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Abstract

As of February 20, 2020, the 2019 novel coronavirus (renamed to COVID-19) spread to
30 countries with 2130 deaths and more than 75500 confirmed cases. COVID-19 is
being compared to the infamous SARS coronavirus, which resulted, between November
2002 and July 2003, in 8098 confirmed cases worldwide with a 9.6% death rate and 774
deaths. Though COVID-19 has a death rate of 2.8% as of 20 February, the 75752
confirmed cases in a few weeks (December 8, 2019 to February 20, 2020) are alarming,
with cases likely being under-reported given the comparatively longer incubation period.
Such outbreaks demand elucidation of taxonomic classification and origin of the virus
genomic sequence, for strategic planning, containment, and treatment. This paper
identifies an intrinsic COVID-19 genomic signature and uses it together with a machine
learning-based alignment-free approach for an ultra-fast, scalable, and highly accurate
classification of whole COVID-19 genomes. The proposed method combines supervised
machine learning with digital signal processing for genome analyses, augmented by a
decision tree approach to the machine learning component, and a Spearman’s rank
correlation coefficient analysis for result validation. These tools are used to analyze a
large dataset of over 5000 unique viral genomic sequences, totalling 61.8 million bp. Our
results support a hypothesis of a bat origin and classify COVID-19 as Sarbecovirus,
within Betacoronavirus. Our method achieves high levels of classification accuracy and
discovers the most relevant relationships among over 5,000 viral genomes within a few
minutes, ab initio, using raw DNA sequence data alone, and without any specialized
biological knowledge, training, gene or genome annotations. This suggests that, for
novel viral and pathogen genome sequences, this alignment-free whole-genome
machine-learning approach can provide a reliable real-time option for taxonomic
classification.

Introduction 1

Coronaviruses are single-stranded positive-sense RNA viruses that are known to contain 2

some of the largest viral genomes, up to around 32 kbp in length [1–5]. After increases 3
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in the number of coronavirus genome sequences available following efforts to investigate 4

the diversity in the wild, the family Coronaviridae now contains four genera 5

(International Committee on Taxonomy of Viruses, [6]). While those species that belong 6

to the genera Alphacoronavirus and Betacoronavirus can infect mammalian hosts, those 7

in Gammacoronavirus and the recently defined Deltacoronavirus mainly infect avian 8

species [4, 7–9]. Phylogenetic studies have revealed a complex evolutionary history, with 9

coronaviruses thought to have ancient origins and recent crossover events that can lead 10

to cross-species infection [8, 10–12]. Some of the largest sources of diversity for 11

coronaviruses belong to the strains that infect bats and birds, providing a reservoir in 12

wild animals for recombination and mutation that may enable cross-species transmission 13

into other mammals and humans [4, 7, 8, 10,13]. 14

Like other RNA viruses, coronavirus genomes are known to have genomic plasticity, 15

and this can be attributed to several major factors. RNA-dependent RNA polymerases 16

(RdRp) have high mutation rates, reaching from 1 in 1000 to 1 in 10000 nucleotides 17

during replication [7, 14,15]. Coronaviruses are also known to use a template switching 18

mechanism which can contribute to high rates of homologous RNA recombination 19

between their viral genomes [9, 16–20]. Furthermore, the large size of coronavirus 20

genomes is thought to be able to accommodate mutations to genes [7]. These factors 21

help contribute to the plasticity and diversity of coronavirus genomes today. 22

The highly pathogenic human coronaviruses, Severe Acute Respiratory Syndrome 23

coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus 24

(MERS-CoV) belong to lineage B (sub-genus Sarbecovirus) and lineage C (sub-genus 25

Merbecovirus) of Betacoronavirus, respectively [9, 21–23]. Both result from zoonotic 26

transmission to humans and lead to symptoms of viral pneumonia, including fever, 27

breathing difficulties, and more [24,25]. Recently, an unidentified pneumonia disease 28

with similar symptoms caused an outbreak in Wuhan and is thought to have started 29

from a local fresh seafood market [26–30]. This was later attributed to a novel 30

coronavirus deemed COVID-19 and represents the third major zoonotic human 31

coronavirus of this century [31]. As of February 20, confirmed cases have risen to 75752 32

globally, with infections reported in 30 countries [32]. As a result, the World Health 33

Organization set the risk assessment to “Very High” for China, where the bulk of the 34

cases are contained and “High” for regional and global levels [33]. Initiatives to identify 35

the source of transmission and possible intermediate animal vectors have commenced 36

since the genome sequence became publicly available. 37

From analyses employing whole genome to viral protein-based comparisons, the 38

COVID-19 strain is thought to belong to lineage B (Sarbecovirus) of Betacoronavirus. 39

From phylogenetic analysis of the RdRp protein, spike proteins, and full genomes of 40

COVID-19 and other coronaviruses, it was found that COVID-19 is most closely related 41

to two bat SARS-like coronaviruses, bat-SL-CoVZXC21 and bat-SL-CoVZC45, found in 42

Chinese horseshoe bats Rhinolophus sinicus [12, 34–38]. Along with the phylogenetic 43

data, the genome organization of COVID-19 was found to be typical of lineage B 44

(Sarbecovirus) Betacoronaviruses [34]. From phylogenetic analysis of full genome 45

alignment and similarity plots, it was found that COVID-19 has the highest similarity 46

to the bat coronavirus RaTG13 [39]. Close associations to bat coronavirus RaTG13 and 47

two bat SARS-like CoVs (ZC45 and ZXC21) are also supported in alignment-based 48

phylogenetic analyses [39]. Within the COVID-19 strains, over 99% sequence similarity 49

and a lack of diversity within these strains suggest a common lineage and source, with 50

support for recent emergence of the human strain [12, 31]. There is still ongoing debate 51

whether the COVID-19 strain arose following recombination with previously identified 52

bat and unknown coronaviruses [40] or arose independently as a new lineage to infect 53

humans [39]. In combination with the identification that the angiotensin converting 54

enzyme 2 (ACE2) protein is a receptor for COVID-19, as it is for SARS and other 55
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Sarbecovirus strains, the hypothesis that COVID-19 originated from bats is deemed very 56

likely [12,34,36,39,42–45]. 57

All analyses performed thus far have been alignment-based and rely on the 58

annotations of the viral genes. Though alignment-based methods have been successful in 59

finding sequence similarities, their application can be challenging in many cases [46, 47]. 60

It is realistically impossible to analyze thousands of complete genomes using 61

alignment-based methods due to the heavy computation time. Moreover, the alignment 62

demands the sequences to be continuously homologous which is not always the case. 63

Alignment-free methods [48–52] have been proposed in the past as an alternative to 64

address the limitations of the alignment-based methods. Comparative genomics beyond 65

alignment-based approaches have benefited from the computational power of machine 66

learning. Machine learning-based alignment-free methods have also been used 67

successfully for a variety of problems including virus classification [50–52]. An 68

alignment-free approach [50] was proposed for subtype classification of HIV-1 genomes 69

and achieved ∼ 97% classification accuracy. MLDSP [51], with the use of a broad range 70

of 1D numerical representations of DNA sequences, has also achieved very high levels of 71

classification accuracy with viruses. Even rapidly evolving, plastic genomes of viruses 72

such as Influenza and Dengue are classified down to the level of strain and subtype, 73

respectively with 100% classification accuracy. MLDSP-GUI [52] provides an option to 74

use 2D Chaos Game Representation (CGR) [53] as numerical representation of DNA 75

sequences. CGR’s have a longstanding use in species classification with identification of 76

biases in sequence composition [49,52,53]. MLDSP-GUI has shown 100% classification 77

accuracy for Flavivirus genus to species classification using 2D CGR as numerical 78

representation [52]. MLDSP and MLDSP-GUI have demonstrated the ability to identify 79

the genomic signatures (a species-specific pattern known to be pervasive throughout the 80

genome) with species level accuracy that can be used for sequence (dis)similarity 81

analyses. In this study, we use MLDSP [51] and MLDSP-GUI [52] with CGR as a 82

numerical representation of DNA sequences to assess the classification of COVID-19 83

from the perspective of machine learning-based alignment-free whole genome 84

comparison of genomic signatures. Using MLDSP and MLDSP-GUI, we confirm that 85

the COVID-19 belongs to the Betacoronavirus, while its genomic similarity to the 86

sub-genus Sarbecovirus supports a possible bat origin. 87

This paper shows how machine learning using intrinsic genomic signatures can 88

provide rapid alignment-free taxonomic classification of novel pathogens. Our method 89

delivers accurate classifications of COVID-19 without a priori biological knowledge, by 90

a simultaneous processing of the geometric space of all relevant viral genomes. The 91

main contributions are: 92

• Identifying intrinsic viral genomic signatures, and utilizing them for a real-time 93

and highly accurate machine learning-based classification of novel pathogen 94

sequences, such as COVID-19; 95

• A general-purpose bare-bones approach, which uses raw DNA sequences alone and 96

does not have any requirements for gene or genome annotation; 97

• The use of a “decision tree” approach to supervised machine learning (paralleling 98

taxonomic ranks), for successive refinements of taxonomic classification. 99

• A comprehensive and “in minutes” analysis of a dataset of 5538 unique viral 100

genomic sequences, for a total of 61.8 million bp analyzed, with high classification 101

accuracy scores at all levels, from the highest to the lowest taxonomic rank; 102

• The use of Spearman’s rank correlation analysis to confirm our results and the 103

relatedness of the COVID-19 sequences to the known genera of the family 104

Coronaviridae and the known sub-genera of the genus Betacoronavirus. 105
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Materials and methods 106

The Wuhan seafood market pneumonia virus (COVID-19 virus) isolate Wuhan-Hu-1 107

complete reference genome of 29903 bp was downloaded from the NCBI database on 108

January 23, 2020. Also, we downloaded all of the available 29 sequences of COVID-19 109

and the bat Betacoronavirus RaTG13 from the GISAID platform and two additional 110

sequences (bat-SL-CoVZC45, and bat-SL-CoVZXC21) from the NCBI on January 27, 111

2019. We downloaded all of the available viral sequences from the Virus-Host DB 112

(14688 sequences available on January 14, 2020). Virus-Host DB covers the sequences 113

from the NCBI RefSeq (release 96, September 9, 2019), and GenBank (release 233.0, 114

August 15, 2019). All sequences shorter than 2000 bp and longer than 50000 bp were 115

ignored to address possible issues arising from sequence length bias. 116

ML-DSP [51] and MLDSP-GUI [52] were used as the machine learning-based 117

alignment-free methods for complete genome analyses. As MLDSP-GUI is an extension 118

of the ML-DSP methodology, we will refer to the method hereafter as MLDSP-GUI. 119

Each genomic sequence is mapped into its respective genomic signal (a discrete numeric 120

sequence) using a numerical representation. For this study, we use a two-dimensional 121

k-mer (oligomers of length k) based numerical representation known as Chaos Game 122

Representation (CGR) [53]. The k-mer value 7 is used for all the experiments. The 123

value k = 7 achieved the highest accuracy scores for the HIV-1 subtype 124

classification [50] and this value could be relevant for other virus related analyses. The 125

magnitude spectra are then calculated by applying Discrete Fourier Transform (DFT) 126

to the genomic signals [51]. A pairwise distance matrix is then computed using the 127

Pearson Correlation Coefficient (PCC) [54] as a distance measure between magnitude 128

spectra. The distance matrix is used to generate the 3D Molecular Distance Maps 129

(MoDMap3D) [55] by applying the classical Multi-Dimensional Scaling (MDS) [56]. 130

MoDMap3D represents an estimation of the relationship among sequences based on the 131

genomic distances between the sequences. The feature vectors are constructed from the 132

columns of the distance matrix and are used as an input to train six supervised-learning 133

based classification models (Linear Discriminant, Linear SVM, Quadratic SVM, Fine 134

KNN, Subspace Discriminant, and Subspace KNN) [51]. A 10-fold cross-validation is 135

used to train, and test the classification models and the average of 10 runs is reported 136

as the classification accuracy. The trained machine learning models are then used to 137

test the COVID-19 sequences. The unweighted pair group method with arithmetic 138

mean (UPGMA) phylogenetic tree is also computed using the pairwise distance matrix. 139

In this paper, MLDSP-GUI is augmented by a decision tree approach to the 140

supervised machine learning component and a Spearman’s rank correlation coefficient 141

analysis for result validation. The decision tree parallels the taxonomic classification 142

levels, and is necessary so as to minimize the number of calls to the supervised classifier 143

module, as well as to maintain a reasonable number of clusters during each supervised 144

training session. For validation of MLDSP-GUI results using CGR as a numerical 145

representation, we use Spearman’s rank correlation coefficient [57–60], as follows. The 146

frequency of each k-mer is calculated in each genome. Due to differences in genome 147

length between species, proportional frequencies are computed by dividing each k-mer 148

frequency by the length of the respective sequence. To determine whether there is a 149

correlation between k-mer frequencies in COVID-19 and specific taxonomic groups, a 150

Spearman’s rank correlation coefficient test is conducted for k = 1 to k = 7. 151

Results 152

Table 1 provides the details of three datasets Test-1, Test-2, Test-3a and Test-3b used 153

for analyses with MLDSP-GUI. Each dataset’s composition (clusters with number of 154
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sequences), the respective sequence length statistics, and results of MLDSP-GUI after 155

applying 10-fold cross-validation as classification accuracy scores are shown. The 156

classification accuracy scores for all six classification models are shown with their 157

average, see Table 1. 158

As shown in Table 1, for the first test (Test-1), we organized the dataset of 159

sequences into 12 clusters (11 families, and Riboviria realm). Only the families with at 160

least 100 sequences were considered. The Riboviria cluster contains all families that 161

belong to the realm Riboviria. For the clusters with more than 500 sequences, we 162

selected 500 sequences at random. Our method can handle all of the available 14668 163

sequences, but using imbalanced clusters, in regard to the number of sequences, can 164

introduce an unwanted bias. After filtering out the sequences, our pre-processed dataset 165

is left with 3273 sequences organized into 12 clusters (Adenoviridae, Anelloviridae, 166

Caudovirales, Geminiviridae, Genomoviridae, Microviridae, Ortervirales, 167

Papillomaviridae, Parvoviridae, Polydnaviridae, Polyomaviridae, and Riboviria). We 168

used MLDSP-GUI with CGR as the numerical representation at k = 7. The maximum 169

classification accuracy of 94.9% is obtained using the Quadratic SVM model. The 170

respective MoDMap3D is shown in Figure 1(a). All six classification models trained on 171

3273 sequences were used to classify (predict the label of) the 29 COVID-19 sequences. 172

All of our machine learning-based models correctly predicted and confirmed the label as 173

Riboviria for all 29 sequences (Table 2). 174

Test-1 classified the COVID-19 virus as belonging to the realm Riboviria. The 175

second test (Test-2) is designed to classify COVID-19 among the families of the 176

Riboviria realm. We completed the dataset pre-processing using the same rules as in 177

Test-1 and obtained a dataset of 2779 sequences placed into the 12 families 178

(Betaflexiviridae, Bromoviridae, Caliciviridae, Coronaviridae, Flaviviridae, 179

Peribunyaviridae, Phenuiviridae, Picornaviridae, Potyviridae, Reoviridae, Rhabdoviridae, 180

and Secoviridae), see Table 1. MLDSP-GUI with CGR at k = 7 as the numerical 181

representation was used for the classification of the dataset in Test-2. The maximum 182

classification accuracy of 93.1% is obtained using the Quadratic SVM model. The 183

respective MoDMap3D is shown in Figure 1(b). All six classification models trained on 184

2779 sequences were used to classify (predict the label of) the 29 COVID-19 sequences. 185

All of our machine learning-based models predicted the label as Coronaviridae for all 29 186

sequences (Table 2) with 100% classification accuracy. Test-2 correctly predicted the 187

family of COVID-19 sequences as Coronaviridae. Test-3 performs the genus-level 188

classification. 189
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Table 1. Classification accuracy scores of viral sequences at different levels of
taxonomy.

Dataset Clusters
Number of
sequences

Classification
model

Classification
accuracy (in %)

Test-1:
11 families and Riboviria;
3273 sequences;
Maximum length: 49973
Minimum length: 2002
Median length: 7350
Mean length: 13173

Adenoviridae
Anelloviridae
Caudovirales
Geminiviridae
Genomoviridae
Microviridae
Ortervirales
Papillomaviridae
Parvoviridae
Polydnaviridae
Polyomaviridae
Riboviria

198
126
500
500
115
102
233
369
182
304
144
500

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.7
90.8
95
93.4
87.6
93.2
92

Test-2:
Riboviria families;
2779 sequences;
Maximum length: 31769
Minimum length: 2005
Median length: 7488
Mean length: 8607

Betaflexiviridae
Bromoviridae
Caliciviridae
Coronaviridae
Flaviviridae
Peribunyaviridae
Phenuiviridae
Picornaviridae
Potyviridae
Reoviridae
Rhabdoviridae
Secoviridae

121
122
403
210
222
166
107
437
196
470
192
133

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

91.2
89.2
93.1
90.3
89
90.4
90.5

Test-3a:
Coronaviridae;
208 sequences;
Maximum length: 31769
Minimum length: 9580
Median length: 29704
Mean length: 29256

Alphacoronavirus
Betacoronavirus
Deltacoronavirus
Gammacoronavirus

53
126
20
9

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.1
94.2
95.2
95.7
97.6
96.2
96.2

Test-3b:
Coronaviridae;
60 sequences;
Maximum length: 31429
Minimum length: 25402
Median length: 28475
Mean length: 28187

Alphacoronavirus
Betacoronavirus
Deltacoronavirus

20
20
20

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
93.3
93.3
95
95
95
95.3

All classifiers trained on Test-1, Test-2, Test-3a, and Test-3b datasets were used to
predict the labels of 29 COVID-19 viral sequences. All classifiers predicted the correct
labels for all of the sequences (Riboviria when trained using Test-1, Coronaviridae when
trained using Test-2, and Betacoronavirus when trained using Test-3a and Test-3b).

February 20, 2020 6/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.03.932350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932350
http://creativecommons.org/licenses/by/4.0/


Fig 1. MoDMap3D of (a) 3273 viral sequences from Test-1 representing 11 viral
families and realm Riboviria, (b) 2779 viral sequences from Test-2 classifying 12 viral
families of realm Riboviria, (c) 208 Coronaviridae sequences from Test-3a classified into
genera.

Table 2. Predicted taxonomic labels of 29 COVID-19 sequences.

Training
dataset

Testing
dataset

Classification
models

Prediction
accuracy (%)

Predicted
label

Test-1
29 COVID-19
Sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Riboviria
Riboviria
Riboviria
Riboviria
Riboviria
Riboviria

Test-2
29 COVID-19
Sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae
Coronaviridae

Test-3(a\b)
29 COVID-19
Sequences

Linear Discriminant
Linear SVM
Quadratic SVM
Fine KNN
Subspace Discriminant
Subspace KNN

100
100
100
100
100
100

Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus
Betacoronavirus

February 20, 2020 7/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.03.932350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932350
http://creativecommons.org/licenses/by/4.0/


The third test (Test-3a) is designed to classify the COVID-19 sequences at the genus 190

level. We considered 208 Coronaviridae sequences available under four genera 191

(Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus) (Table 1). 192

MLDSP-GUI with CGR at k = 7 as the numerical representation was used for the 193

classification of the dataset in Test-3a. The maximum classification accuracy of 98.1% is 194

obtained using the Linear Discriminant model and the respective MoDMap3D is shown 195

in Figure 1(c). All six classification models trained on 208 sequences were used to 196

classify (predict the label of) the 29 COVID-19 sequences. All of our machine 197

learning-based models predicted the label as Betacoronavirus for all 29 sequences (Table 198

2). To verify that the correct prediction is not an artifact of possible bias because of 199

larger Betacoronavirus cluster, we did a secondary Test-3b with cluster size limited to 200

the size of smallest cluster (after removing the Gammacoronavirus because it just had 9 201

sequences). The maximum classification accuracy of 100% is obtained using the Linear 202

Discriminant model for Test-3b. All six classification models trained on 60 sequences 203

were used to classify the 29 COVID-19 sequences. All of our machine learning-based 204

models predicted the label as Betacoronavirus for all 29 sequences (Table 2). This 205

secondary test showed that the possible bias is not significant enough to have any 206

impact on the classification performance. 207

Given confirmation that the COVID-19 belongs to the Betacoronavirus genus, there 208

now is a question of its origin and relation to the other viruses of the same genus. To 209

examine this question, we preprocessed our dataset from our third test to keep the 210

sub-clusters of the Betacoronavirus with at least 10 sequences (Test-4). This gives 124 211

sequences placed into four clusters (Embecovirus, Merbecovirus, Nobecovirus, 212

Sarbecovirus) (Table 3). The maximum classification accuracy of 98.4% with CGR at 213

k = 7 as the numerical representation is obtained using the Quadratic SVM model. The 214

respective MoDMap3D is shown in Figure 2(a). All six classifiers trained on 124 215

sequences predicted the label as Sarbecovirus, when used to predict the labels of 29 216

COVID-19 sequences. For Test-5, we added COVID-19 with 29 sequences as the fifth 217

cluster, see Table 3. The maximum classification accuracy of 98.7% with CGR at k = 7 218

as the numerical representation is obtained using the Subspace Discriminant model. The 219

respective MoDMap3D is shown in Figure 2(b). In the MoDMap3D plot from Test-5, 220

COVID-19 sequences are placed in a single distinct cluster, see Figure 2(b). As visually 221

suggested by the MoDMap3D (Figure 2(b)), the average inter-cluster distances confirm 222

that the COVID-19 sequences are closest to the Sarbecovirus (average distance 0.0556), 223

followed by Merbecovirus (0.0746), Embecovirus (0.0914), and Nobecovirus (0.0916). The 224

three closest sequences based on the average distances from all COVID-19 sequences are 225

RaTG13 (0.0203), bat-SL-CoVZC45 (0.0418), and bat-SL-CoVZXC21 (0.0428). 226

For Test-6, we classified Sarbecovirus (47 sequences) and COVID-19 (29 sequences) 227

clusters and achieved separation of the two clusters visually apparent in the 228

MoDMap3D, see Figure 2(c). Quantitatively, using 10-fold cross-validation, all six of 229

our classifiers report 100% classification accuracy. We generated a phylogenetic tree 230

based on all pairwise distances for the dataset in Test-6 that shows the separation of the 231

two clusters and relationships within the clusters (Figure 3). As observed in Test-5, the 232

phylogenetic tree shows that the COVID-19 sequences are closer to the bat 233

Betacoronavirus RaTG13 sequence collected from a bat host. 234
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Fig 2. MoDMap3D of (a) 124 Betacoronavirus sequences from Test-4 classified into
sub-genera, (b) 153 viral sequences from Test-5 classified into 4 sub-genera and
COVID-19, (c) 76 viral sequences from Test 6 classified into Sarbecovirus and
COVID-19.

Table 3. Genus to sub-genus classification accuracy scores of Betacoronavirus.

Dataset Clusters
Number of
sequences

Classification model
Classification

accuracy (in %)
Test-4:
Betacoronavirus;
124 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 30155
Mean length: 30300

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus

49
18
10
47

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

97.6
98.4
98.4
97.6
98.4
97.2
97.6

Test-5:
Betacoronavirus and
COVID-19;
153 sequences;
Maximum length: 31526
Minimum length: 29107
Median length: 29891
Mean length: 30217

Embecovirus
Merbecovirus
Nobecovirus
Sarbecovirus
COVID-19

49
18
10
47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

98.6
97.4
97.4
97.4
98.7
96.1
97.5

Test-6:
Sarbecovirus and
COVID-19;
76 sequences;
Maximum length: 30309
Minimum length: 29452
Median length: 29748
Mean length: 29772

Sarbecovirus
COVID-19

47
29

LinearDiscriminant
LinearSVM
QuadraticSVM
FineKNN
SubspaceDiscriminant
SubspaceKNN
AverageAccuracy

100
100
100
100
100
100
100
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Sarbecovirus EU371563 SARS coronavirus BJ182 8

COVID19 BetaCoV Wuhan WIV04 2019 EPI ISL 402124

COVID19 BetaCoV Wuhan HBCDC HB 01 2019 EPI ISL 402132

COVID19 BetaCoV Wuhan IVDC HB 01 2019 EPI ISL 402119

Sarbecovirus EU371560 SARS coronavirus BJ182a

COVID19 BetaCoV Nonthaburi 61 2020 EPI ISL 403962

Sarbecovirus JX993987 Bat coronavirus Rp Shaanxi2011

COVID19 BetaCoV Wuhan WIV05 2019 EPI ISL 402128

Sarbecovirus KF569996 Rhinolophus affinis coronavirus

Sarbecovirus AY864806 SARS coronavirus BJ202

Sarbecovirus AY357076 SARS coronavirus PUMC03

COVID19 BetaCoV Wuhan WIV06 2019 EPI ISL 402129

Sarbecovirus GQ153546 Bat SARS coronavirus HKU3 11

Sarbecovirus MG772934 1 Bat SARS like coronavirus isolate bat SL CoVZXC21 complete genome

Sarbecovirus GQ153542 Bat SARS coronavirus HKU3 7

COVID19 BetaCoV Wuhan IPBCAMS WH 04 2019 EPI ISL 403929

Sarbecovirus KF367457 Bat SARS like coronavirus WIV1

Sarbecovirus AY350750 SARS coronavirus PUMC01

Sarbecovirus GQ153541 Bat SARS coronavirus HKU3 6

Sarbecovirus EU371561 SARS coronavirus BJ182b

COVID19 BetaCoV USA IL1 2020 EPI ISL 404253

COVID19 BetaCoV Wuhan IPBCAMS WH 03 2019 EPI ISL 403930

Sarbecovirus AY864805 SARS coronavirus BJ162

Sarbecovirus GQ153544 Bat SARS coronavirus HKU3 9

COVID19 BetaCoV Wuhan Hu 1 2019 EPI ISL 402125

Sarbecovirus KC881005 Bat SARS like coronavirus RsSHC014

Sarbecovirus AY278491 SARS coronavirus HKU 39849

COVID19 BetaCoV Shenzhen HKU SZ 005 2020 EPI ISL 405839

Sarbecovirus MG772933 1 Bat SARS like coronavirus isolate bat SL CoVZC45 complete genome

COVID19 BetaCoV Guangdong 20SF028 2020 EPI ISL 403936

Sarbecovirus DQ412043 Bat SARS CoV Rm1 2004

COVID19 BetaCoV Guangdong 20SF025 2020 EPI ISL 403935

Sarbecovirus FJ882963 SARS coronavirus P2

Sarbecovirus GQ153540 Bat SARS coronavirus HKU3 5

Sarbecovirus AY357075 SARS coronavirus PUMC02

Sarbecovirus AY278488 SARS coronavirus BJ01

Sarbecovirus DQ640652 SARS coronavirus GDH BJH01

Sarbecovirus FJ882942 SARS coronavirus MA15 ExoN1

COVID19 MN908947 3 Wuhan seafood market pneumonia virus isolate Wuhan Hu 1 complete genome

Sarbecovirus GQ153548 Bat SARS coronavirus HKU3 13

COVID19 BetaCoV Guangdong 20SF014 2020 EPI ISL 403934

COVID19 BetaCoV Zhejiang WZ 02 2020 EPI ISL 404228

Sarbecovirus GQ153547 Bat SARS coronavirus HKU3 12

COVID19 BetaCoV Wuhan IPBCAMS WH 05 2020 EPI ISL 403928

COVID19 BetaCoV Guangdong 20SF012 2020 EPI ISL 403932

Sarbecovirus EU371559 SARS coronavirus ZJ02

COVID19 BetaCoV Wuhan IPBCAMS WH 02 2019 EPI ISL 403931

Sarbecovirus FJ882945 SARS coronavirus MA15

Sarbecovirus BetaCoV bat Yunnan RaTG13 2013 EPI ISL 402131

COVID19 BetaCoV Nonthaburi 74 2020 EPI ISL 403963

COVID19 BetaCoV Wuhan WIV07 2019 EPI ISL 402130

Sarbecovirus AY515512 SARS coronavirus HC SZ 61 03

Sarbecovirus FJ882954 SARS coronavirus ExoN1

Sarbecovirus JX993988 Bat coronavirus Cp Yunnan2011

COVID19 BetaCoV Guangdong 20SF013 2020 EPI ISL 403933

Sarbecovirus DQ412042 Bat SARS CoV Rf1 2004

Sarbecovirus AY278741 SARS coronavirus Urbani

Sarbecovirus EU371564 SARS coronavirus BJ182 12

COVID19 BetaCoV Wuhan WIV02 2019 EPI ISL 402127

COVID19 BetaCoV Wuhan IPBCAMS WH 01 2019 EPI ISL 402123

Sarbecovirus KC881006 Bat SARS like coronavirus Rs3367

COVID19 BetaCoV Zhejiang WZ 01 2020 EPI ISL 404227

Sarbecovirus GQ153545 Bat SARS coronavirus HKU3 10

COVID19 BetaCoV Wuhan IVDC HB 05 2019 EPI ISL 402121

Sarbecovirus AY394850 SARS coronavirus WHU

Sarbecovirus GQ153539 Bat SARS coronavirus HKU3 4

Sarbecovirus NC 004718 Severe acute respiratory syndrome related coronavirus

Sarbecovirus GQ153543 Bat SARS coronavirus HKU3 8

COVID19 BetaCoV USA WA1 2020 EPI ISL 404895

Sarbecovirus AY278554 SARS coronavirus CUHK W1

Sarbecovirus DQ648857 Bat CoV 279 2005

Sarbecovirus EU371562 SARS coronavirus BJ182 4

Sarbecovirus DQ648856 Bat CoV 273 2005

COVID19 BetaCoV Wuhan IVDC HB 04 2020 EPI ISL 402120

Sarbecovirus FJ882935 SARS coronavirus wtic MB

COVID19 BetaCoV Guangdong 20SF040 2020 EPI ISL 403937

Fig 3. The UPGMA phylogenetic tree using the Pearson Correlation Coefficient
generated pairwise distance matrix shows COVID-19 (Red) sequences proximal to the
bat Betacoronavirus RaTG13 (Blue) and bat SARS-like coronaviruses ZC45/ZXC21
(Green) in a distinct lineage from the rest of Sarbecovirus sequences
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Figure 4 shows the Chaos Game Representation (CGR) plots of different sequences 235

from the four different genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus, 236

Gammacoronavirus) of the family Coronaviridae. The CGR plots visually suggests and 237

the pairwise distances confirm that the genomic signature of the COVID-19 238

Wuhan-Hu-1 (Figure 4(a)) is closer to the genomic signature of the BetaCov-RaTG13 239

(Figure 4(b); distance: 0.0204), followed by the genomic signatures of bat-SL-CoVZC45 240

(Figure 4(c); distance: 0.0417), bat-SL-CoVZXC21(Figure 4(d); distance: 0.0428), 241

Alphacoronavirus /DQ811787 PRCV ISU -1 (Figure 4(e); distance: 0.0672), 242

Gammacoronavirus / Infectious bronchitis virus NGA /A116E7/2006/FN430415 243

(Figure 4(f); distance: 0.0791), and Deltacoronavirus / PDCoV / USA / Illinois121 244

/2014/KJ481931 (Figure 4(g); distance: 0.0851). 245

Fig 4. Chaos Game Representation (CGR) plots at k = 7 of (a) COVID-19 / Wuhan
seafood market pneumonia virus isolate Wuhan-Hu-1/MN908947.3, (b)
Betacoronavirus / CoV / Bat / Yunnan / RaTG13 /EPI ISL 402131, (c)
Betacoronavirus / Bat SARS-like coronavirus isolate bat-SL-CoVZC45 /MG772933.1,
(d) Betacoronavirus / Bat SARS-like coronavirus isolate bat-SL-CoVZXC21
/MG772934.1, (e) Alphacoronavirus /DQ811787 PRCV ISU -1, (f) Gammacoronavirus
/ Infectious bronchitis virus NGA /A116E7/2006/FN430415, and (g) Deltacoronavirus
/ PDCoV / USA / Illinois121 /2014/KJ481931. Chaos plot vertices are assigned top
left Cytosine, top right Guanine, bottom left Adenine and bottom right Thymine.

The Spearman’s rank correlation coefficient tests were used to further confirm the 246

ML-DSP findings. The first test in Figure 5 shows the COVID-19 being compared to 247

the four genera; Alphacoronavirus, Betacoronavirus, Gammacoronavirus and 248

Deltacoronavirus. The COVID-19 showed the highest k-mer frequency correlation to 249

Betacoronavirus at k = 7 (Table 4), which is consistent with the ML-DSP results in 250

Test-3 (Table 2). The COVID-19 was then compared to all sub-genera within the 251

Betacoronavirus genus: Embecovirus, Merbecovirus, Nobecovirs and Sarbecovirus seen in 252

Figure 6. The Spearman’s rank test was again consistent with the ML-DSP results seen 253

in Table 3, as the k-mer frequencies at k = 7 showed the highest correlation to the 254

sub-genus Sarbecovirus (Table 4). These tests confirm the findings in ML-DSP and are 255

consistent with the COVID-19 virus as part of the sub-genus Sarbecovirus. 256
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Fig 5. Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the
COVID-19 sequences versus the four genera: (a) Alphacoronavirus, ρ = 0.7; (b)
Betacoronavirus, ρ = 0.74; (c) Gammacoronavirus, ρ = 0.63 and (d) Deltacoronavirus, ρ
= 0.6. The color of each hexagonal bin in the plot represents the number of points (in
natural logarithm scale) overlapping at that position. All ρ values resulted in p-values
< 10−5 for the correlation test. By visually inspecting each hexbin scatterplot, the
degree of correlation is displayed by the variation in spread between the points.
Hexagonal points that are closer together and less dispersed as seen in (b) are more
strongly correlated and have less deviation.
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Fig 6. Hexbin scatterplots of the proportional k-mer (k = 7) frequencies of the
COVID-19 sequences versus the four sub-genera: (a) Embecovirus, ρ = 0.59; (b)
Merbecovirus, ρ = 0.64; (c) Nobecovirus, ρ = 0.54 and (d) Sarbecovirus, ρ = 0.72. The
color of each hexagonal bin in the plot represents the number of points (in natural
logarithm scale) overlapping at that position. All ρ values resulted in p-values < 10−5

for the correlation test. By visually inspecting each hexbin scatterplot, the degree of
correlation is displayed by the variation in spread between the points. Hexagonal points
that are closer together and less dispersed as seen in (d) are more strongly correlated
and have less deviation.

February 20, 2020 13/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.03.932350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932350
http://creativecommons.org/licenses/by/4.0/


Table 4. Spearman’s rank correlation coefficient (ρ) values from Figure 5 and 6, for
which all p-values < 10−5. The strongest correlation value was found between
Betacoronavirus and Sarbecovirus when using the data sets from Test 3a from Table 2
and Test 4 from Table 3, respectively.

Dataset
Comparison Groups
COVID-19 vs.

ρ value

Test-3a

Alphacoronavirus 0.70
Betacoronavirus 0.74
Gammacoronavirus 0.63
Deltacoronavirus 0.60

Test-4

Embecovirus 0.59
Merbecovirus 0.64
Nobecovirus 0.54
Sarbecovirus 0.72

Discussion 257

Prior work elucidating the evolutionary history of the Wuhan COVID-19 virus had 258

suggested an origin from bats prior to zoonotic transmission [12,34, 36, 39, 42, 61]. Most 259

early cases of individuals infected with COVID-19 had contact with the Huanan South 260

China Seafood Market [26–31]. Human-to-human transmission is confirmed, further 261

highlighting the need for continued intervention [34,61–63]. Still, the early COVID-19 262

genomes that have been sequenced and uploaded are over 99% similar, suggesting these 263

infections result from a recent cross-species event [12,31,41]. 264

These prior analyses relied upon alignment-based methods to identify relationships 265

between COVID-19 and other coronaviruses with nucleotide and amino acid sequence 266

similarities. When analyzing the conserved replicase domains of ORF1ab for 267

coronavirus species classification, nearly 94% of amino acid residues were identical to 268

SARS-CoV, yet overall genome similarity was only around 70%, confirming that 269

COVID-19 was genetically different [63]. Within the RdRp region, it was found that 270

another bat coronavirus, RaTG13, was the closest relative to COVID-19 and formed a 271

distinct lineage from other bat SARS-like coronaviruses [39,41]. Other groups found 272

that two bat SARS-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, were 273

also closely related to COVID-19 [12,34–38]. There is a consensus that these three bat 274

viruses are most similar to COVID-19, however, whether or not COVID-19 arose from a 275

recombination event is still unknown [39–41]. 276

Regardless of the stance on recombination, current consensus holds that the 277

hypothesis of COVID-19 originating from bats is highly likely. Bats have been identified 278

as a reservoir of mammalian viruses and cross-species transmission to other mammals, 279

including humans [4, 7, 8, 10, 13, 64–66]. Prior to intermediary cross-species infection, the 280

coronaviruses SARS-CoV and MERS-CoV were also thought to have originated in 281

bats [24,25,35,68,69]. Many novel SARS-like coronaviruses have been discovered in 282

bats across China, and even in European, African and other Asian countries [35, 70–76]. 283

With widespread geographic coverage, SARS-like coronaviruses have likely been present 284

in bats for a long period of time and novel strains of these coronaviruses can arise 285

through recombination [4]. Whether or not COVID-19 was transmitted directly from 286

bats, or from intermediary hosts, is still unknown, and will require identification of 287

COVID-19 in species other than humans, notably from the wet market and surrounding 288

area it is thought to have originated from [30]. While bats have been reported to have 289

been sold at the Huanan market, at this time, it is still unknown if there were 290

intermediary hosts involved prior to transmission to humans [27,31,34,40,77]. Snakes 291

had been proposed as an intermediary host for COVID-19 based on relative synonymous 292
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codon usage bias studies between viruses and their hosts [40], however, this claim has 293

been disputed [78]. China CDC released information about environmental sampling in 294

the market and indicated that 33 of 585 samples had evidence of COVID-19, with 31 of 295

these positive samples taken from the location where wildlife booths were concentrated, 296

suggesting possible wildlife origin [79,80]. Detection of SARS-CoV in Himalyan palm 297

civets and horseshoe bats identified 29 nucleotide sequences that helped trace the origins 298

of SARS-CoV isolates in humans to these intermediary species [13, 24, 39, 76]. Sampling 299

additional animals at the market and wildlife in the surrounding area may help elucidate 300

whether intermediary species were involved or not, as was possible with the SARS-CoV. 301

Viral outbreaks like COVID-19 demand timely analysis of genomic sequences to 302

guide the research in the right direction. This problem being time-sensitive requires 303

quick sequence similarity comparison against thousands of known sequences to narrow 304

down the candidates of possible origin. Alignment-based methods are known to be 305

time-consuming and can be challenging in cases where homologous sequence continuity 306

cannot be ensured. It is challenging (and sometimes impossible) for alignment-based 307

methods to compare a large number of sequences that are too different in their 308

composition. Alignment-free methods have been used successfully in the past to address 309

the limitations of the alignment-based methods [49–52]. The alignment-free approach is 310

quick and can handle a large number of sequences. Moreover, even the sequences 311

coming from different regions with different compositions can be easily compared 312

quantitatively, with equally meaningful results as when comparing homologous/similar 313

sequences. We use MLDSP-GUI (a variant of MLDSP with additional features), a 314

machine learning-based alignment-free method successfully used in the past for sequence 315

comparisons and analyses [51]. The main advantage alignment-free methodology offers 316

is the ability to analyze large datasets rapidly. In this study we confirm the taxonomy 317

of COVID-19 and, more generally, propose a method to efficiently analyze and classify a 318

novel unclassified DNA sequence against the background of a large dataset. We namely 319

use a “decision tree” approach (paralleling taxonomic ranks), and start with the highest 320

taxonomic level, train the classification models on the available complete genomes, test 321

the novel unknown sequences to predict the label among the labels of the training 322

dataset, move to the next taxonomic level, and repeat the whole process down to the 323

lowest taxonomic label. 324

Test-1 starts at the highest available level and classifies the viral sequences to the 11 325

families and Riboviria realm (Table 1). There is only one realm available in the viral 326

taxonomy, so all of the families that belong to the realm Riboviria are placed into a 327

single cluster and a random collection of 500 sequences are selected. No realm is defined 328

for the remaining 11 families. The objective is to train the classification models with the 329

known viral genomes and then predict the labels of the COVID-19 virus sequences. The 330

maximum classification accuracy score of 95% was obtained using the Quadratic SVM 331

model. This test demonstrates that MLDSP-GUI can distinguish between different viral 332

families. The trained models are then used to predict the labels of 29 COVID-19 333

sequences. As expected, all classification models correctly predict that the COVID-19 334

sequences belong to the Riboviria realm, see Table 2. Test-2 is composed of 12 families 335

from the Riboviria, see Table 1, and the goal is to test if MLDSP-GUI is sensitive 336

enough to classify the sequences at the next lower taxonomic level. It should be noted 337

that as we move down the taxonomic levels, sequences become much more similar to 338

one another and the classification problem becomes challenging. MLDSP-GUI is still 339

able to distinguish between the sequences within the Riboviria realm with a maximum 340

classification accuracy of 91.1% obtained using the Linear Discriminant classification 341

model. When COVID-19 sequences are tested using the models trained on Test-2, all of 342

the models correctly predict the COVID-19 sequences as Coronaviridae (Table 2). 343

Test-3a moves down another taxonomic level and classifies the Coronaviridae family to 344
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four genera (Alphacoronavirus, Betacoronavirus, Deltacoronavirus, Gammacoronavirus), 345

see Table 1. MLDSP-GUI distinguishes sequences at the genus level with a maximum 346

classification accuracy score of 98%, obtained using the Linear Discriminant model. This 347

is a very high accuracy rate considering that no alignment is involved and the sequences 348

are very similar. All trained classification models correctly predict the COVID-19 as 349

Betacoronavirus, see Table 2. Test-3a has Betacoronavirus as the largest cluster and it 350

can be argued that the higher accuracy could be a result of this bias. To avoid bias, we 351

did an additional test removing the smallest cluster Gammacoronavirus and limiting the 352

size of remaining three clusters to the size of the cluster with the minimum number of 353

sequences i.e. 20 with Test-3b. MLDSP-GUI obtains 100% classification accuracy for 354

this additional test and still predicts all of the COVID-19 sequences as Betacoronavirus. 355

These tests confirm that the COVID-19 are from the genus Betacoronavirus. 356

Sequences become very similar at lower taxonomic levels (sub-genera and species). 357

Test-4, Test-5, and Test-6 investigate within the genus Betacoronavirus for sub-genus 358

classification. Test-4 is designed to classify Betacoronavirus into the four sub-genera 359

(Embecovirus, Merbecovirus, Nobecovirus, Sarbecovirus), see Table 3. MLDSP-GUI 360

distinguishes sequences at the sub-genus level with a maximum classification accuracy 361

score of 98.4%, obtained using the Quadratic SVM model. All of the classification 362

models trained on the dataset in Test-4 predicted the label of all 29 COVID-19 363

sequences as Sarbecovirus. This suggests substantial similarity between COVID-19 and 364

the Sarbecovirus sequences. Test-5 and Test-6 (see Table 3) are designed to verify that 365

COVID-19 sequences can be differentiated from the known species in the 366

Betacoronavirus genus. MLDSP-GUI achieved a maximum classification score of 98.7% 367

for Test-5 and 100% for Test-6 using Subspace Discriminant classification model. This 368

shows that although COVID-19 and Sarbecovirus are closer on the basis of genomic 369

similarity (Test-4), they are still distinguishable from known species. Therefore, these 370

results suggest that COVID-19 may represent a genetically distinct species of 371

Sarbecovirus. All COVID-19 virues are visually seen in MoDMap3D generated from 372

Test-5 (see Figure 2(b)) as a closely packed cluster and it supports a fact that there is 373

99% similarity among these sequences [12,31]. The MoDMap3D generated from the 374

Test-5 (Figure 2(b)) visually suggests and the average distances from COVID-19 375

sequences to all other sequences confirm that the COVID-19 sequences are most 376

proximal to the RaTG13 (distance: 0.0203), followed by the bat-SL-CoVZC45 (0.0418), 377

and bat-SL-CoVZX21 (0.0428). To confirm this proximity, a UPGMA phylogenetic tree 378

is computed from the PCC-based pairwise distance matrix of sequences in Test-6, see 379

Figure 3. The phylogenetic tree placed the RaTG13 sequence closest to the COVID-19 380

sequences, followed by the bat-SL-CoVZC45 and bat-SL-CoVZX21 sequences. This 381

closer proximity represents the smaller genetic distances between these sequences and 382

aligns with the visual sequence relationships shown in the MoDMap3D of Figure 2(b). 383

We further confirm our results regarding the closeness of COVID-19 with the 384

sequences from the Betacoronavirus genus (especially sub-genus Sarbecovirus) by a 385

quantitative analysis based on the Spearman’s rank correlation coefficient tests. 386

Spearman’s rank correlation coefficient [57–60] tests were applied to the frequencies of 387

oligonucleotide segments, adjusting for the total number of segments, to measure the 388

degree and statistical significance of correlation between two sets of genomic sequences. 389

Spearman’s ρ value provides the degree of correlation between the two groups and their 390

k-mer frequencies. The COVID-19 virus was compared to all genera under the 391

Coronaviridae family and the k-mer frequencies showed the strongest correlation to the 392

genus Betacoronavirus, and more specifically Sarbecovirus. The Spearman’s rank tests 393

corroborate that the COVID-19 virus is part of the Sarbecovirus sub-genus, as shown by 394

CGR and ML-DSP. When analyzing sub-genera, it could be hard to classify at lower k 395

values due to the short oligonucleotide frequencies not capturing enough information to 396
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highlight the distinctions. Therefore despite the Spearman’s rank correlation coefficient 397

providing results for k = 1 to k = 7, the higher k-mer lengths provided more accurate 398

results, and k = 7 was used. 399

Attributes of the COVID-19 genomic signature are consistent with previously 400

reported mechanisms of innate immunity operating in bats as a host reservoir for 401

coronaviruses. Vertebrate genomes are known to have an under-representation of CG 402

dinucleotides in their genomes, otherwise known as CG suppression [81,82]. This feature 403

is thought to have been due to the accumulation of spontaneous deamination mutations 404

of methyl-cytosines over time [81]. As viruses are obligate parasites, evolution of viral 405

genomes is intimately tied to the biology of their hosts [83]. As host cells develop 406

strategies such as RNA interference and restriction-modification systems to prevent and 407

limit viral infections, viruses will continue to counteract these strategies [82–84]. 408

Dinucleotide composition and biases are pervasive across the genome and make up a 409

part of the organism’s genomic signature [83]. These host genomes have evolutionary 410

pressures that shape the host genomic signature, such as the pressure to eliminate CG 411

dinucleotides within protein coding genes in humans [82]. Viral genomes have been 412

shown to mimic the same patterns of the hosts, including single-stranded positive-sense 413

RNA viruses, which suggests that many RNA viruses can evolve to mimic the same 414

features of their host’s genes and genomic signature [81–85]. As genomic composition, 415

specifically in mRNA, can be used as a way of discriminating self vs non-self RNA, the 416

viral genomes are likely shaped by the same pressures that influence the host 417

genome [82]. One such pressure on DNA and RNA is the APOBEC family of enzymes, 418

members of which are known to cause G to A mutations [85–87]. While these enzymes 419

primarily work on DNA, it has been demonstrated that these enzymes can also target 420

RNA viral genomes [86]. The APOBEC enzymes therefore have RNA editing capability 421

and may help contribute to the innate defence system against various RNA viruses [85]. 422

This could therefore have a direct impact on the genomic signature of RNA viruses. 423

Additional mammalian mechanisms for inhibiting viral RNA have been highlighted for 424

retroviruses with the actions of zinc-finger antiviral protein (ZAP) [81]. ZAP targets 425

CG dinucleotide sequences, and in vertebrate host cells with the CG suppression in host 426

genomes, this can serve as a mechanism for the distinction of self vs non-self RNA and 427

inhibitory consequences [81]. Coronaviruses have A/U rich and C/G poor genomes, 428

which over time may have been, in part, a product of cytidine deamination and 429

selection against CG dinucleotides [88–90]. This is consistent with the fact that bats 430

serve as a reservoir for many coronaviruses and that bats have been observed to have 431

some of the largest and most diverse arrays of APOBEC genes in mammals [66,67]. The 432

Spearman’s rank correlation data and the patterns observed in the CGR images from 433

Figure 4, of the coronavirus genomes, including COVID-19 identify patterns such as CG 434

underepresentation, also present in vertebrate and, importantly, bat host genomes. 435

With human-to-human transmission confirmed and concerns for possible 436

asymptomatic transmission, there is a strong need for continued intervention to prevent 437

the spread of the virus [33,34,61–63]. Due to the high amino acid similarities between 438

COVID-19 and SARS-CoV main protease essential for viral replication and processing, 439

anticoronaviral drugs targeting this protein and other potential drugs have been 440

identified using virtual docking to the protease for treatment of 441

COVID-19 [29, 44, 45, 91–94]. The human ACE2 receptor has also been identified as the 442

potential receptor for COVID-19 and represents a potential target for treatment [42, 43]. 443

MLDSP-GUI is an ultra-fast, alignment-free method as is evidenced by the 444

time-performance of MLDSP-GUI for Test-1 to Test-6 given in Figure 7. MLDSP-GUI 445

took just 10.55 seconds to compute a pairwise distance matrix (including reading 446

sequences, computing magnitude spectra using DFT, and calculating the distance 447

matrix using PCC combined) for the Test-1 (largest dataset used in this study with 448
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3273 complete genomes). All of the tests combined (Test-1 to Test-6) are doable in 449

under 10 minutes including the computationally heavy 10-fold cross-validation, and 450

testing of 29 COVID-19 sequences. 451

Fig 7. Time performance of MLDSP-GUI for Test1 to Test-6 (in seconds).

The results of our machine learning-based alignment-free analyses using 452

MLDSP-GUI support the hypothesis of a bat origin for COVID-19 and classify 453

COVID-19 as sub-genus Sarbecovirus, within Betacoronavirus. 454

Conclusion 455

This study provides an alignment-free method based on intrinsic genomic signatures 456

that can deliver highly-accurate real-time taxonomic predictions of yet unclassified new 457

sequences, ab initio, using raw DNA sequence data alone and without the need for gene 458

or genome annotation. We use this method to provide evidence for the taxonomic 459

classification of COVID-19 as Sarbecovirus, within Betacoronavirus, as well as 460

quantitative evidence supporting a bat origin hypothesis. Our results are obtained 461

through a comprehensive analysis of over 5000 unique viral sequences, through an 462

alignment-free analysis of their two-dimensional genomic signatures, combined with a 463

“decision tree” use of supervised machine learning and confirmed by Spearman’s rank 464

correlation coefficient analyses. This study suggests that such alignment-free approaches 465

to comparative genomics can be used to complement alignment-based approaches when 466

timely taxonomic classification is of the essence, such as at critical periods during novel 467

viral outbreaks. 468

February 20, 2020 18/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.03.932350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932350
http://creativecommons.org/licenses/by/4.0/


Supporting information 469

S1 Table. Spearman’s rank correlation coefficient (ρ) value for k = 1 to 470

k = 7. 471

S2 Table. Accession IDs of the Sequences downloaded from the GISAID. 472

S3 Table. Accession IDs of sequences used in Test-1 to Test-6. 473

Acknowledgments 474

The authors are appreciative of the review of a manuscript draft by Hailie Pavanel. 475

References

1. Enjuanes L, Brian D, Cavanagh D, Holmes K, Lai MMC, Laude H, et al.
Coronaviridae. In: Regenmortel MV, Fauquet CM, Bishop DHL, Carstens EB,
Estes MK, Lemon SM, et al., editors. Virus Taxonomy. Seventh Report of the
International Committee on Taxonomy of Viruses, Academic Press; 2000. pp.
835–849.

2. Weiss SR, Navas-Martin S. Coronavirus Pathogenesis and the Emerging
Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiol. Mol. Biol.
2005; Rev. 69: 635–664.

3. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic
Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology. 2016;
24: 490–502.

4. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature
Reviews Microbiology. 2019; 17: 181–5192.

5. Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge.
Virology Journal. 2019; 16.

6. de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, et al.
Family Coronaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ,
editors. Virus taxonomy. Ninth report of the international committee on
taxonomy of viruses, Elsevier Academic Press; 2012. pp. 806–828.

7. Woo PCY, Lau SKP, Huang Y, Yuen KY. Coronavirus diversity, phylogeny and
interspecies jumping. Experimental Biology and Medicine. 2009; 234: 1117–1127.

8. Wertheim JO, Chu DKW, Peiris JSM, Kosakovsky Pond SL, Poon LLM. A Case
for the Ancient Origin of Coronaviruses. J. Virol. 2013; 87: 7039–7045.

9. Luk HKH, Li X, Fung J, Lau SKP, Woo PCY. Molecular epidemiology, evolution
and phylogeny of SARS coronavirus. Infection, Genetics and Evolution. 2019; 71:
21–30.

10. Vijaykrishna D, Smith GJD, Zhang JX, Peiris JSM, Chen H, Guan Y.
Evolutionary Insights into the Ecology of Coronaviruses. J. Virol. 2007; 81:
4012–4020.

February 20, 2020 19/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.03.932350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932350
http://creativecommons.org/licenses/by/4.0/


11. Lau SK, Li KS, Tsang AK, Shek CT, Wang M, Choi GK, et al. Recent
Transmission of a Novel Alphacoronavirus, Bat Coronavirus HKU10, from
Leschenault’s Rousettes to Pomona Leaf-Nosed Bats: First Evidence of
Interspecies Transmission of Coronavirus between Bats of Different Suborders. J.
Virol. 2012; 86: 11906–11918.

12. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and
epidemiology of 2019 novel coronavirus: implications for virus origins and
receptor binding. Lancet. 2020; doi:10.1016/S0140-6736(20)30251-8.

13. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. Bats are natural
reservoirs of SARS-like coronaviruses. Science. 2005; 310: 676–679.

14. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses:
Patterns and determinants. Nature Reviews Genetics. 2008; 9: 267–276.

15. Jenkins GM, Rambaut A, Pybus OG, Holmes EC. Rates of molecular evolution
in RNA viruses: A quantitative phylogenetic analysis. J. Mol. Evol. 2002; 54:
156–165.

16. Nagy PD, Simon AE. New insights into the mechanisms of RNA recombination.
Virology. 1997; 235: 1–9.

17. Rowe CL, Fleming JO, Nathan MJ, Sgro JY, Palmenberg AC, Baker SC.
Generation of coronavirus spike deletion variants by high-frequency recombination
at regions of predicted RNA secondary structure. J. Virol. 1997; 71: 6183–90.

18. Cavanagh D. Coronaviridae: a review of coronaviruses and toroviruses. In:
Schmidt A, Wolff MH, Weber O, editors. Coronaviruses with Special Emphasis
on First Insights Concerning SARS. Birkhäuser-Verlag, 2005; pp. 1–54.
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