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Abstract: 37 

Glioblastoma (GBM) is a hypervascular and aggressive primary malignant tumor of the central 38 
nervous system. Recent investigations showed that traditional therapies along with antiangiogenic 39 

therapies failed due to the development of post-therapy resistant and recurrent GBM. Our 40 
investigations show that there are changes in the cellular and metabolic compositions in the tumor 41 
microenvironment (TME). It can be said that tumor cell-directed therapies are ineffective and we 42 
need to rethink how to treat GBM.  43 

We hypothesize that the composition of TME-associated cells will be different based on the 44 

therapy and therapeutic agents, and TME-targeting therapy will be better to decrease recurrence 45 
and improve survival. Therefore, the purpose of this study is to determine the changes in the TME 46 
in respect of T-cell population, M1 and M2 macrophage polarization status, and MDSC population 47 
following different treatments in a syngeneic model of GBM. In addition to these parameters, 48 

tumor growth and survival were also studied following different treatments.  49 

The results showed that changes in the TME-associated cells were dependent on the therapeutic 50 

agents and the TME-targeting therapy improved the survival of the GBM bearing animals.  51 

The current GBM therapies should be revisited to add agents to prevent the accumulation of bone 52 
marrow-derived cells in the TME or to prevent the effect of immune-suppressive myeloid cells in 53 

causing alternative neovascularization, the revival of glioma stem cells, and recurrence. Instead of 54 
concurrent therapy, a sequential strategy would be best to target TME-associated cells. 55 

 56 

Keywords: Glioblastoma (GBM), Tumor microenvironment (TME), TME-associated cells, 57 
Radiation, Temozolomide, Myeloid cells, check-point inhibitor, arachidonic acid metabolites.  58 
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Introduction: 74 

Even with current treatment strategies and the addition of expensive immunotherapies or 75 
antiangiogenic therapies, the prognosis of glioblastoma (GBM) is dismal (1-3). GBM is a very 76 

hypervascular and invasive malignant tumor. So much so that, current treatments consisting of 77 
surgery, radiation and chemotherapies with or without adjuvant still show no hope to patients (4-78 
6). Interestingly, recent investigations demonstrated that traditional therapies along with newer 79 
antiangiogenic therapies are changing the cellular as well as the metabolic compositions of the 80 
tumor microenvironment (TME) tremendously (7-11). Therefore, newer treatment strategies 81 

targeting TME should be considered along with targeting tumor cells in GBM.   82 

The TME is composed of tumor cells, stromal cells, cells from the bone marrow, and the 83 
extracellular matrix (12). Except for a few cell types, such as normal epithelial cells, myoepithelial 84 
cells, dendritic cells, M1 macrophages, N1 neutrophils and CD8 T-cells, most of the stromal and 85 

bone marrow-derived cells promote tumor growth and metastasis (10, 11, 13-15). In fact, platelets 86 
have also been shown to promote tumor growth (16-19). Therefore, it is imperative to include 87 

targeting tumor-associated cells in the current standard regimen of therapies for malignant tumors 88 
such as GBM.  However, there have been limited investigations done to understand the changes in 89 
the TME following standard as well as experimental therapies in GBM.  90 

Tumor induction and evolution is driven by the interplay between stromal and immune cells within 91 
the TME. Tumor-associated macrophages (TAM), a critical component of the TME, have a 92 

differential function in respect to tumor growth and metastasis (20-22). TAM recruitment, 93 
localization, and phenotypes are regulated by the tumor-secreted factors at the hypoxic areas of 94 
the tumor (23, 24). Depending on the stimuli, macrophages undergo a series of functional 95 

reprogramming as described by two different polarization states, known as M1 and M2 (24, 25). 96 
Phenotypically, M1 macrophages express high levels of major histocompatibility complex 97 

class II (MHC II), the CD68 marker, and co-stimulatory molecules CD80 and CD86. On the 98 
other hand, M2 macrophages express high levels of MHC II, CD163, CD206/MRC1, Arg-1 99 

(mouse only) and others. In the TME, classically activated macrophages, also known as M1 100 
macrophages, are activated by tumor-derived cytokines such as granulocyte monocyte colony 101 

stimulating factor (GM-CSF), interferon-γ, and tumor necrosis factor (TNF). These M1 102 
macrophages play an important role as inducer and effector cells in polarized type 1 helper T cell 103 
(Th1) responses. These Th1 cells drive cellular immunity to eliminate cancerous cells. To 104 

accomplish Th1 activation, M1 macrophages produce high amounts of IL-12 and IL-23, and low 105 
amounts of IL-10, reactive oxygen and nitrogen species, and IL-1β, TNF, and IL-6 inflammatory 106 

cytokines (25, 26). M1 macrophages also release anti-tumor chemokines and chemokines such as 107 
CXCL-9 and CXCL-10 that attract Th1 cells, (27-29). Th1 cells drive cellular immunity to 108 
eliminate cancerous cells. On the other hand, M2-polarized macrophages, also known as 109 

alternatively activated macrophages are induced by IL-4, IL-13, IL-21 and IL-33 cytokines in the 110 
TME (30, 31). M2 macrophages release high levels of IL-10 and, transforming growth factor-beta 111 
(TGF-β) and low levels of IL-12 and IL-23 (type 2 cytokines). M2 macrophages also produce 112 
CCL-17, CCL-22, and CCL-24 chemokines that regulate the recruitment of Tregs, Th2, 113 

eosinophils, and basophils (type-2 pathway) in tumors (27, 29). The Th2 response is associated 114 
with the anti-inflammatory and immunosuppressive microenvironment, which promotes tumor 115 
growth. 116 

Recent investigations including our own indicated the involvement of myeloid-derived suppressor 117 
cells (MDSCs) in the primary as well as metastatic TME (32-36). MDSCs are a heterogeneous 118 
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population of immature myeloid cells, generated from bone marrow hematopoietic precursor cells 119 

that fail to undergo terminal differentiation to mature monocytes or granulocytes. They are divided 120 
broadly into monocytic (CD11b+/Gr1+/Ly6C+) and granulocytic (CD11b+/Gr1+/Ly6G+) (37-121 

39). During tumor progression, MDSCs are greatly expanded and they exhibit remarkable 122 
immunosuppressive and tumorigenic activities. They are directly implicated in the escalation of 123 
tumor metastases by partaking in the epithelial-mesenchymal transition (EMT) and,  tumor cell 124 
invasion, while also promoting angiogenesis and formation of the pre-metastatic niche (13, 33, 125 
34). MDSCs were demonstrated to promote tumor invasion and metastasis by two mechanisms: 126 

(i) increasing production of multiple matrix metalloproteinases (MMPs) that degrade the extra-127 
cellular matrix and chemokines that establish a pre-metastatic milieu (40, 41), and (ii) merging 128 
with tumor cells (42, 43).  129 

From the above discussion, it is obvious that TME-associated bone marrow-derived cells are 130 

important in treatment resistance, invasion and metastasis. Therefore, the purpose of this study is 131 
to determine the changes in the TME in respect of T-cell population, M1 and M2 macrophage 132 

polarization status, and MDSC population following different treatments in a syngeneic model of 133 
GBM. In addition to these parameters, tumor growth and survival were also studied following 134 
different treatments. In this study, we have used the following agents: a drug that alters 135 

hydroxylase pathways of arachidonic acid metabolism (HET0016 and its different analogs), 136 
colony stimulating factor 1 receptor (CSF1R) inhibitor (GW2580), anti PD-1 (program death) 137 

antibody, CXCR2 receptor blockers (Navarixin and SB225002), temozolomide (TMZ), 138 
irradiation, VEGFR2 receptor tyrosine kinase inhibitor (Vatalanib), and conditional CSF1R 139 
knockout mice plus different treatments.  140 

 141 

Materials and methods: 142 

Ethics statement: All the experiments were performed according to the National Institutes of 143 
Health (NIH) guidelines and regulations. The Institutional Animal Care and Use Committee 144 

(IACUC) of Augusta University (protocol #2014–0625) approved all the experimental procedures. 145 
All animals were kept under regular barrier conditions at room temperature with exposure to light 146 

for 12 hours and dark for 12 hours. Food and water were offered ad libitum. All efforts were made 147 
to ameliorate the suffering of animals. CO2 with a secondary method was used to euthanize 148 
animals for tissue collection. 149 

Materials: HPßCD (2-hydroxy Propyl-β-Cyclodextrin) was purchased from Sigma-Aldrich (St. 150 
Louis, MO), cell culture media was from Thermo Scientific (Waltham, MA), and fetal bovine 151 

serum was purchased from Hyclone (Logan, Utah). HET0016 was made by Dr. Levedyeva in the 152 
Department of Chemistry, Augusta University with a purity of more than 97%. Cell culture grade 153 

DMSO was purchased from Fischer Scientific (PA). We made the complex of HET0016 plus 154 
HPßCD as per our previous publication (8). VEGFR2 tyrosine kinase inhibitor (Vatalanib) and 155 
colony stimulating factor 1 receptor (CSF1R) inhibitor (GW2580) were purchased from LC 156 
Laboratories, Woburn, MA. SB225002 (CXCR2 inhibitor) was purchased from Selleckchem, 157 
Houston, TX. Navarixin was purchased from MedKoo bioscience Inc, Morrisville, NC. All flow 158 

antibodies are from Bio Legend, San Diego, CA. All antibodies for western blotting, 159 
immunohistochemistry, and immunofluorescence were purchased from Santa Cruz (total-CXCR2 160 
and anti-GAPDH), R&D systems (anti-hCXCR2), Thermo Scientific (anti-Laminin), and Sigma 161 
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Aldrich (β-actin and FITC-conjugated tomato lectin). All culture media were purchased from 162 

Corning and GE Healthcare Life Sciences. 163 

Tumor cells and orthotopic animal model of GBM: To determine the in vivo effect of different 164 

treatments, orthotopic GBM models using syngeneic GL261 cells in wild type and CSF1R 165 
conditional knockout C57BL/6 mice were prepared according to our published methods (8, 10, 11, 166 
44). In short, luciferase positive GL261 cells were grown in standard growth media (RPMI-1640 167 
plus 10% FBS) and collected in serum-free media on the day of implantation. After preparation 168 
and drilling a hole at 2.25 mm (athymic nude mice) to the right and 2 mm posterior to the bregma, 169 

taking care not to penetrate the dura, a 10 µL Hamilton syringe with a 26G-needle containing 170 
tumor cells (10,000) in a volume of 3 µl was lowered to a depth of 4 mm and then raised to a depth 171 
of 3 mm. During and after the injection, a careful note was made for any reflux from the injection 172 
site. After completing the injection, we waited 2-3 minutes before withdrawing the needle 1 mm 173 

at a time in a stepwise manner. The surgical hole was sealed with bone wax. Finally, the skull was 174 
swabbed with betadine before suturing the skin (45-47). There were at least three animals in each 175 

group of treatment. Tumor growth was determined by optical imaging (bioluminescence imaging 176 
after injecting luciferin) on days 8, 15 and 22. For flow cytometry of tumor-associated cells, 177 
animals were euthanized on day 22 after the last optical imaging. Both male and female animals 178 

were used. 179 

Treatments: All treatments were started on day 8 following tumor implantation and continued for 180 

two weeks. The following treatment groups were used to determine the TME associated T-cells, 181 
different macrophages, MDSCs present by flow cytometry; 1) vehicle, 2) HET0016 complexed 182 
with HPßCD at 10mg/kg/day for 5 days/week, intravenous (IV), 3) GW2580, 160mg/kg/day 183 

3day/week, oral, 4) temozolomide (TMZ) 50mg/kg/day, 3days/week, oral, 5) Vatalanib 184 
50mg/kg/day, 5 days/week, oral, 6) Navarixin, 10mg/kg/day, 5 days/week, intraperitoneal (IP), 7) 185 

anti-PD-1 antibody, 200µg/dose, 2 doses/week, IP, 8) image guided radiation therapy, 186 
10Gy/dose/week for two weeks, 9) combined HET0016 plus GW2580, 10) combined HET0016 187 

plus GW2580 plus anti- PD-1 antibody.  188 

Making of a conditional knockout mouse model of bone marrow-derived CSF1R+ myeloid 189 
cells: Heterozygous CSF1R flox/wt/MX1-Cre+ male was mated with a heterozygous CSF1R 190 

flox/wt/MX1-Cre+ female to achieve 25% of the progeny with homozygous CSF1Rflox/flox/MX1-191 
Cre+ (knockout) genotype in bone marrow cells. Other progeny was wild-type CSF1Rwt/wt/MX-1-192 

Cre+ (25%) and heterozygous CSF1Rflox/wt/MX-1-Cre+ (50%) genotypes. After repeated cross-193 
breeding, we have generated a colony of CSF1Rflox/flox/Cre+ (knockout). These animals are healthy 194 

and are being used for breeding. Analysis of myeloid cells in the peripheral blood before and after 195 
injection of polyinosinic-polycytidylic acid (poly-IC) showed bone marrow-specific depletion of 196 
CSF1R+ cells (Figure 1). These animals (male and female) were used to generate GL261 derived 197 

syngeneic GBM after depletion of bone marrow-derived myeloid cells and then treated with 198 
HET0016 or anti PD-1 antibody alone or in combination or with CXCR2 antagonist SB225002 199 
(10mg/kg/day 5 days/week, IP) for two weeks.  200 

Determination of bone marrow-derived cells in the TME: Following euthanasia, animals were 201 

perfused with ice-cold PBS and the right brain containing GBM was collected, passed through 40-202 
micron mesh and a single-cell suspension was made. Similarly, spleens were collected, passed 203 
through 40micron mesh and a single-cell suspension was made. Before adding panels of antibody 204 
cocktail, non-specific uptake of the antibody was blocked by adding recommended blocker. The 205 
population of the following cells were determined by a Accuri C6 flow cytometer from cells 206 
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collected from tumors and spleen; CD45+/CD4+, CD45+/CD8+, CD45+/CD11B+/Gr1+/Ly6C+, 207 

CD45+/CD11B+/Gr1+/Ly6G+, CD45+/CD86+/CD80+, AND CD45+/CD206+. The findings 208 
were compared among all the treatment groups. 209 

Determination of tumor growth: Bioluminescent imaging was used to determine the tumor 210 
growth following different treatments. All animals underwent imaging following IP injection of 211 
luciferin (150mg/kg). Images were obtained from all animals on days 8, 15 and 22. Photon density 212 
(photon/sec/mm2) was determined by drawing an irregular region of interest to cover the tumor 213 
area. The findings were compared among all the treatment groups. 214 

Determination of survival: Groups of animals were also used to determine the survival following 215 
different TME targeted therapies. All animals were routinely observed 2-3 times a week to assess 216 
the wellbeing as well as body weight. The animals were followed up until they become moribund 217 
or fulfill the criteria for euthanasia as per the approved IACUC protocols. The findings were 218 

compared among all the treatment groups. 219 

Statistical analysis: Quantitative data were expressed as mean ± standard error of the mean (SEM) 220 

unless otherwise stated. For the flow-cytometric studies, we used ordinary one-way analysis of 221 
variance (ANOVA) followed by multiple comparisons using Dunnett’s multiple comparisons test. 222 
For BLI (optical imaging) data, the general framework of analyses included two-way ANOVA 223 

followed by either Tukey’s or Sidak’s multiple comparisons. We analyzed the survival of the animals 224 
following different treatments.  Log-rank test (Mantel-Cox) was applied to determine the significance 225 

of differences among the groups. A P value of 0.05 was considered significant. 226 

 227 

Results: 228 

In this study, we successfully developed CSF1R conditional knockout mouse.  These conditional 229 

knock out mice showed homozygous CSF1Rflox/flox
 /MX1-Cre+ (knockout) genotype (Figure 1A). 230 

Compared to wild type mice, conditional knockout mice showed a significant dose-dependent 231 
decrease in CD45+CSF1R+ cells following two weeks of treatments with poly-IC. There was 232 

almost 80% decrease of CSF1R+ cells in the peripheral blood (Figure 1B). Wild type mice treated 233 
with poly-IC did not show any significant difference in CD45+CSF1R+ cells (Figure 1C). Both 234 

wild type (control) and knockout mice (after two weeks’ of treatments with poly-IC) received 235 
intracranial implantation of syngeneic GL261 glioblastoma. On day 8 of tumor implantation, 236 
groups of animals received either vehicle or SB225002 for two weeks. All animals underwent 237 
optical imaging pre and post-treatment. Photon intensities were determined to measure tumor 238 
growth. Wild type control animals showed significantly increased tumor growth (Figure 1D) 239 

which is indicated by a 10-fold increase in the photon intensity (Figure 1E). On the other hand, 240 

both wild type (control) treated with SB225002 and knockout mice showed significantly decreased 241 

tumor growth at week 3, indicating the involvement of CSF1R+ cells in the TME. It is also known 242 
that the CXCR2 antagonist can inhibit the function of myeloid cells by blocking the interaction of 243 
CXCR2 and IL-8 (48-50). Tumor-associated CD45+CD11b+CD86+ and CD45+CD11b+CD206+ 244 
cells were determined following treatment with SB225002 in wild type animals. Both cell types 245 
were significantly decreased following the treatments (Figure 1F). T-cells and MDSC populations 246 

showed no significant difference between the treated and untreated wild type animals. 247 

Both wild type and CSF1R knockout mice received different treatments that target tumor cells or 248 
tumor-associated cells. All treatments were for two weeks and the treatment was started on day 8 249 
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of orthotopic tumor implantation. On day 22 following last optical imaging, animals were 250 

euthanized and the tumors were collected for flow cytometry to determine the population of T-251 
cells (CD4, CD8), CD11b+ cells, macrophages (M1 and M2), and MDSCs (Ly6C and Ly6G). To 252 

our surprise, CD4, CD8, CD11b, and Ly6G positive cells significantly increased in tumors treated 253 
with TMZ (Figure 2). On the other hand, different cellular populations were significantly 254 
decreased in post-radiation tumors. All other treatments that targeted tumor-associated myeloid 255 
cells or checkpoint showed increased accumulation of CD4 and CD8 cells in the tumors but 256 
myeloid cell populations including MDSCs, CD11b+ cells, and macrophages showed insignificant 257 

changes in the TME compared to that of control and Vatalanib treated tumors (Figure 3). 258 

All animals that were followed for survival and euthanized on day 22 to determine the TME 259 
associated cells also underwent optical imaging before treatment and at one and two weeks after 260 
treatments. The dose of luciferin and exposure time were kept identical for every animal at each 261 

time point. Then the photon intensity (intensity/sec/mm2) was determined by making an irregular 262 
region of interest encircling the tumors at each time point. Figure 4 shows the tumor growth 263 

following different treatments. Tumor in all therapy groups except in Vatalanib treated animals, 264 
were stable following 1 week of treatments and there was no significant difference compared to 265 
that of vehicle-treated animals. However, Vatalanib treated animals showed significantly increased 266 

photon intensity indicating tumor growth following 1 week of treatments. Tumor growths were 267 
substantially increased in vehicle, Vatalanib, and TMZ treated animals following 2 weeks of 268 

therapy indicating the development of resistance in TMZ group. All other groups showed increased 269 
tumor growth but were significantly slower than that of vehicle, Vatalanib, or TMZ treated 270 
animals. It should be noted that the animals that received TME-associated cell-directed therapy 271 

showed significantly lower tumor growth 2 weeks following treatments. The animals that receive 272 
antiangiogenic (Vatalanib) and tumor cell-targeted (TMZ) therapy exhibited rebound tumor 273 

growth at 2 weeks of treatments.  274 

We instituted different treatments targeting both tumor cells and the tumor microenvironment 275 

including arachidonic acid metabolisms and anti-depressant (selective serotonin reuptake inhibitor 276 
(SSRI), fluoxetine) drugs alone or in combination with TMZ. We also used a very high dose of 277 

HET0016 (50mg/kg/day). Usual dose of HET0016 is 10mg/kg/day. All treatments significantly 278 
increased the survival of animals bearing syngeneic GL261 GBM (Figure 5A). The most 279 
significantly increased survival was observed in animals’ groups that were treated with TMZ, 280 

HET0016, TMZ+HET0016, and with a HET analog. Although Navarixin (IL-8CXCR2 axis 281 
blocker) increased the survival of the animals, the addition of TMZ did not improve survival 282 

(Figure 5B).  283 

 284 

Discussion:  285 

GBM is a devastating malignant tumor of the central nervous system. Once diagnosed it becomes 286 
a death sentence to patients within 15 months (51-54). Currently, surgical resection followed by 287 
radiation and TMZ therapies is the standard of care for GBM patients (55). With these extensive 288 
therapies, almost all patients show therapy resistance and recurrence of GBM (56). To address 289 

resistance and recurrence, clinicians have adopted antiangiogenic therapies in recurrent GBM. 290 
These treatments decrease the formation of new blood vessels and decrease edema, thus reducing 291 
the dose of corticosteroids needed after therapy (57, 58). Additionally, advanced immunotherapy 292 

and targeted therapies have been instituted (59). However, early reports demonstrated that these 293 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.932475doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932475
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

are non-effective treatment strategies (10, 45, 60-65). Investigations from our lab indicated that 294 

most of the instituted therapies mobilized bone-marrow cells to the sites of GBM and orchestrated 295 
therapy resistance (10, 11). Our results showed that antiangiogenic therapies initiate alternate 296 

vascularization pathways and eventually increased neovascularization in therapy-resistant GBM 297 
(7, 45, 66). We found that angiogenic and vasculogenic myeloid cells accumulated at GBM sites 298 
following therapies(11, 65). Furthermore, we reported the process of vascular mimicry in which 299 
GBM cells transdifferentiate into glioma stem cells that can then form functional blood vessels (7, 300 
67). All of these results support our conclusion that the possible changes occurring in the TME 301 

following standard or investigational treatments in GBM have not been properly studied. This 302 
includes both changes in TME associated cells as well as the changes that occur in the metabolic 303 
cascade of TME associated cells.  In this pilot study, we aimed to investigate these changes. To 304 
accomplish this, we used standard therapies (radiation and TMZ) as well as agents that targeted 305 
TME associated cells (CSF1R inhibitor GW2580 to target myeloid cells, IL-8-CXCR2 antagonists 306 

Navarixin and SB225002 to target stem cells causing vascular mimicry, anti-PD1 antibody 307 
targeting immune suppressive molecules) and different metabolic pathways (HET0016 and its 308 

analog to target CYP4A-20-HETE axis of arachidonic acid metabolisms, fluoxetine to target 309 
serotonin reuptake). Following therapies, we determined the changes in the composition of TME-310 

associated cells and the survival benefit of the therapeutic agents alone or in combination with 311 
TMZ.  312 

Our results clearly demonstrated the importance of TME associated CSF1R positive cells. Animals 313 
treated with GW2580 and conditional knockout animals (CSF1R knockout) showed a decreased 314 
number of myeloid cells in the TME, whereas TMZ therapy increased the population of myeloid 315 

cells in the treated GBM. Previously, our reported results, as well as results from different 316 
investigators, have proven the importance of myeloid cells in developing therapy resistance in 317 

GBM and other cancers (11, 13, 15, 68-70). Myeloid cells, such as macrophages and MDSCs, 318 
produce an immunosuppressive microenvironment that promotes tumor growth. Following 319 

chemotherapy, macrophage differentiation is altered to promote the production of cancer-320 
supporting M2 macrophages in the TME (71). Chemotherapy has also been shown to promote 321 

macrophage aggregation, thus facilitating cathepsin protease B- and S- mediated therapy resistance 322 
(72). Some chemotherapeutic agents activate MDSCs to produce IL-1β. This leads to the secretion 323 
of IL-17 by CD4+ T-cells (73). Additionally, MDSCs have been shown to partake in the epithelial-324 

mesenchymal transition, increase the production of multiple matrix metalloproteinases, and merge 325 
tumor cells (71-73). Therefore, the addition of myeloid cell blockage could mitigate these 326 

mechanisms of resistance.  However, it is to note that, previous investigations also indicated the 327 
development of resistance following long-term therapy using CSF1R inhibitors (74, 75). This 328 
indicates the importance of sequential or intermittent therapy targeting GBM TME associated cells 329 
following or in between standard therapies for GBM.  330 

To our surprise, we noticed a decreased accumulation of T-cells as well as different myeloid cell 331 
populations in the TME following radiation therapies. This decreased accumulation of T-cells may 332 
be due to the disruption of intact blood vessels that act as a delivery system of T-cells to the tumor 333 

site. This disruption is likely caused by radiation therapy-induced necrosis in tumors leading to 334 
tumor cell death. Therefore, most tumor recurrence in post-radiation GBM occurs from the 335 
periphery of the irradiated areas where a few cells may have survived the radiation injury. Our 336 
previous studies showed that the addition of HET0016 (blocker of CYP4A-20-HETE axis of 337 
arachidonic acid metabolisms) improved the survival of animals bearing patient-derived xenograft 338 
(PDX) GBM following 30Gy of radiotherapy (8). HET0016 is known to inhibit tumor and 339 
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endothelial cell (EC) proliferation, EC migration, and prevent neovascularization including 340 

vascular mimicry (44, 67, 76). Although we have not tested agents that prevent the repair of DNA 341 
damage, the addition of PARP inhibitor may also help prevent the recurrence of GBM following 342 

radiotherapy (77, 78). However, in contrast to HET0016, PARP inhibitor has a very narrow 343 
therapeutic window and causes severe toxicity (77). Therefore, adding an inhibitor of arachidonic 344 
acid metabolic pathways may be useful in preventing the recurrence of post-radiation GBM.  345 

Previously, we have reported the effectiveness of HET0016 in controlling GBM and breast cancer 346 
(8, 32). However, we had not yet reported TME-associated cells present following the treatment 347 

of HET0016. In this study, HET0016 treatment exhibited a similar phenomenon to that of myeloid 348 
cell-targeted therapies. It showed an increased T-cell population in the TME compared to that of 349 
vehicle and Vatalanib treated GBM. There was also a tendency to decrease immunosuppressive 350 
myeloid cell populations in the TME. Additionally, treatments using HET0016 and its analog 351 

showed significantly improved survival which corroborates with our previous reports (8).  Our 352 
ongoing investigations show that the CYP4A-20-HETE pathway is active not only in tumor cells 353 

but also in TME associated myeloid cells (data not shown). Inhibition of 20-HETE increases the 354 
cytotoxic T-cells population in in vitro studies (manuscript under preparation). Details of 355 
HET0016 mediated therapies and its mechanisms are discussed in our previous reports (8). 356 

Therefore, we propose that the use of an inhibitor of the cytochrome P450 γ-hydroxylase pathway 357 
of arachidonic acid metabolisms may be used as an agent to target post-therapy GBM to prevent 358 

recurrence.  359 

In conclusion: current GBM therapies should be revisited to add agents to prevent the 360 
accumulation of bone marrow-derived cells in the TME or to prevent the effect of immune-361 

suppressive myeloid cells in causing alternative neovascularization, the revival of glioma stem 362 
cells, and recurrence. Instead of concurrent therapy, a sequential strategy would be best to target 363 

TME associated cells.  364 

 365 
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Contribution to the Field Statement: Glioblastoma (GBM) is a devastating primary brain cancer. 403 
Current treatments that use surgery, chemotherapy and radiotherapy do not increase the survival 404 

of the patient. Almost all patients with GBM die with 15 months of diagnosis. GBM is also a tumor 405 
with many blood vessels, therefore, clinician started using anti-neovascular agents. However, 406 
recent reports indicated that all these treatments caused therapy resistance and enhance alternative 407 
neovascularization due to mobilization and accumulation of cells derived from patients’ bone 408 

marrow. These mobilized bone marrow cells accumulate in the GBM microenvironment and 409 
initiate an environment that is immunosuppressive and increase tumor cell invasion causing 410 
recurrent tumors. There is a movement of rethinking of therapy strategies in GBM. Investigators 411 
started using immunotherapy to change the microenvironment, however, early results are not 412 
encouraging. We hypothesize that agents that target GBM microenvironment should be included 413 

along with standard therapies either concurrently or sequentially. In this studies we showed the 414 
changes in GBM microenvironment following different therapies and showed the improvement of 415 
survival in mouse model following GBM microenvironment targeting therapies. 416 
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Figure legends: 643 

 644 

Figure 1: CSF1R conditional knockout mouse and GBM development.  (A) Agarose gel 645 

electrophoresis showing homozygous CSF1Rflox/flox
 /MX1-Cre+ (knockout) genotype. (B) Flow-646 

cytometric analysis of peripheral blood cells from conditional knock out mice showed a significant dose-647 
dependent decrease in CD45+CSF1R+ cells following two weeks of treatments with poly-IC. (C) 648 
Flow-cytometric analysis of peripheral blood cells from wild type mice did not show any significant 649 
difference in CD45+CSF1R+ cells following two weeks of treatments with poly-IC. (D and E) 650 

Optical images and quantified photon intensities of pre and post-treatment (either vehicle or 651 
SB225002) showed significantly increased tumor growth in the vehicle-treated wild type animals 652 
after 3 weeks. Knock out animals treated with either vehicle or SB225002 and wild type animals 653 

treated with SB225002 did not show any significant tumor growth after 3 weeks. (F) Flow-654 
cytometric analysis showing significantly decreased tumor-associated CD45+CD11b+CD86+ and 655 
CD45+CD11b+CD206+ cells. 656 

Figure 2: Flow cytometric analysis of T-cells and myeloid cell populations in wild type and 657 
knockout animals. There was a significant increase in CD4, CD8, CD11b, and Ly6G positive 658 
cells in tumors treated with TMZ (red arrows) while irradiation caused a significant reduction 659 

(black arrows) in different cellular populations compared to control group. All other treatments 660 
showed increased infiltration of CD4 and CD8 T-cells but insignificant changes in MDSCs, 661 

CD11b populations. 662 

 663 

Figure 3: Flowcytometric analysis of M1 and M2 macrophage populations. Treatment with 664 
Navarixin and GW2580 increased the macrophage population insignificantly, and all other 665 
treatments changed the macrophage population inconsequentially. 666 

 667 

Figure 4: Bioluminescent image-based analysis of tumor growth. All animals underwent 668 

optical imaging to monitor tumor growth before starting the treatment (day 8 post-inoculation), 1 669 
week, and 2 weeks after treatment. There was no significant difference between all treatment 670 
groups compared to that of vehicle-treated animals after 1 week of treatment except the Vatanallib 671 

treated group that showed significant tumor growth. Following 2 weeks of treatment, tumor 672 
growths were substantially increased in the vehicle, Vatalanib, and TMZ treated animals. All other 673 
groups showed increased tumor growth but were significantly slower than the above-mentioned 674 

groups. 675 

 676 

Figure 5: Survival studies showing improved survival following the use of TME targeting 677 
agents. (A and B) Kaplan-Meier curve showing significantly increased survival in animal groups 678 
treated with TMZ, HET0016, TMZ+HET0016, and with a HET analog. Although Navarixin) 679 
increased survival, the addition of TMZ with it did not improve the outcome. 680 
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