distance from SSs (Figure 2A, B, Supplementary Figure 1, 2A, B). 119 

We found the most interesting trend within 100 bp of SSs for both the 3’ acceptor and 5’ donor. 120 

A strong enrichment pattern of H3K36me3 and H3K27me3 appeared around the exon boundary. 121 

Although studies have demonstrated a role for H3K36me3 in defining the exon-intron boundary 122 

[22,34], the dynamic interplay between other histone modifications has been overlooked. From 123 

the 3’ acceptor, peak enrichment occurred around 100 bp into the exon; at the 5’ donor, it was 124 

closer, at around 50 bp into the exon. We also observed a slight depletion of H3K27ac and 125 

H3K4me3 marks within 100 bp of the intron at the 3’ acceptor SS but not within the 5’ donor SS. 126 

Using Mann-Whitney-Wilcoxon tests, we confirmed that the relative elevation and depletion of 127 

epigenetic enrichment at the genomic segment containing the branching site (segment C) 128 

compared to the surrounding exons (Figure 2B, Supplementary Figure 2A, B). As this region 129 

contains a branch site, these histone marks may indicate a role in defining the branch point. 130 

 131 

Enrichment of RNA-binding factors around splice sites 132 

Alternative splicing regulation is an elaborate process that requires precise coordination of 133 

multiple splicing factors and enzymes. Studies have shown that RNA-binding proteins (RBPs) 134 

facilitate splicing regulation during transcription [35]. For example, the serine/arginine-rich 135 

splicing factor family member SRSF7 binds to poised exons and promotes the inclusion rate 136 

[36][37]. Another member of the serine/arginine-rich splicing factor family, U2AF1, is 137 
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responsible for mediating the binding of U2 small nuclear ribonucleoprotein to the pre-mRNA 138 

branch site [38]. The recent release of the ENCODE project included enhanced CLIP 139 

experiments (eCLIP) datasets that span 112 RBPs from K562 and HepG2 cell types. As 140 

sequence-specific RBPs have been shown to facilitate splicing regulation in a context-specific 141 

manner [15], we investigated their spatial relationship to both the 5’ donor and 3’ acceptor 142 

splicing sites. Specifically, we investigated the enrichment of splicing factors (n=29) and their 143 

relative distance to these sites. We observed that, on average, splicing factors show preferential 144 

binding to the intronic side of the splicing site in both 3’ acceptor and 5’ donor SSs 145 

(Supplementary Figure 2C). Furthermore, we found that splicing factors may show slightly 146 

different patterns in their spatial binding preferences. In particular, hnRNP A1 and SRSF1 were 147 

enriched in the intronic region outside 3’ SSs whereas SF3B4 and hnRNP C were enriched in the 148 

exonic region (Figure 2C). At 5’ SSs, RBM22 and PRPF8 were bound at the exonic end, which 149 

has been shown to be critical for splicesome assembly [39,40].  150 

 151 

Correlating epigenomic signatures to exonic expression 152 

We tested whether histone modifications have any effect on inclusion and expression of 153 

alternative exons. We observed a trend where enrichment of H3K36me3 at the exon-intron 154 

boundary was positively correlated with exonic expression, whereas H3K27me3 marks showed 155 

the opposite trend (Figure 3A, B, Supplementary Figure 3). Compared to excluded or nominally 156 

expressed alternative exons, highly expressed spliced exons had statistically significant 157 

enrichment of H3K36me3 and depletion of H3K27me3 at their exon-intron boundary (Figure 158 

3C). The contrasting trend and the correlation of these histone methylations to exonic expression 159 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.02.03.932251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932251
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggest that the splicing code may be directly or indirectly encoded within the epigenomic 160 

context.  161 

 162 

Clustering biosamples based on splicing patterns 163 

Previous studies have shown that various epigenomic marks are correlated across similar tissues 164 

and cell types [41]. It is now widely accepted that the transcriptional regulatory circuitry of a 165 

particular cell type is reflected in its epigenetic landscape. To explore the potential linkage 166 

between epigenetic regulation and tissue-specific splicing, we examined splicing patterns across 167 

49 ENCODE biosamples. Based on a similarity of percent-splice-in (PSI) values for all coding 168 

exons (n=185,405), we clustered biosamples into five categories using hierarchical clustering 169 

(Figure 3D). Splicing patterns were highly correlated among tissue types from the same cell-of-170 

origin, reproducing similar clustering results based on epigenetic marks. For example, blood-171 

lineage cell types formed cluster C2 whereas brain and neural cells were clustered in cluster C4. 172 

Moreover, we observed that cancerous cell lines cluster together in cluster C3. 173 

 174 

In addition to using the PSI similarity matrix to cluster cell types into categories, we can project 175 

the cells onto a low-dimensional cell space using principal component analysis (PCA). We 176 

measured alternative splicing patterns in terms of exonic expression level (fragment per kilobase 177 

per million reads mapped, FPKM) across diverse ENCODE cell types and examined how cells 178 

are placed in the context of others. Interestingly, we observed that cancer-related cell lines were 179 

located proximal to each other in the PCA cell space (Supplementary Figure 4). 180 

 181 

Modeling splicing regulation: key characteristics of an RNN architecture 182 
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To investigate the latent representation of splicing instruction encoded within the epigenomic 183 

context, we aimed to construct a predictive model of splicing. We opted for an RNN architecture, 184 

which has proven successful in various sequential information processing and prediction tasks 185 

such as natural language processing and translation [42–44], to explore the contribution of the 186 

epigenomic context to the regulation of alternative splicing. 187 

We start by describing a simple RNN, which shares many of the features we intend to model. A 188 

simple RNN is made of many recurrent neurons that are sequentially linked to each other. A 189 

neuron at specific time point � is influenced by previous time point � � 1, combining some 190 

relationship of the current input �� with the previous hidden state ����.  191 

 192 

�� � ������, ��
 

 193 

where �� is hidden state at time � and �� is input variable at time �. If we suppose the activation 194 

function as a hyperbolic tangent for a simple RNN, the state at time � can be represented as 195 

 196 

�� � tanh���
����� � ��

��� � b
 

 197 

where �� and �� are the weight of the hidden state and input variable, respectively, and b is the 198 

bias vector. The output can be expressed in terms of an output weight matrix, ��, and a hidden 199 

state at time �, ��: 200 

 201 

��� � S���
���� 

 202 
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where � is sigmoid function: 203 

 204 

���
 �
��

�� � 1
 

 205 

This time-dependency allows us to explore the complex contextual relationship between features. 206 

In particular, we adopted the long short-term memory (LSTM) [45] model to describe an RNN 207 

architecture. In principal, a simple RNN allows us to model a time-dependent task from 208 

sequential data. However, in practice, the simple model suffers from the problem of vanishing 209 

gradients, where the gradients responsible for updating weights with respect to the partial 210 

derivative of error function becomes negligible in a long sequence and hampers the model from 211 

learning long-term time dependencies. Therefore, we used both LSTM and gated recurrent unit 212 

(GRU), which have many of the same simple intuitive properties of the simple RNN but allow 213 

learning from longer sequences. The LSTM is an extension of the same idea that includes more 214 

sophisticated gates, which allows the cell to retain long-term memory between cells while 215 

avoiding the problem of vanishing gradients when training the network. The specific equations 216 

for the LSTM model we adopted is shown in the Methods. 217 

 218 

Modeling splicing regulation: How the RNN architecture fits the problem 219 

The rationale for applying an RNN to our model is that (1) an RNN is optimized for processing 220 

sequential information like genomic sequences and epigenomic profiles along genomic 221 

coordinates, (2) an RNN has a time-direction resembling how RNA is transcribed by RNA 222 

polymerase in the 5’ to 3’ direction, (3) temporal memory cells of an RNN allow the model to 223 

learn about complex context-dependent relationships among epigenomic features, such as the 224 
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influence of features and input seen at �-1 on the neural cell at time �, and (4) an RNN is very 225 

flexible with the type of input and output data and therefore can easily integrate heterogeneous 226 

sequential information. Not surprisingly, researchers recently have applied RNN models to the 227 

area of genomics to predict non-coding DNA function [46] and to detect exon junctions [47]. 228 

Moreover, since the mechanics of the RNN calculation is somewhat parallel to the actual spatial 229 

and temporal dependency found in co-transcriptional splicing, the overall results from the trained 230 

model are more readily interpretable. The data processing and implementation of the predictive 231 

models are collected in a package named Epigenome-based Splicing Prediction using Recurrent 232 

Neural Network (ESPRNN; available at https://github.com/gersteinlab/esprnn). Using our 233 

method, we attempted to decipher context-dependent effects of various epigenomic features on 234 

splicing for both canonical (e.g., dinucleotide GT for 5’ donors and AG for 3’ acceptors) and 235 

non-canonical SSs. Our model is especially useful since splicing signals are not only enriched at 236 

the splice site but often found up and downstream of splice sites. 237 

 238 

Modeling splicing regulation: Initial evaluation 239 

We used ESPRNN to predict alternate usages of cassette exons (inclusion or exclusion of exons), 240 

the most common form of alternative splicing events [48], using DNA sequences and 241 

epigenomic signals adjacent to SSs (Figure 4A). We used the exon definition of splicing, which 242 

is considered to be the dominant mechanism in higher eukaryotes [49]. Our model had an 243 

average F1 score (harmonic mean of the precision and recall) of 0.8472 for the LSTM-based 244 

model across cell types [0.8757 for the GRU-based model] using five core histone modification 245 

tracks (Figure 4B). The average F1 score marginally increased to 0.8573 when using 17 histone, 246 

chromatin accessibility, DNA methylation, and nucleosome density profiles. 247 
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We performed the splicing prediction with or without the RBP profile and measured how much 248 

predictive performance is gained from additional information. We observed a marginal 249 

improvement in predictive performance when RBP binding profiles were added to the baseline 250 

model (measured in improvement of F1 score from 0.84 to 0.86) (Supplementary Figure 9A, B). 251 

This suggests RBP binding information may be redundant and already represented in the 252 

epigenetic features. We also compared prediction results from normal cell types to those from 253 

cancerous cell lines. Since previous studies on cancer-specific alternative splicing [50,51] have 254 

suggested potential linkage of aberrant splicing events to the disease risk [52–55], we expected 255 

to see differences in splicing regulation between normal and cancerous cell types. However, we 256 

did not observe a significant difference in prediction performance between normal and cancerous 257 

cell types (average F1 score for normal biosamples: 0.8465, cancerous biosamples: 0.8765). We 258 

also cross-tested a model trained from one cell type to another. After we fit our model to one cell 259 

type, we transferred the fitted weights and model parameters to predict splicing on other cell 260 

types. When we tested between cell types from the same cell-of-origin (e.g., train on adult liver 261 

model and test on HepG2 data, train on lung model and test on A549 data), we did not observe a 262 

significant difference in predictive performance. However, we observed a moderate reduction in 263 

splicing prediction performance when we cross-tested cells from different cell-of-origin 264 

(Supplementary Figure 5B, F1 score is better metric for comparing cross-cell testing due to class 265 

imbalance across cell types). Thus, the epigenomic regulatory landscape around SSs appears to 266 

be generally conserved across cell types. Moreover, we compared the classification performance 267 

to other models based on random forest and k-nearest neighbors and found that our model was 268 

superior in terms of classification accuracy (Figure 4D, Supplementary Figure 7). 269 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.02.03.932251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932251
http://creativecommons.org/licenses/by-nc-nd/4.0/


We tried to measure the contribution of each individual epigenetic feature to splicing in a 270 

number of ways. (1) We performed an empirical analysis via a leave-one-out strategy. Using 271 

GM12878 as an example, we first built a reference model based on all available epigenetic 272 

features. By removing one variable at a time, we then measured the mean decrease in F1 score 273 

and area under the receiver operating characteristic curve (ROC AUC), as an indicator of 274 

variable importance (Figure 4C). (2) Alternatively, we trained a DNA-only model using DNA 275 

sequence features only and compared to a "baseline model." The baseline model was trained 276 

using DNA sequence features plus additional chromatin accessibility (DHS) and 6 histone marks. 277 

Here, we observed a significant loss of predictive performance in the DNA-only model (13% 278 

reduction in F1 score) (Supplementary Figure 6A). (3) Next, starting from the DNA-only model, 279 

we added one epigenetic feature at a time to measure the information gain from each feature 280 

(Supplementary Figure 6B). While the addition of some epigenetic features like H3K27ac 281 

increased the variability in prediction performance, an active mark H3K36me3 or a repressive 282 

mark H3K27me3 was the most informative at predicting splicing. Moreover, the combination of 283 

both H3K36me3 and H3K27ac further improved the prediction performance compared to other 284 

pairs (Supplementary Figure 6C). We observed that the combination of H3K36me3 and 285 

H3K27ac features together contributed more than when they were used individually 286 

(Supplementary Figure 6D). 287 

Overall, we found H3K36me3 to be the most important variable in predicting splicing. This 288 

observation coincides with previous studies reporting that H3K36me3 recruits the splicing 289 

factors PTB [34] and SRSF1 [56] to facilitate splicing. Interestingly, one of the top predictors of 290 

splicing was H3K79me2, which was previously shown to associate with H3K36me3 at gene 291 
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bodies [57]. H3K9me3, a histone modification that can recruit adaptor proteins like HP1 to 292 

facilitate splicing factors [24], was also ranked among the top predictors. 293 

 294 

Interpretation of weights of the splicing model 295 

Since the model follows the physical layout of splicing regulation, one can examine the trained 296 

model and learn from the trained weights how each epigenetic feature contributes to splicing 297 

regulation. To interpret the splicing model, we designed an LSTM-based model composed of 298 

only one hidden state and trained for a longer period (400 epochs). We made sure that this 299 

simplified model performs nearly as well at predicting splicing as our main model (usually after 300 

>20 epochs of training, Supplementary Figure 8A). We also made sure that the overall predictive 301 

performance of the simplified model is stable after approximately 100 epochs (Supplementary 302 

Figure 8B, C). When we analyzed the simplified model, we found that the trained weights of 303 

various gates at the recurrent unit showed that open chromatin (DHS), H3K27ac, K3K36me3, 304 

and H3K4me1 are weighted more highly than other epigenetic features -- as expected 305 

(Supplementary Figure 8D). We also noticed that H3K27me3 and K3K9me3 were negatively 306 

weighted at the input gate, suggesting that these features have a negative impact on exon 307 

inclusion, consistent with our previous findings. 308 

 309 

Influence of temporal epigenetic context on splicing regulation 310 

We specifically designed our splicing model to represent the physical layout of splicing 311 

regulation, where a sequence of chromatin contexts is fed progressively to the model. Therefore, 312 

the model takes into account the temporal direction (progression from 5’ to 3’ in direction). To 313 

show that model has learned this asymmetric temporal relationship of epigenetic features, we 314 
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first trained a baseline model (in the normal 5’ to 3’ direction) and then fed a series of epigenetic 315 

signals in a “reverse” order (3’ to 5’ in direction) as input to it. We examined how the model 316 

prediction behaved in this context. If the model was agnostic to the temporal direction of features, 317 

both forward and reverse input features should give the same predictive power. By using a model 318 

based on a single histone feature, H3K36me3, we observed a moderate decrease in prediction 319 

performance upon reversal of the epigenetic feature (Supplementary Figure 9), with an F1 score 320 

decreasing from 0.78 to 0.77 and ROC AUC decreasing from 0.87 to 0.85. While we suspect 321 

there are some level of redundancy across different epigenetic marks and some marks are 322 

independent of their temporal direction, our results suggest the importance of temporal direction 323 

of epigenetic features in the context of splicing. 324 

 325 

Discussion 326 

Our prediction model revealed that the epigenomic signature of an SS plays a large role in 327 

determining the splicing outcome. In addition, the positive results suggest that our model can be 328 

extended to predict the full transcriptomic composition from a genomic and epigenomic context. 329 

We expect that we could further improve the proposed model by adding more deep hidden layers 330 

and increasing the number of training samples by utilizing the full set of available epigenomic 331 

data in the ENCODE project. Our approach does contain some limitations, as it is still 332 

challenging to visualize and evaluate the multi-dimensional context of the weight matrix in the 333 

trained model. We could apply dimensionality reduction techniques to probe the latent 334 

representation of relationships between various epigenomic signals. 335 

In this study, we used ENCODE polyA RNA-seq assays to measure splicing and exon-level 336 

expression; we note that this is an indirect measure of what is actually happening during 337 
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transcription. RNAs are often unstable and may be subjected to many post-transcriptional 338 

modifications. RNA-seq measures the steady-state level of the transcript, accounting for both 339 

mRNA synthesis and decay. Future studies with a more direct measure of transcriptional rates, 340 

such as nuclear run-on assays like global run-on (GRO-seq) or bromouridine sequencing (Bru-341 

seq), will allow us to accurately measure the effect of epigenomic context on splicing and, 342 

ultimately, on the transcriptional rate. 343 

Future studies should focus on comparing splicing models from normal and cancer samples in 344 

the hope of illuminating the differences in the epigenomic landscapes of splicing regulation. 345 

Although splicing is an elaborate process, it could become pathogenic when misregulated [58,59]. 346 

Unsurprisingly, aberrant splicing events, which collectively referred to splicing events that could 347 

confer the risk of a disease, are often implicated in systemic diseases like cancer [51,60]. 348 

Aberrant splicing events based on mutations are relatively well characterized [54,60–62]; 349 

however, a large fraction of aberrant splicing events that have no direct mutational cause still 350 

remain unknown. Although our understanding of epigenomic context on splicing regulation is 351 

incomplete, our prediction model highlights that splicing is elaborately regulated via various 352 

epigenomic signatures. This suggests that epigenomic dysregulation may be closely linked to the 353 

onset of aberrant splicing. Thus, even though aberrantly spliced RNAs in healthy cells may be 354 

degraded by the mRNA surveillance system, epigenomic dysregulation may render this 355 

checkpoint system useless. Further studies on cell-type-specific and context-dependent splicing 356 

regulation will reveal whether epigenetic modulation can serve as a therapeutic method of 357 

complex disease in the future. 358 

 359 

Methods 360 
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Dataset 361 

The current release of the ENCODE dataset provides an unprecedented number of functional 362 

assays across broad biosample types, including primary cells and tissues. In this study, we 363 

leveraged both the breadth and depth of ENCODE, including assays for histone modification 364 

(chromatin immunoprecipitation sequencing, ChIP-seq), chromatin accessibility (DNase I 365 

hypersensitive sites sequencing, DNase-seq), RBPs (eCLIP), methylations (WGBS and RRBS) 366 

and gene expression (RNA-seq), to systematically probe the data-rich context of alternative 367 

splicing and its regulation. The list of accessions for experiments used in this study is found in 368 

Supplementary Table 1. 369 

 370 

Processing of RNA-seq data 371 

To quantify levels of exon expression from RNA-seq data, we collected all raw sequencing reads 372 

from experiments tagged as reference epigenome series from the ENCODE portal. These reads 373 

were polyA plus long RNA-seq (200 bp or larger) from whole-cell fractions rather than nuclear 374 

or cytosolic fractions. To minimize potential batch effects and sample bias, we carefully selected 375 

untreated experiments from the reference epigenome series. As of November 2019, there are 81 376 

cell and tissue types (covering 49 unique biosamples) in the reference epigenome series, 377 

including both RNA-seq and ChIP-seq of H3K4me1, H3K4me3, H3K36me3, H3K27ac, 378 

H3K27me3, and H3K9me3. We first aligned all RNA-seq data to the GRCh38 genome using 379 

RNA STAR (v 2.7.0). Since the model requires splice site annotation, we constructed exon 380 

annotation from GENCODE version 24 (to synchronize with ENCODE annotation) by extracting 381 

all unique exons with known protein-coding transcripts. We excluded exons that could 382 

ambiguously map to both chromosome X and Y. This analysis included 597,937 exons (185,405 383 
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unique exons after removing duplicates from isoforms) that averaged 28.01 exons per gene and 384 

296.49 bp in length (150.92 bp in length for unique exons). We obtained read counts at each 385 

exon using HTSeq (v0.11.2) [63]. Based on read counts, we used a custom script 386 

(esprnn/preproc_calcExonFPKM.py) to calculate normalized exonic expression levels in FPKM. 387 

Our rationale for using the exonic expression was to intentionally make the model agnostic to the 388 

overall transcript level. Each exon was evaluated independently from other exons, and we 389 

counted the number of sequencing reads supporting the inclusion of a particular exon. The 390 

counts were normalized similar to how a gene’s expression is normalized by size of annotation 391 

and total number of mapped reads (FPKM). We binarized the exonic expression level (FPKM) 392 

using a threshold of one. Therefore, we only considered whether an exon has enough evidence 393 

supporting exon inclusion. 394 

 395 

In addition to the exonic expression level, alternatively, we calculated a metric, PSI, to measure 396 

the level of splicing. PSI represents the fraction of the reads supporting exon inclusion from the 397 

split reads at the splice junction. We used a custom script (esprnn/scripts/calcPSI.sh) based on 398 

equations from Schafer et al. [64] to calculate PSI normalized by the size of read and exon 399 

annotation. 400 
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 402 

�	
	
�� number of reads or fragments supporting the inclusion of !-th exon; �	

���� number of reads 403 

or fragments supporting the exclusion of !-th exon; �
 fragment length; �	 size of !-th exon. We 404 

used PSI cutoffs of 20% and 80% to determine skipping and inclusion of exons based on the 405 

overall PSI distribution (Supplementary Figure 10). 406 

 407 

RNA-binding proteins 408 

RBP enrichment was calculated based on the peaks identified from the eCLIP experiments. We 409 

downloaded the ENCODE eCLIP uniformly processed peaks from K562 and HepG2 cell types 410 

(see Supplementary Table 1 for eCLIP data accession). The peak was called using CLIPPER 411 

software [65] and filtered for peaks having a score of 1,000. We then counted numbers of RBP 412 

binding events at a base-pair resolution, agnostic to cell type.  413 

To examine preferential binding patterns of splicing factors around SSs, RBP peaks were 414 

annotated as splicing-related factors if they belong to hnRNP- and SR-families (n=29). We 415 

extended both 3’ acceptor and 5’ donor SS by 1,000 bp in both up and downstream direction and 416 

binned the region into 100 bp intervals. We defined the position relative to the distance to the SS, 417 

in the 5’ to 3’ direction. For each interval, we calculated the frequency of splicing factor binding 418 

normalized to the size of the interval. The value of RBP enrichment means the normalized 419 

binding frequency of splicing-related factors. 420 

 421 

LSTM model 422 

We adopted the following equations for the modeling of splicing using LSTM. " function 423 

denotes sigmoid function. # denotes Hadamard product where two matrices are multiplied in a 424 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.02.03.932251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932251
http://creativecommons.org/licenses/by-nc-nd/4.0/


pair-wise fashion. �� denotes input vector and �� denotes output vector, �� denotes forget gate 425 

vector, !� denotes input or update gate vector, $� denotes output gate vector, %� denotes cell state 426 

vector. 427 

 428 
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 429 

GRU model 430 

We adopted the following equations for the modeling of splicing using GRU. �� denotes input 431 

vector and �� denotes output vector, (� denotes update gate vector and )� denotes reset gate 432 

vector. 433 

 434 
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 435 

Pre-processing of data for the training model 436 

We selected six normal and three cancer samples from the reference epigenome series. The 437 

dataset contains consolidated epigenomes from the Roadmap Epigenomics Consortium [41] and 438 
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the ENCODE Consortium. All datasets were uniformly processed and mapped to the GRCh38 439 

human reference genome. All samples contained a core set of histone modification tracks 440 

(H3K4me1, H3K4me3, H3K36me3, H3K27ac, H3K27me3, and H3K9me3) as well as RNA-seq 441 

data. We used additional histone modification tracks, as well as DNase I hypersensitivity, DNA 442 

methylation, and nucleosome positioning tracks, to predict alternative splicing upon availability. 443 

Detailed information on datasets used can be found in Supplementary Table 1. For each exon, we 444 

obtained DNA sequences at intron-exon boundaries (3’ acceptors) and exon-intron boundaries (5’ 445 

donors), as well as 100 bp upstream and downstream of SSs. Splice junctions included both 446 

canonical and non-canonical SSs. We processed all sequences to read in the 5’ to 3’ direction 447 

using strand information from each gene. Each 400 bp DNA sequence was encoded into a 1,000 448 

by 4 binary array using one-hot encoding. We used RNA-seq expression profiles to indicate 449 

tissue-specific alternative splicing patterns. Genes having fewer than two exons were discarded 450 

and the first and last exons were excluded from the analysis. We classified an exon as being 451 

expressed if its FPKM was greater than or equal to 1. We normalized all ChIP-seq histone 452 

modification tracks and DNase-seq tracks over corresponding input signal tracks using MACS 453 

v2.0.10 (https://github.com/taoliu/MACS) [66]. We used negative log10 of the Poisson p-value 454 

to measure the enrichment level over the background. Due to the wide dynamic range observed, 455 

we used a p-value threshold of 1e-2 for the upper limit. We processed all feature tracks including 456 

DNA methylation and nucleosome signal tracks to read in the 5’ to 3’ direction and scaled them 457 

to a range of 0 to 1. 458 

 459 

Performance evaluation of the model 460 
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There is no single metric that can give you a measure of performance in a binary classification 461 

problem. Relying on one metric can be misleading especially when there is high class imbalance. 462 

Therefore, we employed various metrics to measure the performance of the predictive model. 463 

ROC curve explains the tradeoff between true-positive rate (TPR) and false-positive rate (FPR). 464 

PR curve visualizes the tradeoff between positive predictive value (PPV) and true-positive rate 465 

(TPR). 466 
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 468 

In addition, we used F1-score, which is the harmonic mean of precision and recall, to measure 469 

the performance of the splicing model. 470 

�� � 2 ·
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 471 

Hyperparameter tuning of splicing model and training 472 

We tested a range of dimensions and depths of RNN models and network design 473 

hyperparameters to optimize the alternative splicing model. We chose optimal hyperparameters 474 

by tuning one parameter at a time while fixing the rest. Hyperparameters included but were not 475 

limited to the number of recurrent layers, size of neurons in each layer, pooling strategy, dropout 476 

rate, choice of activation function and loss function, optimizer, and number of the epoch. We 477 
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shuffled the order of the data and split the dataset into training and test sets using an 80 to 20% 478 

ratio. 20% of test data was set aside for the performance evaluation. 80% of training data was 479 

split again between 80 to 20% (64 and 16% of the original data) for fitting the model and 480 

validating the model fit during the training phase. We fed a range of sequences from 50 to 1,000 481 

bp within each SS and found the 400 bp span to be the ideal size for the model. For the neural 482 

network architecture, we achieved the best result when two RNN units were stacked together, 483 

which allowed the model to learn higher-level temporal representations. We used a hidden state 484 

size of two by default and we recommend not using a hidden state size greater than 128 to avoid 485 

overfitting problems (Supplementary Figure 8A). We applied three variants of the RNN model, 486 

LSTM [45], GRU [67], and simple RNN. To compare the performance of memory-based units 487 

(LSTM and GRU), we implemented a simple RNN model using the same network architecture. 488 

We found that both LSTM and GRU were capable of learning long-term dependencies and were 489 

effective in learning high-dimensional contextual relationships between epigenomic features 490 

around the SSs. We split the input sequences into two parts where the first half represented a 3’ 491 

acceptor SS and the latter half represented a 5’ donor SS. We fed these sequences into two 492 

separate RNN units of size 200 and merged them into another RNN unit of size 400. The last 493 

RNN layer was followed by a dropout layer to prevent overfitting of the training dataset. The last 494 

fully-connected layer contained the softmax activation function for classifying exons as either 495 

spliced or unspliced. To train the model, we used a binary cross-entropy objective function with 496 

the Adam optimizer [68]. For each dataset, we trained the model for 20 epochs. We tested the 497 

implementation of ESPRNN using TensorFlow v2.0 (https://www.tensorflow.org). Our 498 

implementation also works with Keras v1.0.3 or v2.2.4 (https://github.com/fchollet/keras) with 499 
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either TensorFlow v1.15 and Theano v0.8.2 [69] backend with a minor tweak. We used various 500 

Nvidia GPUs (Titan K20m, K80, GTX 1080ti, RTX2080, P100, and Titan V) to train the model. 501 
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 697 

Supporting Information Legend 698 

Supplementary Table 1 699 

List of datasets and the accession numbers used for the study. 700 

 701 

Supplementary Table 2 702 

Overview of dataset used for training the ESPRNN model. The model was trained using the 703 

CORE (highlighted in red) and FULL set based on the availability of data. The CORE set was 704 

used to compare the predictive performance across cell types. 705 

 706 

Supplementary Table 3 707 

ESPRNN model prediction performance measured by F1 score. Predictive performance was 708 

compared between the CORE and FULL set of genomic features. For each set, performance was 709 
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compared using LSTM, GRU, and simple RNN models. Predictive performance was measured 710 

by F1 score. 711 

 712 

Supplementary Table 4 713 

Comparison of models trained with 50 bp span and 100 bp span data. Each model was 714 

trained using genomic features derived from 50 bp span or 100 bp span data from splice sites 715 

using the LSTM model. Performance was measured using F1 score and ROC AUC. 716 

 717 

Supplementary Figure 1 718 

(Shadow figure of the main Figure 2A) Enrichment of various epigenomic marks of HepG2 at 719 

the exon-intron boundary. High PSI indicates exon inclusion, mid PSI indicates exons with 40-720 

60% PSI, and low PSI indicates exon skipping. 721 

 722 

Supplementary Figure 2 723 

(Shadow figure of the main Figure 2B) Comparison of epigenetic enrichment around different 724 

segments of the 3’ acceptor site for (A) K562 and (B) HepG2. High PSI indicates exon inclusion, 725 

mid PSI indicates exons with 40-60% PSI, and low PSI indicates exon skipping. Mann-Whitney-726 

Wilcoxon two-sided test, ns: 0.05 < p <= 1; *: 0.01 < p <= 0.05; **: 0.001 < p <= 0.01; ***: 727 

0.0001 < p <= 0.001; ****: p <= 0.0001. (C) Fold enrichment of splicing-related RBPs to non-728 

splicing-related RBPs around the 3’ acceptor splice site and 5’ donor splice site. 729 

 730 

Supplementary Figure 3 731 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 6, 2020. ; https://doi.org/10.1101/2020.02.03.932251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932251
http://creativecommons.org/licenses/by-nc-nd/4.0/


Correlation of exonic expression (FPKM) and histone enrichment of (A) HepG2 H3K36me3, (B) 732 

HepG2 H3K27me3, (C) liver H3K36me3, and (D) liver H3K27me3. PCC: Pearson Correlation 733 

Coefficient. 734 

 735 

Supplementary Figure 4 736 

Splicing patterns based on exonic expression level (FPKM) for diverse ENCODE cell types are 737 

projected on a PCA cell space. 738 

 739 

Supplementary Figure 5 740 

(A) Difference in splicing prediction performance when RBP binding profiles were added as an 741 

additional feature of the base model containing chromatin accessibility and histone marks. (B) 742 

Cross-cell testing of model. Model was trained on HepG2 data and tested on K562 data, and vice 743 

versa. 744 

 745 

Supplementary Figure 6 746 

(A) Comparison of the baseline model trained using chromatin accessibility and 6 histone marks 747 

to a model using DNA sequence feature only (B) Measure of information gain from additional 748 

epigenetic feature based on DNA sequence only model (C) Comparison of splicing prediction 749 

performance using a pair of epigenetic features. (D) Performance comparison of models using 750 

H3K36me3 or H3K27ac feature individually to a model using both H3K36me3 and H3K27ac 751 

features. Performance was measured based on F1 score from 5 trials. 752 

 753 

Supplementary Figure 7 754 
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Comparison of LSTM-based model with other machine learning algorithms. Four different 755 

algorithms, k-Nearest neighbor (kNN), decision tree, random forest, and support vector machine 756 

(SVM), were compared to the LSTM-based model across four different tissue types (A549, 757 

HepG2, GM12878, K562). 758 

 759 

Supplementary Figure 8 760 

(A) Comparison of splicing prediction performance across different sizes of hidden state. (B) 761 

Loss of training an LSTM model with 1 hidden layer for 400 epochs. (C) Accuracy of training an 762 

LSTM model with one hidden layer for 400 epochs. (D) Trained weights of LSTM recurrent 763 

cells. 764 

 765 

Supplementary Figure 9 766 

Comparison of splicing prediction performance when epigenetic context features are reversed in 767 

time-direction. (A) precision-recall curve for HepG2 (B) ROC curve for HepG2 (C) precision-768 

recall curve for K562 (D) ROC curve for K562 769 

 770 

Supplementary Figure 10 771 

PSI histogram of cassette exons from (A) HepG2 (B) mammary epithelial cell (C) K562, and (D) 772 

bipolar neuron. 773 

 774 

Figure Legend 775 

Figure 1 776 
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Overview of the co-transcriptional splicing model. Depiction of co-transcriptional splicing in 777 

terms of (A) biological context, (B) genomic and epigenomic data context, and how it relates to 778 

the (C) RNN model. 779 

 780 

Figure 2 781 

(A) Enrichment of various epigenomic marks of K562 at the exon-intron boundary. We 782 

aggregated histone modifications up to 500 bp upstream and downstream of intronic and exonic 783 

regions flanking 3’ and 5’ SSs for cassette exons across ENCODE cell types. High PSI indicates 784 

exon inclusion, mid PSI indicates exons with 40-60% PSI, and low PSI indicates exon skipping. 785 

(B) Statistical significance testing of epigenetic mark enrichment. Average histone modification 786 

enrichment at four exonic segments were compared based on PSI values. Mann-Whitney-787 

Wilcoxon two-sided test, ns: 0.05 < p <= 1; *: 0.01 < p <= 0.05; **: 0.001 < p <= 0.01; ***: 788 

0.0001 < p <= 0.001; ****: p <= 0.0001. (C) RBP enrichment across the exon-intron boundary. 789 

 790 

Figure 3 791 

Correlation of exonic expression to (A) H3K36me3 and (B) H3K27me3. The line represents a 792 

linear regression model fit, and the shaded band represents 95% confidence interval. (C) 793 

Alternative exons were grouped by expression level and their relative histone enrichment was 794 

compared near the SSs. Asterisks represents statistical significance using the Wilcoxon rank sum 795 

test; (*) P <= 0.05, (**) P <= 0.01, (***) P <= 0.001, (****) P <= 0.0001. (D) Hierarchical 796 

clustering of similarity based on PSI across 49 ENCODE biosamples. The results are clustered 797 

into five categories of cell types. 798 

 799 
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Figure 4 800 

(A) Overview of the ESPRNN model. The model is composed of two recurrent layers. Inputs 801 

from 3’ and 5’ SSs are separately processed in the first recurrent layer and then merged in the 802 

next recurrent layer. A softmax classifier is used to determine the inclusion of the exon. Using 803 

genomic sequences and epigenomic contexts as input, the alternative usage of the exon is 804 

predicted. (B) Precision-recall curves from six different ENCODE cell types. (C) Epigenetic 805 

features that contribute to splicing regulation. The order and magnitude of importance was 806 

determined using leave-one-out analysis and loss of the ROC AUC was calculated when training 807 

the model lacking a particular feature. (D) Comparison of LSTM model with other models based 808 

on k-nearest neighbor, support vector machine, decision tree, and random forest algorithms. 809 
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