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Abstract

As of February 8, 2020, the 2019 Novel Coronavirus (2019-nCoV) spread to 29 countries
with 725 deaths and more than 34000 confirmed cases. 2019-nCoV is being compared to
the infamous SARS coronavirus, which resulted, between November 2002 and July 2003,
in 8098 confirmed cases worldwide with a 9.6% death rate and 774 deaths. Though
2019-nCoV has a death rate of 2% as of 8 February, the 34963 confirmed cases in a few
weeks (December 8, 2019 to February 8, 2020) are alarming, with cases likely being
under-reported given the comparatively longer incubation period. Such outbreaks
demand elucidation of taxonomic classification and origin of the virus genomic sequence,
for strategic planning, containment, and treatment. This paper proposes the use of a
machine learning-based alignment-free approach for an ultra-fast, scalable, and highly
accurate classification of whole 2019-nCoV genomes. We namely classify the 2019-nCoV
using MLDSP and MLDSP-GUI, alignment-free methods that use Machine Learning
(ML) and Digital Signal Processing (DSP) for genome analyses. These tools are used to
analyze a large dataset of unique viral genomic sequences, totalling 61.8 million bp,
with a “decision tree” approach for successive refinements of taxonomic classification.
Our results support the hypothesis of a bat origin and classify 2019-nCoV as
Sarbecovirus, within Betacoronavirus. We use Spearman’s rank correlation analysis to
confirm the relatedness of the 2019-nCoV sequences to the known genera of the family
Coronaviridae and the known sub-genera of the genus Betacoronavirus. Our method
achieves high levels of classification accuracy and discovers the most relevant
relationships among over 5,000 viral genomes within seconds, ab initio, using raw DNA
sequence data alone, and without any specialized biological knowledge, training, gene or
genome annotations. This suggests that, for novel viral and pathogen genome sequences,
this alignment-free whole-genome machine-learning approach can provide a reliable
real-time option for taxonomic classification.
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Author summary

Analyzing over 5000 diverse viral complete genomes, we obtained a 100% accuracy score
for classification of 2019-nCoV as Coronaviridae, Betacoronavirus, and finally as
belonging to the sub-genus Sarbecovirus, using an alignment-free, supervised machine
learning approach. Genomes identified as closely related to 2019-nCoV are bat
betacoronaviruses within the same genus, and this supports the hypothesis of a bat
origin for this novel coronavirus. This alignment-free analysis of genomic signatures
using machine learning requires no prior knowledge of genic or regulatory content, and
accurately classifies genomes of unknown taxonomy to potentially genus level resolution
within minutes. This suggests that, for novel viral and pathogen genome sequences,
such alignment-free machine-learning analyses can provide a reliable real-time option for
taxonomic classification.

Introduction

Coronaviruses are single-stranded positive-sense RNA viruses that are known to contain
some of the largest viral genomes, up to around 32 kbp in length [1–5]. After increases
in the number of coronavirus genome sequences available following efforts to investigate
the diversity in the wild, the family Coronaviridae now contains four genera
(International Committee on Taxonomy of Viruses, [6]). While those species that belong
to the genera Alphacoronavirus and Betacoronavirus can infect mammalian hosts, those
in Gammacoronavirus and the recently defined Deltacoronavirus mainly infect avian
species [4, 7–9]. Phylogenetic studies have revealed a complex evolutionary history, with
coronaviruses thought to have ancient origins and recent crossover events that can lead
to cross-species infection [8, 10–12]. Some of the largest sources of diversity for
coronaviruses belong to the strains that infect bats and birds, providing a reservoir in
wild animals for recombination and mutation that may enable cross-species transmission
into other mammals and humans [4, 7, 8, 10,13].

Like other RNA viruses, coronavirus genomes are known to have genomic plasticity,
and this can be attributed to several major factors. RNA-dependent RNA polymerases
(RdRp) have high mutation rates, reaching from 1 in 1000 to 1 in 10000 nucleotides
during replication [7, 14,15]. Coronaviruses are also known to use a template switching
mechanism which can contribute to high rates of homologous RNA recombination
between their viral genomes [9, 16–20]. Furthermore, the large size of coronavirus
genomes is thought to be able to accommodate mutations to genes [7]. These factors
help contribute to the plasticity and diversity of coronavirus genomes today.

The highly pathogenic human coronaviruses, Severe Acute Respiratory Syndrome
coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus
(MERS-CoV) belong to lineage B (sub-genus Sarbecovirus) and lineage C (sub-genus
Merbecovirus) of Betacoronavirus, respectively [9, 21–23]. Both result from zoonotic
transmission to humans and lead to symptoms of viral pneumonia, including fever,
breathing difficulties, and more [24,25]. Recently, an unidentified pneumonia disease
with similar symptoms caused an outbreak in Wuhan and is thought to have started
from a local fresh seafood market [26–30]. This was later attributed to a novel
coronavirus deemed 2019-nCoV and represents the third major zoonotic human
coronavirus of this century [31]. As of February 8, confirmed cases have risen to 34963
globally, with infections reported in 29 countries [32]. As a result, the World Health
Organization set the risk assessment to “Very High” for China, where the bulk of the
cases are contained and “High” for regional and global levels [33]. Initiatives to identify
the source of transmission and possible intermediate animal vectors have commenced
since the genome sequence became publicly available.
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From analyses employing whole genome to viral protein-based comparisons, the
2019-nCoV strain is thought to belong to lineage B (Sarbecovirus) of Betacoronavirus.
From phylogenetic analysis of the RdRp protein, spike proteins, and full genomes of
2019-nCoV and other coronaviruses, it was found that 2019-nCoV is most closely
related to two bat SARS-like coronaviruses, bat-SL-CoVZXC21 and bat-SL-CoVZC45,
found in Chinese horseshoe bats Rhinolophus sinicus [12, 34–38]. Along with the
phylogenetic data, the genome organization of 2019-nCoV was found to be typical of
lineage B (Sarbecovirus) Betacoronaviruses [34]. From phylogenetic analysis of full
genome alignment and similarity plots, it was found that 2019-nCoV has the highest
similarity to the bat coronavirus RaTG13 [39]. Close associations to bat coronavirus
RaTG13 and two bat SARS-like CoVs (ZC45 and ZXC21) are also supported in
alignment-based phylogenetic analyses [39]. Within the 2019-nCoV strains, over 99%
sequence similarity and a lack of diversity within these strains suggest a common
lineage and source, with support for recent emergence of the human strain [12,31].
There is still ongoing debate whether the 2019-nCoV strain arose following
recombination with previously identified bat and unknown coronaviruses [40] or arose
independently as a new lineage to infect humans [39]. In combination with the
identification that the angiotensin converting enzyme 2 (ACE2) protein is a receptor for
2019-nCoV, as it is for SARS and other Sarbecovirus strains, the hypothesis that
2019-nCoV originated from bats is deemed very likely [12,34,36,39,42–45].

All analyses performed thus far have been alignment-based and rely on the
annotations of the viral genes. Though alignment-based methods have been successful in
finding sequence similarities, their application can be challenging in many cases [46, 47].
It is realistically impossible to analyze thousands of complete genomes using
alignment-based methods due to the heavy computation time. Moreover, the alignment
demands the sequences to be continuously homologous which is not always the case.
Alignment-free methods [48–52] have been proposed in the past as an alternative to
address the limitations of the alignment-based methods. Comparative genomics beyond
alignment-based approaches have benefited from the computational power of machine
learning. Machine learning-based alignment-free methods have also been used
successfully for a variety of problems including virus classification [50–52]. An
alignment-free approach [50] was proposed for subtype classification of HIV-1 genomes
and achieved ∼ 97% classification accuracy. MLDSP [51], with the use of a broad range
of 1D numerical representations of DNA sequences, has also achieved very high levels of
classification accuracy with viruses. Even rapidly evolving, plastic genomes of viruses
such as Influenza and Dengue are classified down to the level of strain and subtype,
respectively with 100% classification accuracy. MLDSP-GUI [52] provides an option to
use 2D Chaos Game Representation (CGR) [53] as numerical representation of DNA
sequences. CGR’s have a longstanding use in species classification with identification of
biases in sequence composition [49,52,53]. MLDSP-GUI has shown 100% classification
accuracy for Flavivirus genus to species classification using 2D CGR as numerical
representation [52]. MLDSP and MLDSP-GUI have demonstrated the ability to identify
the genomic signatures (a species-specific pattern known to be pervasive throughout the
genome) with species level accuracy that can be used for sequence (dis)similarity
analyses. In this study, we use MLDSP [51] and MLDSP-GUI [52] with CGR as a
numerical representation of DNA sequences to assess the classification of 2019-nCoV
from the perspective of machine learning-based alignment-free whole genome
comparison of genomic signatures. Using MLDSP and MLDSP-GUI, we confirm that
the 2019-nCoV belongs to the Betacoronavirus, while its genomic similarity to the
sub-genus Sarbecovirus supports a possible bat origin.
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This alignment-free machine learning approach is ultra-fast and scalable, being able
to provide a comprehensive analysis and classification of thousands of complete genomes
within seconds. The main contributions of the paper are:

• A highly accurate alignment-free classification method for 2019-nCoV, via a
holistic analysis of pervasive genomic signatures;

• A comprehensive classification based on the analysis of a large dataset of 5538
unique viral genomic sequences, for a total of 61.8 million bp, with high
classification accuracy scores at all taxonomic levels, from the highest available
taxonomic rank, to the lowest (sub-genus);

• The use of a “decision tree” approach (paralleling taxonomic ranks) to supervised
machine learning, for successive refinements of taxonomic classification.

• Achieving high levels of classification accuracy without the requirements for gene
or genome annotation, by using raw DNA sequences alone;

• The use of Spearman’s rank correlation analysis to confirm the relatedness of the
2019-nCoV sequences to the known genera of the family Coronaviridae and the
known sub-genera of the genus Betacoronavirus.

Materials and methods

The Wuhan seafood market pneumonia virus (2019-nCoV virus) isolate Wuhan-Hu-1
complete reference genome of 29903 bp was downloaded from the NCBI database on
January 23, 2020. Also, we downloaded all of the available 29 sequences of 2019-nCoV
and the bat Betacoronavirus RaTG13 from the GISAID platform and two additional
sequences (bat-SL-CoVZC45, and bat-SL-CoVZXC21) from the NCBI on January 27,
2019. We downloaded all of the available viral sequences from the Virus-Host DB
(14688 sequences available on January 14, 2020). Virus-Host DB covers the sequences
from the NCBI RefSeq (release 96, September 9, 2019), and GenBank (release 233.0,
August 15, 2019). All sequences shorter than 2000 bp and longer than 50000 bp were
ignored to address possible issues arising from sequence length bias.

ML-DSP [51] and MLDSP-GUI [52] were used as the machine learning-based
alignment-free methods for complete genome analyses. As MLDSP-GUI is an extension
of the ML-DSP methodology, we will refer to the method hereafter as MLDSP-GUI.
Each genomic sequence is mapped into its respective genomic signal (a discrete numeric
sequence) using a numerical representation. For this study, we use a two-dimensional
k-mer (oligomers of length k) based numerical representation known as Chaos Game
Representation (CGR) [53]. The k-mer value 7 is used for all the experiments. The
value k = 7 achieved the highest accuracy scores for the HIV-1 subtype
classification [50] and this value could be relevant for other virus related analyses. The
magnitude spectra are then calculated by applying Discrete Fourier Transform (DFT)
to the genomic signals [51]. A pairwise distance matrix is then computed using the
Pearson Correlation Coefficient (PCC) [54] as a distance measure between magnitude
spectra. The distance matrix is used to generate the 3D Molecular Distance Maps
(MoDMap3D) [55] by applying the classical Multi-Dimensional Scaling (MDS) [56].
MoDMap3D represents an estimation of the relationship among sequences based on the
genomic distances between the sequences. The feature vectors are constructed from the
columns of the distance matrix and are used as an input to train six supervised-learning
based classification models (Linear Discriminant, Linear SVM, Quadratic SVM, Fine
KNN, Subspace Discriminant, and Subspace KNN) [51]. A 10-fold cross-validation is
used to train, and test the classification models and the average of 10 runs is reported
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as the classification accuracy. The trained machine learning models are then used to
test the 2019-nCoV sequences. The unweighted pair group method with arithmetic
mean (UPGMA) phylogenetic tree is also computed using the pairwise distance matrix.

For validation of MLDSP-GUI results using CGR as a numerical representation,
another statistical method that is reliant on genomic signatures, Spearman’s rank
correlation coefficient [57–60], is used. The frequency of each k-mer is calculated in each
genome. Due to differences in genome length between species, proportional frequencies
are computed by dividing each k-mer frequency by the length of the respective sequence.
To determine whether there is a correlation between k-mer frequencies in 2019-nCoV
and specific taxonomic groups, a Spearman’s rank correlation coefficient test is
conducted for k = 1 to k = 7.

Results

Table 1 provides the details of three datasets Test-1, Test-2, Test-3a and Test-3b used
for analyses with MLDSP-GUI. Each dataset’s composition (clusters with number of
sequences), the respective sequence length statistics, and results of MLDSP-GUI after
applying 10-fold cross-validation as classification accuracy scores are shown. The
classification accuracy scores for all six classification models are shown with their
average, see Table 1.

As shown in Table 1, for the first test (Test-1), we organized the dataset of
sequences into 12 clusters (11 families, and Riboviria realm). Only the families with at
least 100 sequences were considered. The Riboviria cluster contains all families that
belong to the realm Riboviria. For the clusters with more than 500 sequences, we
selected 500 sequences at random. Our method can handle all of the available 14668
sequences, but using imbalanced clusters, in regard to the number of sequences, can
introduce an unwanted bias. After filtering out the sequences, our pre-processed dataset
is left with 3273 sequences organized into 12 clusters (Adenoviridae, Anelloviridae,
Caudovirales, Geminiviridae, Genomoviridae, Microviridae, Ortervirales,
Papillomaviridae, Parvoviridae, Polydnaviridae, Polyomaviridae, and Riboviria). We
used MLDSP-GUI with CGR as the numerical representation at k = 7. The maximum
classification accuracy of 94.9% is obtained using the Quadratic SVM model. The
respective MoDMap3D is shown in Figure 1(a). All six classification models trained on
3273 sequences were used to classify (predict the label of) the 29 2019-nCoV sequences.
All of our machine learning-based models correctly predicted and confirmed the label as
Riboviria for all 29 sequences (Table 2).

Test-1 classified the 2019-nCoV virus as belonging to the realm Riboviria. The
second test (Test-2) is designed to classify 2019-nCoV among the families of the
Riboviria realm. We completed the dataset pre-processing using the same rules as in
Test-1 and obtained a dataset of 2779 sequences placed into the 12 families
(Betaflexiviridae, Bromoviridae, Caliciviridae, Coronaviridae, Flaviviridae,
Peribunyaviridae, Phenuiviridae, Picornaviridae, Potyviridae, Reoviridae, Rhabdoviridae,
and Secoviridae), see Table 1. MLDSP-GUI with CGR at k = 7 as the numerical
representation was used for the classification of the dataset in Test-2. The maximum
classification accuracy of 93.1% is obtained using the Quadratic SVM model. The
respective MoDMap3D is shown in Figure 1(b). All six classification models trained on
2779 sequences were used to classify (predict the label of) the 29 2019-nCoV sequences.
All of our machine learning-based models predicted the label as Coronaviridae for all 29
sequences (Table 2) with 100% classification accuracy. Test-2 correctly predicted the
family of 2019-nCoV sequences as Coronaviridae. Test-3 performs the genus-level
classification.
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Table 1. Classification accuracy scores of viral sequences at different levels of
taxonomy.

Dataset Clusters
Number of
sequences

Classification
model

Classification
accuracy (in %)

Test-1:
11 families and Riboviria;
3273 sequences;
Maximum length: 49973
Minimum length: 2002
Median length: 7350
Mean length: 13173

Adenoviridae
Anelloviridae
Caudovirales
Geminiviridae
Genomoviridae
Microviridae
Ortervirales
Papillomaviridae
Parvoviridae
Polydnaviridae
Polyomaviridae
Riboviria

198
126
500
500
115
102
233
369
182
304
144
500

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.7
90.8
95
93.4
87.6
93.2
92

Test-2:
Riboviria families;
2779 sequences;
Maximum length: 31769
Minimum length: 2005
Median length: 7488
Mean length: 8607

Betaflexiviridae
Bromoviridae
Caliciviridae
Coronaviridae
Flaviviridae
Peribunyaviridae
Phenuiviridae
Picornaviridae
Potyviridae
Reoviridae
Rhabdoviridae
Secoviridae

121
122
403
210
222
166
107
437
196
470
192
133

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.2
89.2
93.1
90.3
89
90.4
90.5

Test-3a:
Coronaviridae;
208 sequences;
Maximum length: 31769
Minimum length: 9580
Median length: 29704
Mean length: 29256

Alphacoronavirus
Betacoronavirus
Deltacoronavirus
Gammacoronavirus

53
126
20
9

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.1
94.2
95.2
95.7
97.6
96.2
96.2

Test-3b:
Coronaviridae;
60 sequences;
Maximum length: 31429
Minimum length: 25402
Median length: 28475
Mean length: 28187

Alphacoronavirus
Betacoronavirus
Deltacoronavirus

20
20
20

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
93.3
93.3
95
95
95
95.3

All classifiers trained on Test-1, Test-2, Test-3a, and Test-3b datasets were used to
predict the labels of 29 2019-nCoV viral sequences. All classifiers predicted the correct
labels for all of the sequences (Riboviria when trained using Test-1, Coronaviridae when
trained using Test-2, and Betacoronavirus when trained using Test-3a and Test-3b).
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Fig 1. MoDMap3D of (a) 3273 viral sequences from Test-1 representing 11 viral
families and realm Riboviria, (b) 2779 viral sequences from Test-2 classifying 12 viral
families of realm Riboviria, (c) 208 Coronaviridae sequences from Test-3a classified into
genera.

Table 2. Predicted taxonomic labels of 29 2019-nCoV sequences.

Training
dataset

Testing
dataset

Classification
models

Prediction
accuracy (%)

Predicted
label

Test-1
29 2019-nCoV
Sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Riboviria
Riboviria
Riboviria
Riboviria
Riboviria
Riboviria

Test-2
29 2019-nCoV
Sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae

Test-3(a\b)
29 2019-nCoV
Sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
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The third test (Test-3a) is designed to classify the 2019-nCov sequences at the genus
level. We considered 208 Coronaviridae sequences available under four genera
(Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus) (Table 1).
MLDSP-GUI with CGR at k = 7 as the numerical representation was used for the
classification of the dataset in Test-3a. The maximum classification accuracy of 98.1% is
obtained using the Linear Discriminant model and the respective MoDMap3D is shown
in Figure 1(c). All six classification models trained on 208 sequences were used to
classify (predict the label of) the 29 2019-nCoV sequences. All of our machine
learning-based models predicted the label as Betacoronavirus for all 29 sequences (Table
2). To verify that the correct prediction is not an artifact of possible bias because of
larger Betacoronavirus cluster, we did a secondary Test-3b with cluster size limited to
the size of smallest cluster (after removing the Gammacoronavirus because it just had 9
sequences). The maximum classification accuracy of 100% is obtained using the Linear
Discriminant model for Test-3b. All six classification models trained on 60 sequences
were used to classify the 29 2019-nCoV sequences. All of our machine learning-based
models predicted the label as Betacoronavirus for all 29 sequences (Table 2). This
secondary test showed that the possible bias is not significant enough to have any
impact on the classification performance.

Given confirmation that the 2019-nCoV belongs to the Betacoronavirus genus, there
now is a question of its origin and relation to the other viruses of the same genus. To
examine this question, we preprocessed our dataset from our third test to keep the
sub-clusters of the Betacoronavirus with at least 10 sequences (Test-4). This gives 124
sequences placed into four clusters (Embecovirus, Merbecovirus, Nobecovirus,
Sarbecovirus) (Table 3). The maximum classification accuracy of 98.4% with CGR at
k = 7 as the numerical representation is obtained using the Quadratic SVM model. The
respective MoDMap3D is shown in Figure 2(a). All six classifiers trained on 124
sequences predicted the label as Sarbecovirus, when used to predict the labels of 29
2019-nCoV sequences. For Test-5, we added 2019-nCoV with 29 sequences as the fifth
cluster, see Table 3. The maximum classification accuracy of 98.7% with CGR at k = 7
as the numerical representation is obtained using the Subspace Discriminant model. The
respective MoDMap3D is shown in Figure 2(b). In the MoDMap3D plot from Test-5,
2019-nCoV sequences are placed in a single distinct cluster, see Figure 2(b). As visually
suggested by the MoDMap3D (Figure 2(b)), the average inter-cluster distances confirm
that the 2019-nCoV sequences are closest to the Sarbecovirus (average distance 0.0556),
followed by Merbecovirus (0.0746), Embecovirus (0.0914), and Nobecovirus (0.0916). The
three closest sequences based on the average distances from all 2019-nCoV sequences are
RaTG13 (0.0203), bat-SL-CoVZC45 (0.0418), and bat-SL-CoVZXC21 (0.0428).

For Test-6, we classified Sarbecovirus (47 sequences) and 2019-nCoV (29 sequences)
clusters and achieved separation of the two clusters visually apparent in the
MoDMap3D, see Figure 2(c). Quantitatively, using 10-fold cross-validation, all six of
our classifiers report 100% classification accuracy. We generated a phylogenetic tree
based on all pairwise distances for the dataset in Test-6 that shows the separation of the
two clusters and relationships within the clusters (Figure 3). As observed in Test-5, the
phylogenetic tree shows that the 2019-nCoV sequences are closer to the bat
Betacoronavirus RaTG13 sequence collected from a bat host.
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Fig 2. MoDMap3D of (a) 124 Betacoronavirus sequences from Test-4 classified into
sub-genera, (b) 153 viral sequences from Test-5 classified into 4 sub-genera and
2019-nCoV, (c) 76 viral sequences from Test 6 classified into Sarbecovirus and
2019-nCoV.

Table 3. Genus to sub-genus classification accuracy scores of Betacoronavirus.

Dataset Clusters
Number of
sequences

Classification model
Classification

accuracy (in %)
Test-4:
Betacoronavirus;
124 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 30155
Mean length: 30300

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus

49
18
10
47

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

97.6
98.4
98.4
97.6
98.4
97.2
97.6

Test-5:
Betacoronavirus and
2019-nCoV;
153 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 29891
Mean length: 30217

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus
2019-nCoV

49
18
10
47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.6
97.4
97.4
97.4
98.7
96.1
97.5

Test-6:
Sarbecovirus and
2019-nCoV;
76 sequences;
Maximum length: 30309
Minimum length: 29452
Median length: 29748
Mean length: 29772

Sarbecovirus
2019-nCoV

47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
100
100
100
100
100
100
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Fig 3. The UPGMA phylogenetic tree using the Pearson Correlation Coefficient
generated pairwise distance matrix shows 2019-nCoV (Red) sequences proximal to the
bat Betacoronavirus RaTG13 (Blue) and bat SARS-like coronaviruses ZC45/ZXC21
(Green) in a distinct lineage from the rest of Sarbecovirus sequences
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Figure 4 shows the Chaos Game Representation (CGR) plots of different sequences
from the four different genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus,
Gammacoronavirus) of the family Coronaviridae. The CGR plots visually suggests and
the pairwise distances confirm that the genomic signature of the 2019-nCoV
Wuhan-Hu-1 (Figure 4(a)) is closer to the genomic signature of the BetaCov-RaTG13
(Figure 4(b); distance: 0.0204), followed by the genomic signatures of bat-SL-CoVZC45
(Figure 4(c); distance: 0.0417), bat-SL-CoVZXC21(Figure 4(d); distance: 0.0428),
Alphacoronavirus /DQ811787 PRCV ISU -1 (Figure 4(e); distance: 0.0672),
Gammacoronavirus / Infectious bronchitis virus NGA /A116E7/2006/FN430415
(Figure 4(f); distance: 0.0791), and Deltacoronavirus / PDCoV / USA / Illinois121
/2014/KJ481931 (Figure 4(g); distance: 0.0851).

Fig 4. Chaos Game Representation (CGR) plots at k = 7 of (a) 2019-nCoV / Wuhan
seafood market pneumonia virus isolate Wuhan-Hu-1/MN908947.3, (b)
Betacoronavirus / CoV / Bat / Yunnan / RaTG13 /EPI ISL 402131, (c)
Betacoronavirus / Bat SARS-like coronavirus isolate bat-SL-CoVZC45 /MG772933.1,
(d) Betacoronavirus / Bat SARS-like coronavirus isolate bat-SL-CoVZXC21
/MG772934.1, (e) Alphacoronavirus /DQ811787 PRCV ISU -1, (f) Gammacoronavirus
/ Infectious bronchitis virus NGA /A116E7/2006/FN430415, and (g) Deltacoronavirus
/ PDCoV / USA / Illinois121 /2014/KJ481931. Chaos plot vertices are assigned top
left Cytosine, top right Guanine, bottom left Adenine and bottom right Thymine.

The Spearman’s rank correlation coefficient tests were used to further confirm the
ML-DSP findings. The first test in Figure 5 shows the 2019-nCoV being compared to
the four genera; Alphacoronavirus, Betacoronavirus, Gammacoronavirus and
Deltacoronavirus. The 2019-nCoV showed the highest k-mer frequency correlation to
Betacoronavirus at k = 7 (Table 4), which is consistent with the ML-DSP results in
Test-3 (Table 2). The 2019-nCoV was then compared to all sub-genera within the
Betacoronavirus genus: Embecovirus, Merbecovirus, Nobecovirs and Sarbecovirus seen in
Figure 6. The Spearman’s rank test was again consistent with the ML-DSP results seen
in Table 3, as the k-mer frequencies at k = 7 showed the highest correlation to the
sub-genus Sarbecovirus (Table 4). These tests confirm the findings in ML-DSP and are
consistent with the 2019-nCoV virus as part of the sub-genus Sarbecovirus.
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Fig 5. Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the
2019-nCoV sequences versus the four genera: (a) Alphacoronavirus, ρ = 0.7; (b)
Betacoronavirus, ρ = 0.74; (c) Gammacoronavirus, ρ = 0.63 and (d) Deltacoronavirus, ρ
= 0.6. The color of each hexagonal bin in the plot represents the number of points (in
natural logarithm scale) overlapping at that position. All ρ values resulted in p-values
< 10−5 for the correlation test. By visually inspecting each hexbin scatterplot, the
degree of correlation is displayed by the variation in spread between the points.
Hexagonal points that are closer together and less dispersed as seen in (b) are more
strongly correlated and have less deviation.
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Fig 6. Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the
2019-nCoV sequences versus the four sub-genera: (a) Embecovirus, ρ = 0.59; (b)
Merbecovirus, ρ = 0.64; (c) Nobecovirus, ρ = 0.54 and (d) Sarbecovirus, ρ = 0.72. The
color of each hexagonal bin in the plot represents the number of points (in natural
logarithm scale) overlapping at that position. All ρ values resulted in p-values < 10−5

for the correlation test. By visually inspecting each hexbin scatterplot, the degree of
correlation is displayed by the variation in spread between the points. Hexagonal points
that are closer together and less dispersed as seen in (d) are more strongly correlated
and have less deviation.

February 8, 2020 13/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.03.932350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932350
http://creativecommons.org/licenses/by/4.0/


Table 4. Spearman’s rank correlation coefficient (ρ) values from Figure 5 and 6, for
which all p-values < 10−5. The strongest correlation value was found between
Betacoronavirus and Sarbecovirus when using the data sets from Test 3a from Table 2
and Test 4 from Table 3, respectively.

Dataset
Comparison Groups
2019-nCoV vs.

ρ value

Test-3a

Alphacoronavirus 0.70
Betacoronavirus 0.74
Gammacoronavirus 0.63
Deltacoronavirus 0.60

Test-4

Embecovirus 0.59
Merbecovirus 0.64
Nobecovirus 0.54
Sarbecovirus 0.72

Discussion

Prior work elucidating the evolutionary history of the Wuhan 2019-nCoV virus had
suggested an origin from bats prior to zoonotic transmission [12,34, 36, 39, 42, 61]. Most
early cases of individuals infected with 2019-nCoV had contact with the Huanan South
China Seafood Market [26–31]. Human-to-human transmission is confirmed, further
highlighting the need for continued intervention [34,61–63]. Still, the early 2019-nCoV
genomes that have been sequenced and uploaded are over 99% similar, suggesting these
infections result from a recent cross-species event [12,31,41].

These prior analyses relied upon alignment-based methods to identify relationships
between 2019-nCoV and other coronaviruses with nucleotide and amino acid sequence
similarities. When analyzing the conserved replicase domains of ORF1ab for
coronavirus species classification, nearly 94% of amino acid residues were identical to
SARS-CoV, yet overall genome similarity was only around 70%, confirming that
2019-nCoV was genetically different [63]. Within the RdRp region, it was found that
another bat coronavirus, RaTG13, was the closest relative to 2019-nCoV and formed a
distinct lineage from other bat SARS-like coronaviruses [39,41]. Other groups found
that two bat SARS-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, were
also closely related to 2019-nCoV [12,34–38]. There is a consensus that these three bat
viruses are most similar to 2019-nCoV, however, whether or not 2019-nCoV arose from
a recombination event is still unknown [39–41].

Regardless of the stance on recombination, current consensus holds that the
hypothesis of 2019-nCoV originating from bats is highly likely. Bats have been
identified as a reservoir of mammalian viruses and cross-species transmission to other
mammals, including humans [4, 7, 8, 10,13,64–66]. Prior to intermediary cross-species
infection, the coronaviruses SARS-CoV and MERS-CoV were also thought to have
originated in bats [24,25,35,68,69]. Many novel SARS-like coronaviruses have been
discovered in bats across China, and even in European, African and other Asian
countries [35,70–76]. With widespread geographic coverage, SARS-like coronaviruses
have likely been present in bats for a long period of time and novel strains of these
coronaviruses can arise through recombination [4]. Whether or not 2019-nCoV was
transmitted directly from bats, or from intermediary hosts, is still unknown, and will
require identification of 2019-nCoV in species other than humans, notably from the wet
market and surrounding area it is thought to have originated from [30]. While bats have
been reported to have been sold at the Huanan market, at this time, it is still unknown
if there were intermediary hosts involved prior to transmission to
humans [27,31,34,40,77]. Snakes had been proposed as an intermediary host for
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2019-nCoV based on relative synonymous codon usage bias studies between viruses and
their hosts [40], however, this claim has been disputed [78]. China CDC released
information about environmental sampling in the market and indicated that 33 of 585
samples had evidence of 2019-nCoV, with 31 of these positive samples taken from the
location where wildlife booths were concentrated, suggesting possible wildlife
origin [79,80]. Detection of SARS-CoV in Himalyan palm civets and horseshoe bats
identified 29 nucleotide sequences that helped trace the origins of SARS-CoV isolates in
humans to these intermediary species [13, 24, 39, 76]. Sampling additional animals at the
market and wildlife in the surrounding area may help elucidate whether intermediary
species were involved or not, as was possible with the SARS-CoV.

Viral outbreaks like nCoV-2019 demand timely analysis of genomic sequences to
guide the research in the right direction. This problem being time-sensitive requires
quick sequence similarity comparison against thousands of known sequences to narrow
down the candidates of possible origin. Alignment-based methods are known to be
time-consuming and can be challenging in cases where homologous sequence continuity
cannot be ensured. It is challenging (and sometimes impossible) for alignment-based
methods to compare a large number of sequences that are too different in their
composition. Alignment-free methods have been used successfully in the past to address
the limitations of the alignment-based methods [49–52]. The alignment-free approach is
quick and can handle a large number of sequences. Moreover, even the sequences
coming from different regions with different compositions can be easily compared
quantitatively, with equally meaningful results as when comparing homologous/similar
sequences. We use MLDSP-GUI (a variant of MLDSP with additional features), a
machine learning-based alignment-free method successfully used in the past for sequence
comparisons and analyses [51]. The main advantage alignment-free methodology offers
is the ability to analyze large datasets rapidly. In this study we confirm the taxonomy
of 2019-nCoV and, more generally, propose a method to efficiently analyze and classify
a novel unclassified DNA sequence against the background of a large dataset. We
namely use a “decision tree” approach (paralleling taxonomic ranks), and start with the
highest taxonomic level, train the classification models on the available complete
genomes, test the novel unknown sequences to predict the label among the labels of the
training dataset, move to the next taxonomic level, and repeat the whole process down
to the lowest taxonomic label.

Test-1 starts at the highest available level and classifies the viral sequences to the 11
families and Riboviria realm (Table 1). There is only one realm available in the viral
taxonomy, so all of the families that belong to the realm Riboviria are placed into a
single cluster and a random collection of 500 sequences are selected. No realm is defined
for the remaining 11 families. The objective is to train the classification models with the
known viral genomes and then predict the labels of the 2019-nCoV virus sequences. The
maximum classification accuracy score of 95% was obtained using the Quadratic SVM
model. This test demonstrates that MLDSP-GUI can distinguish between different viral
families. The trained models are then used to predict the labels of 29 2019-nCoV
sequences. As expected, all classification models correctly predict that the 2019-nCoV
sequences belong to the Riboviria realm, see Table 2. Test-2 is composed of 12 families
from the Riboviria, see Table 1, and the goal is to test if MLDSP-GUI is sensitive
enough to classify the sequences at the next lower taxonomic level. It should be noted
that as we move down the taxonomic levels, sequences become much more similar to
one another and the classification problem becomes challenging. MLDSP-GUI is still
able to distinguish between the sequences within the Riboviria realm with a maximum
classification accuracy of 91.1% obtained using the Linear Discriminant classification
model. When 2019-nCoV sequences are tested using the models trained on Test-2, all of
the models correctly predict the 2019-nCoV sequences as Coronaviridae (Table 2).
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Test-3a moves down another taxonomic level and classifies the Coronaviridae family to
four genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus),
see Table 1. MLDSP-GUI distinguishes sequences at the genus level with a maximum
classification accuracy score of 98%, obtained using the Linear Discriminant model. This
is a very high accuracy rate considering that no alignment is involved and the sequences
are very similar. All trained classification models correctly predict the 2019-nCoV as
Betacoronavirus, see Table 2. Test-3a has Betacoronavirus as the largest cluster and it
can be argued that the higher accuracy could be a result of this bias. To avoid bias, we
did an additional test removing the smallest cluster Gammacoronavirus and limiting the
size of remaining three clusters to the size of the cluster with the minimum number of
sequences i.e. 20 with Test-3b. MLDSP-GUI obtains 100% classification accuracy for
this additional test and still predicts all of the 2019-nCoV sequences as Betacoronavirus.
These tests confirm that the 2019-nCoV are from the genus Betacoronavirus.

Sequences become very similar at lower taxonomic levels (sub-genera and species).
Test-4, Test-5, and Test-6 investigate within the genus Betacoronavirus for sub-genus
classification. Test-4 is designed to classify Betacoronavirus into the four sub-genera
(Embecovirus, Merbecovirus, Nobecovirus, Sarbecovirus), see Table 3. MLDSP-GUI
distinguishes sequences at the sub-genus level with a maximum classification accuracy
score of 98.4%, obtained using the Quadratic SVM model. All of the classification
models trained on the dataset in Test-4 predicted the label of all 29 2019-nCoV
sequences as Sarbecovirus. This suggests substantial similarity between 2019-nCoV and
the Sarbecovirus sequences. Test-5 and Test-6 (see Table 3) are designed to verify that
2019-nCoV sequences can be differentiated from the known species in the
Betacoronavirus genus. MLDSP-GUI achieved a maximum classification score of 98.7%
for Test-5 and 100% for Test-6 using Subspace Discriminant classification model. This
shows that although 2019-nCoV and Sarbecovirus are closer on the basis of genomic
similarity (Test-4), they are still distinguishable from known species. Therefore, these
results suggest that 2019-nCoV may represent a genetically distinct species of
Sarbecovirus. All 2019-nCoV virues are visually seen in MoDMap3D generated from
Test-5 (see Figure 2(b)) as a closely packed cluster and it supports a fact that there is
99% similarity among these sequences [12,31]. The MoDMap3D generated from the
Test-5 (Figure 2(b)) visually suggests and the average distances from 2019-nCoV
sequences to all other sequences confirm that the 2019-nCoV sequences are most
proximal to the RaTG13 (distance: 0.0203), followed by the bat-SL-CoVZC45 (0.0418),
and bat-SL-CoVZX21 (0.0428). To confirm this proximity, a UPGMA phylogenetic tree
is computed from the PCC-based pairwise distance matrix of sequences in Test-6, see
Figure 3. The phylogenetic tree placed the RaTG13 sequence closest to the 2019-nCoV
sequences, followed by the bat-SL-CoVZC45 and bat-SL-CoVZX21 sequences. This
closer proximity represents the smaller genetic distances between these sequences and
aligns with the visual sequence relationships shown in the MoDMap3D of Figure 2(b).

We further confirm our results regarding the closeness of 2019-nCoV with the
sequences from the Betacoronavirus genus (especially sub-genus Sarbecovirus) by a
quantitative analysis based on the Spearman’s rank correlation coefficient tests.
Spearman’s rank correlation coefficient [57–60] tests were applied to the frequencies of
oligonucleotide segments, adjusting for the total number of segments, to measure the
degree and statistical significance of correlation between two sets of genomic sequences.
Spearman’s ρ value provides the degree of correlation between the two groups and their
k-mer frequencies. The 2019-nCoV virus was compared to all genera under the
Coronaviridae family and the k-mer frequencies showed the strongest correlation to the
genus Betacoronavirus, and more specifically Sarbecovirus. The Spearman tests
corroborate that the 2019-nCoV virus is part of the Sarbecovirus sub-genus, as shown by
CGR and ML-DSP. When analyzing sub-genera, it could be hard to classify at lower k
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values due to the short oligonucleotide frequencies not capturing enough information to
highlight the distinctions. Therefore despite the Spearman’s rank correlation coefficient
providing results for k = 1 to k = 7, the higher k-mer lengths provided more accurate
results, and k = 7 was used.

Attributes of the 2019-nCoV genomic signature are consistent with previously
reported mechanisms of innate immunity operating in bats as a host reservoir for
coronaviruses. Vertebrate genomes are known to have an under-representation of CG
dinucleotides in their genomes, otherwise known as CG suppression [81,82]. This feature
is thought to have been due to the accumulation of spontaneous deamination mutations
of methyl-cytosines over time [81]. As viruses are obligate parasites, evolution of viral
genomes is intimately tied to the biology of their hosts [83]. As host cells develop
strategies such as RNA interference and restriction-modification systems to prevent and
limit viral infections, viruses will continue to counteract these strategies [82–84].
Dinucleotide composition and biases are pervasive across the genome and make up a
part of the organism’s genomic signature [83]. These host genomes have evolutionary
pressures that shape the host genomic signature, such as the pressure to eliminate CG
dinucleotides within protein coding genes in humans [82]. Viral genomes have been
shown to mimic the same patterns of the hosts, including single-stranded positive-sense
RNA viruses, which suggests that many RNA viruses can evolve to mimic the same
features of their host’s genes and genomic signature [81–85]. As genomic composition,
specifically in mRNA, can be used as a way of discriminating self vs non-self RNA, the
viral genomes are likely shaped by the same pressures that influence the host
genome [82]. One such pressure on DNA and RNA is the APOBEC family of enzymes,
members of which are known to cause G to A mutations [85–87]. While these enzymes
primarily work on DNA, it has been demonstrated that these enzymes can also target
RNA viral genomes [86]. The APOBEC enzymes therefore have RNA editing capability
and may help contribute to the innate defence system against various RNA viruses [85].
This could therefore have a direct impact on the genomic signature of RNA viruses.
Additional mammalian mechanisms for inhibiting viral RNA have been highlighted for
retroviruses with the actions of zinc-finger antiviral protein (ZAP) [81]. ZAP targets
CG dinucleotide sequences, and in vertebrate host cells with the CG suppression in host
genomes, this can serve as a mechanism for the distinction of self vs non-self RNA and
inhibitory consequences [81]. Coronaviruses have A/U rich and C/G poor genomes,
which over time may have been, in part, a product of cytidine deamination and
selection against CG dinucleotides [88–90]. This is consistent with the fact that bats
serve as a reservoir for many coronaviruses and that bats have been observed to have
some of the largest and most diverse arrays of APOBEC genes in mammals [66,67]. The
Spearman’s rank correlation data and the patterns observed in the CGR images from
Figure 4, of the coronavirus genomes, including 2019-nCoV identify patterns such as
CG underepresentation, also present in vertebrate and, importantly, bat host genomes.

With human-to-human transmission confirmed and concerns for possible
asymptomatic transmission, there is a strong need for continued intervention to prevent
the spread of the virus [33,34,61–63]. Due to the high amino acid similarities between
2019-nCoV and SARS-CoV main protease essential for viral replication and processing,
anticoronaviral drugs targeting this protein and other potential drugs have been
identified using virtual docking to the protease for treatment of
2019-nCoV [29, 44, 45, 91–94]. The human ACE2 receptor has also been identified as the
potential receptor for 2019-nCoV and represents a potential target for treatment [42,43].

MLDSP-GUI is an ultra-fast, alignment-free method as is evidenced by the
time-performance of MLDSP-GUI for Test-1 to Test-6 given in Figure 7. MLDSP-GUI
took just 10.55 seconds to compute a pairwise distance matrix (including reading
sequences, computing magnitude spectra using DFT, and calculating the distance
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matrix using PCC combined) for the Test-1 (largest dataset used in this study with
3273 complete genomes). All of the tests combined (Test-1 to Test-6) are doable in
under 10 minutes including the computationally heavy 10-fold cross-validation, and
testing of 29 2019-nCoV sequences.

Fig 7. Time performance of MLDSP-GUI for Test1 to Test-6 (in seconds).

The results of our machine learning-based alignment-free analyses using
MLDSP-GUI support the hypothesis of a bat origin for 2019-nCoV and classify
2019-nCoV as sub-genus Sarbecovirus, within Betacoronavirus.

Conclusion

We provide additional evidence for the taxonomic classification of 2019-nCoV as
Sarbecovirus, within Betacoronavirus, as well as quantitative evidence supporting the
bat origin hypothesis. Our results are obtained through a comprehensive analysis of
over 5000 unique viral sequences, through an alignment-free analysis of their
two-dimensional genomic signatures, combined with a “decision tree” use of supervised
machine learning and confirmed by Spearman rank correlation coefficient analyses.

This study provides a proof of concept that alignment-free methods can deliver
highly-accurate real-time taxonomic predictions of yet unclassified new sequences,
ab initio, using raw DNA sequence data alone, and without the need for gene or genome
annotation. This suggests that such alignment-free approaches to comparative genomics
can be used to complement alignment-based approaches when timely taxonomic
classification is of the essence, such as at critical periods during viral outbreaks.
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