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Abstract 55 

 Circulating levels of small molecules or metabolites are highly heritable, but the impact of 56 

genetic differences in metabolism on human health is not well understood. In this cross-platform, 57 

genome-wide meta-analysis of 174 metabolite levels across six cohorts including up to 86,507 58 

participants (70% unpublished data), we identify 499 (362 novel) genome-wide significant 59 

associations (p<4.9×10-10) at 144 (94 novel) genomic regions. We show that inheritance of blood 60 

metabolite levels in the general population is characterized by pleiotropy, allelic heterogeneity, rare 61 

and common variants with large effects, non-linear associations, and enrichment for 62 

nonsynonymous variation in transporter and enzyme encoding genes. The majority of identified 63 

genes are known to be involved in biochemical processes regulating metabolite levels and to cause 64 

monogenic inborn errors of metabolism linked to specific metabolites, such as ASNS (rs17345286, 65 

MAF=0.27) and asparagine levels. We illustrate the influence of metabolite-associated variants on 66 

human health including a shared signal at GLP2R (p.Asp470Asn) associated with higher citrulline 67 

levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes risk, 68 

and demonstrate beta-arrestin signalling as the underlying mechanism in cellular models. We link 69 

genetically-higher serine levels to a 95% reduction in the likelihood of developing macular 70 

telangiectasia type 2 [odds ratio (95% confidence interval) per standard deviation higher levels 0.05 71 

(0.03-0.08; p=9.5×10-30)]. We further demonstrate the predictive value of genetic variants identified 72 

for serine or glycine levels for this rare and difficult to diagnose degenerative retinal disease [area 73 

under the receiver operating characteristic curve: 0.73 (95% confidence interval: 0.70-0.75)], for 74 

which low serine availability, through generation of deoxysphingolipids, has recently been shown to 75 

be causally relevant. These results show that integration of human genomic variation with 76 

circulating small molecule data obtained across different measurement platforms enables efficient 77 

discovery of genetic regulators of human metabolism and translation into clinical insights. 78 

  79 
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Introduction 80 

 Metabolites are small molecules that reflect biological processes and are widely measured in 81 

clinical medicine as diagnostic, prognostic or treatment response biomarkers1. Blood levels of 82 

metabolites are highly heritable with twin studies reporting a median explained variance in plasma 83 

levels of 6.9% and maximum of 50% depending on the metabolite2,3. Several earlier studies have 84 

started to characterise the genetic architecture of metabolite variation in the general population2–10, 85 

but been limited in size and scope by focussing on metabolites assessed using a single method. 86 

Integration of genetic association results for metabolites measured on different platforms can help 87 

maximise the power for a given metabolite and provide a more refined understanding of genetic 88 

influences on blood metabolite levels and human physiology.  89 

 To identify genomic regions regulating metabolite levels and systematically study their 90 

relevance for disease, we designed and conducted a cross-platform meta-analysis of genetic effects 91 

on levels of 174 blood metabolites measured in large-scale population-based studies. We included 92 

metabolites covered by the targeted Biocrates AbsoluteIDQ™ p180 platform and measured in the 93 

Fenland Study. We integrated unpublished data for any of these metabolites that were covered by 94 

the Nightingale (1H-NMR, Interval Study) or Metabolon (Discovery HD4™, EPIC-Norfolk and Interval 95 

Studies) platforms, or had previously been reported2,4,5. The focus on this targeted set of ‘platform-96 

specific’ metabolites enabled us to clearly map metabolites across platforms and maximise the 97 

sample size for each of the 174 metabolites for this proof of concept cross-platform GWAS study. To 98 

facilitate rapid sharing of our results, we developed a webserver 99 

(https://omicscience.org/apps/crossplatform/) that allows flexible interrogation of our results. 100 

Results 101 

Associations with blood metabolites at 144 genomic regions 102 

 Genome-wide meta-analyses were conducted for 174 metabolites from 7 biochemical classes 103 

(i.e. amino acids, biogenic amines, acylcarnitines, lyso-phosphatidylcholines, phosphatidylcholines, 104 

sphingomyelins and hexose) commonly measured using the Biocrates p180 kit in up to 86,507 105 

individuals, contributing over 3.7 million individual-metabolite data points (70% from unpublished 106 

studies; Fig. 1). For each of the 174 metabolites, this was the largest genome-wide association 107 

analyses (GWAS) to date, with at least a doubling of sample size (Fig. 1A). Sample sizes ranged from 108 

8,569 to 86,507 individuals for metabolites depending on the platform used in each contributing 109 

study. Using GWAS analyses we estimated the association of up to 10.2 million single nucleotide 110 

variants with a minor allele frequency (MAF) >0.5%, including 6.1 million with MAF ≥ 5%.  111 
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 We identified 499 variant-metabolite associations (362 novel) from 144 loci (94 novel) at a 112 

metabolome-adjusted genome-wide significance threshold of p<4.9×10-10 (correcting the usual 113 

GWAS-threshold, p<5x10-8, for 102 principal components explaining 95% of the variance in 114 

metabolite levels using principal component analysis; Fig. 1). The vast majority of these associations 115 

were consistent across studies and measurement platforms [median I2: 26.8 (interquartile range: 0 – 116 

70.1) for 465 associations with at least two contributing studies] (Supplementary Tab. S1-2). To 117 

identify possible sources of heterogeneity, we investigated the influence of differences by cohort, 118 

measurement platform, metabolite class, and association strength in a joint meta-regression model 119 

(Supplementary Tab. S3). This showed that heterogeneity was mainly due to the overall strength of 120 

the signal, i.e. associations with higher z-scores showed greater heterogeneity (p<1.05x10-9). 121 

However, the majority of these statistically heterogeneous associations were directionally consistent 122 

and nominally significant across and within each stratum for 146 of 170 associations with a z-score > 123 

10, demonstrating the feasibility of pooling association estimates across metabolomics platforms for 124 

the purpose of genetic discovery. Genetic variants at the NLRP12 locus, e.g. rs4632248, were a 125 

notable exception with large estimates of heterogeneity (I2>90%). The NLRP12 locus is known to 126 

affect the monocyte count11 and has been shown to have pleiotropic effects on the plasma 127 

proteome in the INTERVAL study12. Monocytes, or at least a subpopulation subsumed under this cell 128 

count measure, release a wide variety of biomolecules upon activation or may die during the sample 129 

handling process and hence releasing intracellular biomolecules, such as taurine13, into the plasma. 130 

In brief, one specific source of heterogeneity in mGWAS associations might relate to sample 131 

handling differences across studies.   132 

This highlights the utility of our genetic cross-platform approach to maximise power for a given 133 

metabolite, substantially extending previous efforts for any given metabolite14. Previously reported 134 

associations from platform-specific studies were also found to generally be consistent in our cross-135 

platform meta-analysis (Supplementary Tab. S2; https://omicscience.org/apps/crossplatform/). 136 
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 137 

Figure 1A Sample size by contributing study and technique for each of the 174 metabolites included. B A three-dimensional 138 
Manhattan plot displaying chromosomal position (x-axis) of significant associations (p <4.9×10

-10
, z-axis) across all 139 

metabolites (y-axis). Colours indicate metabolite groups. C A top view of the 3D-Manhattan plot. Dots indicate significantly 140 
associated loci. Colours indicate novelty of metabolite – locus associations. Loci with indication for pleiotropy have been 141 
annotated. 142 

 143 

Insights in the genetic architecture of metabolite levels 144 

 We identified a median of 2 (range: 1-67, Fig. 2A) associated metabolites for each locus and a 145 

median of 3 (range: 1-20, Fig. 2B) locus associations for each metabolite, reflecting pleiotropy and 146 

the extensive contribution of genetic loci to circulating metabolite levels. The number of associations 147 

was proportional to the estimated heritability and the sample size of the meta-analysis for a given 148 

trait (Fig. 2C).  149 
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 We applied a multi-trait statistical colocalisation method15 and identified between 1-30 150 

(median: 2) metabolites that did not meet the discovery p-value threshold, but showed high 151 

posterior probability (>75%) of a shared genetic signal for 49 out of the 144 loci (Supplemental Fig. 152 

S1). Two distinct variants (rs2414577 and rs261334) nearby LIPC showed the largest gain in 153 

additionally associated metabolites, in line with previous reports of extensive pleiotropy and allelic 154 

heterogeneity at this locus9. We note that a low posterior probability for the alignment of multiple 155 

metabolites at other loci might be explained by the presence of multiple causal variants shared 156 

across multiple metabolites.  157 

 To systematically classify pleiotropic variants taking into account the correlation structure 158 

among metabolites we derived a data-driven metabolic network and performed community 159 

detection (see Methods and Supplemental Fig. S2). A total of 129 (60.5%) of 214 variants 160 

(associated with at least two metabolites at p<5x10-8) were associated with metabolites from at 161 

least two of the 14 communities (range: 2 – 11; Supplemental Fig. S2),  i.e. showed evidence for 162 

‘horizontal’ or broad pleiotropy. The most extreme variants included those near FADS1 (e.g. 163 

rs17455) associated with 61 metabolites across 11 communities at p<5x10-8. In contrast, rs2638315 164 

(likely tagging a missense variant rs2657879 at GLS2) was associated with nine metabolites within a 165 

single community and would therefore be considered as ‘horizontal pleiotropic’ for a well-defined 166 

group of correlated metabolites (Supplemental Fig. S2). 167 

 Similar to what is routinely observed in GWAS literature, effect size estimates increased with 168 

decreasing minor allele frequency (MAF) (Fig. 3A). However, there were 26 associations (Tab. 1) for 169 

common lead variants with per-allele differences in metabolites levels greater than 0.25 standard 170 

deviations (SD), a per-allele effect size that is >3-fold larger than the strongest common variants 171 

associated with SDs of body mass index at the FTO locus. 172 

 Variants identified in this study explained up to 23% of the variance (median: 1.4%; interquartile 173 

range: 0.5% - 2.8%) and up to 99.8% of the chip-based heritability (median 9.2%; interquartile range: 174 

4.7% - 17.1%) for the 141 metabolites with at least one genetic association (Fig. 2D). The 26 common 175 

variants with large effect sizes (>0.25 SD per allele) were identified for metabolites with higher 176 

heritability (Fig. 2D) and accounted for up to 74% of the heritability explained in those metabolites. 177 

 GWAS analyses generally assume a linear relationship between genotypes and phenotypes, i.e. 178 

an additive dose-response model. The identification of several metabolite-associated variants with 179 

large effect sizes and availability of individual-level data in the Fenland cohort allowed us to test 180 

whether the metabolite-associated variants showed evidence of deviation from a linear model. Of 181 

499 associations tested, 9 showed evidence of departure from a linear association (Fig. 2E-M). 182 
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Modelling actual genotypes rather than assuming ‘additive’ linear associations in these instances 183 

explained a median of 7.4% more (range: 1.4-15.2%) of the heritability in metabolite levels (Fig. 2N). 184 

Associations better described by an autosomal recessive or dominant model of inheritance might be 185 

the most likely explanation for this. Variant rs3916, for example, which showed a more than additive 186 

positive effect on butyrylcarnitine, is in perfect LD with a missense variant within ACADS  187 

(rs1799958, MAF=26%), which encodes for short-chain acyl-CoA dehydrogenase (SCAD). SCAD 188 

deficiency is an autosomal recessive disease diagnosed by elevated butyrylcarnitine concentrations 189 

in blood and homozygeous carrier status for established pathogenic variants16. 190 

 191 

Figure 2A Distribution of pleiotropy, i.e. number of associated metabolites, among loci identified in the present study. B 192 
Distribution of polygenicity of metabolites, i.e. number of identified loci for each metabolite under investigation. C 193 
Scatterplot comparing the estimated heritability of each metabolite against the number of associated loci. Size of the dots 194 
indicates samples sizes. D Heritability estimates for single metabolites. Colours indicate the proportion of heritability 195 
attributed to single nucleotide polymorphisms (SNPs) with large effect sizes (β>0.25 per allele). E – M SNP – metabolite 196 
association with indication of non-additive effects. Beta is an estimate from the departure of linearity. N Barplot showing 197 
the increase in heritability and explained variance for each SNP – metabolite pair when including non-additive effects. 198 

 199 

 In 61 of the 499 associations the lead association signal was a nonsynonymous variant, a 40-fold 200 

enrichment compared to what would be expected by chance given the annotation of ascertained 201 

genetic variants (two-tailed binomial test, p=5×10-30, Fig. 3D). For a further 59 associations, the lead 202 

variant was in high LD with a nonsynonymous variant (r2>0.8). Lead variants that were 203 
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nonsynonymous, or variants in high LD with a nonsynonymous variant, generally had lower MAF, 204 

larger effect sizes, and smaller 99%-credible sets (Supplemental Tab. S4) than variants that were not 205 

in these categories (Fig 3B-D).  206 

 207 

 208 

Figure 3A Scatterplot comparing the minor allele frequencies (MAF) of associated variants with effect estimates from linear 209 
regression models (N loci=499). Colours indicate possible functional consequences of each variant: maroon – 210 
nonsynonymous variant; blue – in strong LD (r

2
>0.8) with a nonsynonymous variant and grey otherwise. B-D Distribution of 211 

effect sizes (B), allele frequencies (C), and width of credible sets (D) based on the type of single nucleotide polymorphism 212 
(SNP) (0 – non-coding or synonymous, 1 – in strong LD with nonsynonymous, 2 - nonsynonymous). E Distribution of 213 
functional annotations of metabolite associated variants (red), trait-associated variants (blue – continuous, purple – 214 
diseases) obtained from the GWAS catalogue, and all SNPs included in the present genome-wide association studies. The 215 
inlet for exonic variants distinguishes between synonymous (syn) and nonsynonymous variants (nsyn). 216 

 217 

 We identified 22 loci harbouring two (n=21) or three (n=1) independent signals, i.e. different 218 

plasma metabolites were associated with distinct genetic variants within the same genomic region 219 

(Supplementary Tab. S2). For six regions, our two different annotations approaches assigned only 220 

one causal gene (see below and Methods), including ACADM, GLDC, ARG1, MARCH8, SLC7A2, and 221 

LIPC (Supplementary Tab. S2). We found evidence that allelic heterogeneity, i.e. conditionally 222 

independent variants at a locus for a specific metabolite, explains the association pattern at 3 of 223 

those loci (ACADM, ARG1, and LIPC; Supplementary Tab. S5). We identified another 16 loci 224 

harbouring at least one (range: 2–6) additional conditionally independent variant(s) in exact 225 

conditional analyses (see Methods, Supplementary Tab. S5).  226 
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Effector genes, tissues, pathways  227 

 We used two complementary strategies to prioritize likely causal genes for the observed 228 

associations: (1) a hypothesis-free genetic approach based on physical distance, genomic annotation 229 

and integration of expression quantitative trait loci (eQTLs) to prioritize genes in a systematic and 230 

standardised way (see Methods), and (2) a biological knowledge-based approach integrating existing 231 

knowledge about specific metabolites or related pathways to identify biologically plausible 232 

candidate genes from the 20 genes closest to the lead variant (Fig. 4A). Using the hypothesis-free 233 

genetic approach, we identified 249 unique likely causal genes for the 499 associations, with at least 234 

one gene per association and some genes prioritized as likely causal for multiple metabolite 235 

associations. The knowledge-based approach identified 130 biologically plausible genes for 349 out 236 

of 499 associations. We asked whether the hypothesis-free genetic approach identified biologically 237 

plausible genes (prioritized by strategy 2) more often than expected by chance. Amongst 9,980 238 

possible gene-metabolite pairs (20 genes x 499 associations), 420 (4.2%) were biologically plausible, 239 

condensed to 350 gene(s)-metabolite assignments after accounting for overlapping annotations. Of 240 

the latter, 126 pairs (36%) were identical to genetically-prioritized gene-metabolite pairs, 241 

representing a significant enrichment of biologically plausible genes among those prioritised by the 242 

hypothesis-free algorithm (~8-fold more than expected by chance; two-tailed binomial test, 243 

p=2.3×10-80; Fig. 4B). Among the consistently assigned genes between both approaches, assignment 244 

of the nearest gene (124 times out of 126, Χ2-test, p<2.5x10-45) was the strongest shared factor, as 245 

might be expected, followed by being (or in LD with) a missense variant (R2>0.8, 30 times out of 126, 246 

Χ2-test, p<1.3x10-07) and only a minor contribution of eQTL data (20 times out of 126, Χ2-test, 247 

p<0.001). Over 70% of genetically prioritized genes were enzymes or transporters (Fig. 4C). 248 

Inconsistencies between the approaches might be explained by non-consideration of information on 249 

biological pathways in the hypothesis-free genetic approach, as well as variants acting more distal to 250 

the biological determinants of plasma metabolite levels not being considered in the knowledge-251 

based approach. The missense variant rs1260326 within GCKR, for example, colocalised with 49 252 

metabolites across diverse biochemical classes (Supplemental Fig. S1) and likely confers it effects on 253 

glucose metabolism through impaired inhibition of glucokinase by glucokinase regulatory protein 254 

and might hence be considered as putative causal candidate by the knowledge-driven approach for 255 

plasma glucose only. However, impairments in glucose metabolism result in numerous downstream 256 

consequences including more distal metabolic branches such as amino acid and lipid metabolism.  257 

 In addition to being enriched in genes previously implicated in the biology of these metabolites, 258 

the genetically prioritized genes were also enriched in genes known for mutations to cause rare 259 
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inborn errors of metabolism (IEMs), i.e. monogenic defects in the metabolism of small molecules 260 

with very specific metabolite changes (Fig. 4B). 261 

 262 

 263 

Figure 4A Comparison between the hypothesis-free genetically prioritized versus biologically plausible approaches used in 264 
the present study to assign candidate genes to metabolite associated single nucleotide polymorphisms. The Venn-diagram 265 
displays the overlap between both approaches. B Enrichment of genetically prioritized genes among biologically plausible 266 
or genes linked to inborn errors of metabolism (IEM). C Proportion of genetically prioritized genes encoding for either 267 
enzymes or transporters. 268 

 269 

 Integrating GWAS statistics across cohorts and platforms allowed us to identify three genes that 270 

have never been associated with any metabolite level so far. At the CERS6 locus, rs4143279 271 

associates with levels of sphingomyelin (d18:1/16:0) (p = 4.2x10-10). CERS6 encodes a ceramide 272 

synthase facilitating formation of ceramide, a precursor of sphingomyelins17. At the ASNS locus, 273 

rs17345286 associates with levels of asparagine (p = 4.7x10-20). The lead variant is in high LD (R2=1) 274 

with a missense mutation in ASNS (rs1049674, p.Val210Glu). ASNS encodes an asparagine 275 

synthase18. Finally, at the SLC43A1 locus, rs2649667 associates with levels of phenylalanine (p = 276 

3.6x10-13). SLC43A1 encodes a liver-enriched transporter of large neutral amino acids, including 277 

phenylalanine19. 278 

Insights into the causes of common and rare diseases from metabolite-associated loci 279 

 The phenotypic consequences of metabolite-associated variants are currently not well 280 

characterized. Below, we investigate the contribution of individual loci and polygenic predisposition 281 

associated with differences in metabolite levels to the risk of common and rare diseases. 282 

A citrulline-raising functional variant in GLP2R increases type 2 diabetes risk 283 
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 Because several of the metabolites captured in this GWAS have been associated with incident 284 

type 2 diabetes (T2D), we sought to investigate whether the association between metabolite-285 

associated loci and diabetes could provide insights into underlying pathophysiologic mechanisms. 286 

Using estimates of effect for association with T2D based on a meta-analysis of 80,983 cases and 287 

842,909 controls (see Methods), we observed a significant enrichment for associations with type 2 288 

diabetes (p-value=2.8x10-7) of metabolite-associated variants compared to a matched control set of 289 

variants (Fig. 5A).  290 

 Amongst the diabetes- and metabolite-associated loci was a missense p.Asp470Asn 291 

(rs17681684) variant in the GLP2R gene encoding the receptor for glucagon-like peptide 2, a 33 292 

amino acid peptide hormone encoded by the proglucagon gene (GCG) that stimulates the growth of 293 

intestinal tissue. Common variants at GLP2R are associated with an increased risk of T2D20. The 294 

previously reported lead variant for T2D (rs78761021) is in high LD (r²>0.87) with our lead citrulline 295 

association signal at GLP2R (rs17681684), which was associated with a 4% higher type 2 diabetes risk 296 

(per-allele odds ratio, 1.04; 95% confidence interval, 1.02, 1.05; p=1.1×10-08), comparable to 297 

previous reports20. Considering eleven phenotypes related to glucose homeostasis and metabolic 298 

health21–23, the A-allele of rs17681684 was significantly associated with insulin disposition index 299 

(beta=-0.067, p<0.002)22, corrected insulin response (beta=-0.061, p<0.004)22, glycated haemoglobin 300 

1c (HbA1c) (beta=0.006, p<0.0003)21, and body mass index (beta=0.010, p<5.3x10-9), in addition to 301 

the previously reported positive association with fasting glucose-dependent insulinotropic peptide 302 

(GIP) and the suggestive inverse association with post-glucose load GLP-1 (beta=-0.035, p<4.6x10-303 

4)24. While sample sizes and hence significance levels for insulin traits were not sufficient to support 304 

formal colocalisation analysis, we still obtained a high posterior probability (PP>75%) for a shared 305 

genetic signal across plasma citrulline, T2D risk, body mass index, and fasting levels of GIP (Fig. 5B). 306 

We noted, that the GLP2R p.Asp470Asn variant was the only of 6 independent genome-wide 307 

significant citrulline-raising loci that was associated with a higher risk of T2D, which indicates that 308 

the association does not reflect a general effect of blood citrulline levels on T2D risk but rather a 309 

locus-specific association at GLP2R (Fig. 5C). Plasma citrulline levels have been shown to reflect the 310 

volume of intestinal cells and are a marker of GLP2R target engagement in the treatment of short-311 

bowel syndrome with glucagon-like peptide 2 analogues25. Taken together, this suggests that 312 

genetically higher GLP2R signalling, indicated by the higher citrulline levels among GLP2R 470Asn 313 

carriers, may lead to chronically elevated GIP (though increased enteroendocrine mass and number 314 

of GIP-secreting K-cells), which has been shown to downregulate GIP receptors on pancreatic beta 315 

cells26, thereby contributing to the observed reduction in the insulin secretory response and increase 316 

in T2D risk. 317 
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 G-protein coupled receptors like GLP2R may signal via G-protein-dependent cyclic adenosine 318 

monophosphate (cAMP) production or via G-protein-independent beta-arrestin mediated 319 

signalling27. To investigate if the GLP2R p.Asp470Asn variant affects signalling via either of these 320 

pathways, we expressed the GLP2R p.Asp470Asn variant in different in vitro models (see Methods). 321 

We show that the variant allele is significantly associated with reduced recruitment of beta-arrestin 322 

to GLP2R upon glucagon-like peptide 2 stimulation, but not with cAMP signalling, which suggests a 323 

potential role for impaired beta-arrestin recruitment to GLP2R in the pathophysiology of type 2 324 

diabetes (Fig. 5E-G).  325 

 326 

 327 

Figure 5A Enrichment of associations with type 2 diabetes (T2D: 80,983 cases, 842,909 controls) among metabolite-328 
associated SNPs.  Blue dots indicate metabolite-SNPs and grey dots indicate a random selection of matched control SNPs.  329 
B Regional association plots for plasma citrulline, type 2 diabetes, body mass index, and fasting levels of glucose-330 
dependent insulinotropic peptide (GIP) focussing on the GLPR2 gene. Variants are coloured based on linkage disequilibrium 331 
with the lead variant (rs17681684) for plasma citrulline. *Summary statistics for GIP were obtained from the more densely 332 
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genotyped study included in Almgren et al.
24

 (to increase coverage of genetic variants for multi-trait colocalisation). C 333 
Individual association summary statistics for all citrulline associated SNPs (coded by the citrulline increasing allele) for T2D 334 
and an inverse-variance weighted (IVW) estimate pooling all effects. D Schematic sketch for the location of the missense 335 
variant induces amino acid substitution in the glucagon-like peptide-2 receptor (GLP2R). E GLP-2 dose response curves in 336 
cAMP assay for GLP2R wild-type and mutant receptors. The dose response curves of cAMP stimulation by GLP-2 in CHO K1 337 
cells transiently transfected with either GLP2R wild-type or mutant constructs. Data were normalised to the wild-type 338 
maximal and minimal response, with 100% being GLP-2 maximal stimulation of the wild-type GLP2R, and 0% being wild-339 
type GLP2R cells with buffer only. Mean ± standard errors are presented (n=4).F-G Summary of wild-type and mutant 340 
GLP2R beta-arrestin 1 and beta-arrestin 2 responses. Area under the curve (AUC) summary data (n=3-4) displayed for beta-341 
arrestin 1 recruitment (E) and beta-arrestin 2 recruitment (F). AUCs were calculated using the 5 minutes prior to ligand 342 
addition as the baseline value. Mean ± standard errors are presented. Normal distribution of log10 transformed data was 343 
determined by the D'Agostino & Pearson normality test. Following this statistical significance was assessed by one-way 344 
ANOVA with post hoc Bonferroni test. ***p<0.001, *p<0.05. 345 

 346 

Serine and glycine levels play a critical role in the aetiology of a rare eye disease 347 

 A recent GWAS of macular telangiectasia type 2 (MacTel), a rare neurovascular degenerative 348 

retinal disease, identified three genome-wide susceptibility loci (PHGDH, CPS1, and TMEM161B–349 

LINC00461) of which the same variants at PHGDH and CPS1 were associated with levels of the amino 350 

acids serine and glycine in this GWAS28. More recently, it was shown that low serine availability is 351 

linked to both MacTel as well as hereditary sensory and autonomic neuropathy type 1 through 352 

elevated levels of atypical deoxyshingolipids29. Whether genetic predisposition to low serine and 353 

glycine levels affects MacTel more generally or has predictive utility has not been investigated. To 354 

test this and to explore the specificity of associations between genetic influences on metabolite 355 

levels and the risk of MacTel, we generated genetic scores (GS) using the sentinel variants for each 356 

of the 141 metabolites with at least one significantly associated locus identified in this GWAS and 357 

tested their associations with the risk of MacTel. GS’s for serine and glycine were the only scores 358 

associated with risk for MacTel after removal of the known highly pleiotropic GCKR variant (Fig. 6A). 359 

Each standard deviation higher serine levels via the serine GS was associated with a 95% lower risk 360 

of MacTel (odds ratio (95% confidence interval), 0.05 (0.03-0.08); p=9.5×10-30; Fig. 6A). Each of five 361 

serine associated variants was individually associated with lower MacTel risk, with a clear dose-362 

response relationship and no evidence of heterogeneity (Fig. 6B). The association was unchanged 363 

when removing the GCKR locus. To disentangle the effect of these two highly correlated metabolites 364 

on MacTel risk, we used multivariable Mendelian randomization analysis, which allowed us to test 365 

for a causal effect of both measures simultaneously. In this analysis, the effect of serine remained 366 

strong, while the effect of glycine was attenuated (Tab. 2). Glycine and serine can be interconverted 367 

and these results provide genetic evidence that the link between glycine and MacTel is via serine 368 

levels through glycine conversion. This hypothesis is supported by the evidence of a log-linear 369 

relationship between associations with serine and risk of MacTel among glycine-associated variants 370 

(Fig. 6B). These findings provide strong evidence that pathways indexed by genetically higher serine 371 

levels are strongly and causally associated with protection against MacTel. 372 
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 Given the large observed effect size, we estimated whether using serine and glycine-associated 373 

loci might improve the prediction of this rare disease. Adding genetically predicted glycine and 374 

serine levels, based on newly discovered metabolite instruments from the present study and 375 

previous MacTel variants linked to glycine and serine metabolism, substantially improved prediction 376 

of MacTel based on an area under the receiver operating characteristic curve from 0.65 (CI 95%: 377 

0.626-0.682) to 0.73 (0.702-0.753) (Fig. 6).  378 

 379 

Figure 6A Results from genetic scores for each metabolite on risk for macular telangiectasia type 2 (MacTel). The dotted 380 
line indicates the level of significance after correction for multiple testing. The inlet shows the same results but after 381 
dropping the pleiotropic variants in GCKR and FADS1-2. B Effect estimates of serine-associated genetic variants on the risk 382 
for MacTel. C Comparison of effect sizes for lead variants associated with plasma serine levels and the risk for MacTel. D 383 
Receiver operating characteristic curves (ROC) comparing the discriminative performance for MacTel using a) sex, the first 384 
genetic principal component, and two MacTel variants (rs73171800 and rs9820286) not associated with metabolite levels, 385 
and b) additionally including genetically predicted serine and glycine at individual levels as described in the methods. The 386 
area under the curve (AUC) is given in the legend. 387 
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Common variation at inborn error of metabolism (IEM) associated genes influences the risk of 388 

common manifestations of diseases related to the phenotypic presentation of those IEMs 389 

 In his seminal 1902 work on alkaptonuria30, also known as dark or black urine disease, Archibald 390 

Garrod was the first to hypothesise that inborn errors of metabolism are “extreme examples of 391 

variations of chemical behaviour which are probably everywhere present in minor degrees”. 392 

Previous studies have shown enrichment of metabolite quantitative trait loci in genes known to 393 

cause IEMs31. Whether or not common variants at IEM causing loci translate into clinically manifest 394 

disease remains unknown. The identification of several metabolite-associated variants at IEM-linked 395 

genes in this GWAS meta-analysis allows an investigation of the health consequences of genetically 396 

determined differences in metabolism for more frequently occurring variants, representing 397 

potentially milder forms of the metabolic and other clinical symptoms of IEMs, and providing new 398 

candidate genes for rare extreme metabolic disorders that currently lack a genetic basis (Fig. 7A). In 399 

this study, there were 153 locus-metabolite associations for which 53 unique IEM-associated genes 400 

were prioritized as likely causal using either the hypothesis-free genetic approach or the knowledge-401 

based approach on the basis of the Orphanet database32. In 89% of these associations (136 of 153) 402 

the metabolite associated with a given GWAS locus perfectly matched, or was closely related to, the 403 

metabolite affected in patients with the corresponding IEM (Fig. 7B).  404 

 To test whether IEM-mirroring lead variants from our metabolite GWAS may increase the risk of 405 

common manifestations of diseases known to exist in patients with the corresponding IEM (Fig. 7A) 406 

we obtained a list of electronic health record diagnosis codes (International Statistical Classification 407 

of Diseases and Related Health Problems 10th Revision [ICD-10]) and mapped those based on 408 

symptoms seen in both, IEM patients and patients with common, complex disease manifestations 409 

(see Methods). We identified 93 ICD-10 codes with at least 500 cases within the UK Biobank study 410 

that aligned with the symptoms or presentations seen in patients with IEMs caused by mutations in 411 

genes specifically associated with metabolites observed in the present study. We obtained the 412 

association statistics of 85 unique metabolite-associated lead variants at the 136 locus-metabolite 413 

associations with these 93 clinical diagnoses and observed 36 associations that met statistical 414 

significance (false discovery rate < 5%, Supplemental Table S6 and Fig. 7B). For 15 out of those we 415 

obtained strong evidence of a shared genetic metabolite-phenotype signal using colocalisation 416 

analyses (posterior probability of a shared signal >80%; Fig. 7D and Supplemental Fig. S3). These 417 

instances linked common genetic variants in or near APOE, PCSK9, LPL, and LDLR associated with 418 

sphingomyelins (SM 16:0, SM 18:0, and SM-OH 24:1) with atherosclerotic heart disease diagnosis 419 

codes (I21, I25), mirroring what is observed in rare familial forms of dyslipidaemia in which these 420 

sphingomyelins are elevated and the risk of ischemic heart disease is greatly increased33,34. These 421 
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results provide further evidence that common variation at IEM genes can lead to clinical phenotypes 422 

and diseases that correspond to those that patients with rare mutations in those same genes are 423 

severely affected by. Further studies with detailed follow-up for specific outcomes may provide 424 

greater power and help clarify the medical consequences of genetic differences in metabolism 425 

caused by metabolite altering variants in the general population. 426 

 427 

Figure 7A Scheme of the workflow to link common variation in genes causing inborn errors of metabolism (IEM) to 428 
complex diseases. 7B Flowchart for the systematic identification of metabolite-associated variants to genes and diseases 429 
related to inborn errors of metabolism (IEM). C P-values from phenome-wide association studies among UK Biobank using 430 
variants mapping to genes knowing to cause IEMs and binary outcomes classified with the ICD-10 code. Colours indicate 431 
disease classes. The dotted line indicates the significance threshold controlling the false discovery rate at 5%. D Posterior 432 
probabilities (PPs) from statistical colocalisation analysis for each significant triplet consisting of a metabolite, a variant, 433 
and a ICD-10 code among UK Biobank. The dotted line indicates high likelihood (>80%) for one of the four hypothesis 434 
tested: H0 – no signal; H1 – signal unique to the metabolite; H2 – signal unique to the trait; H3 – two distinct causal 435 
variants in the same locus and H4 – presence of a shared causal variant between a metabolite and a given trait. 436 

 437 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.02.03.932541doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932541


17 

 

Discussion 438 

 This large-scale genome-wide meta-analysis has integrated genetic associations for 174 439 

metabolites across different measurement platforms, an approach that has resulted in a three-fold 440 

increase in our knowledge of genetic loci regulating levels of these metabolites. We assign likely 441 

causal genes for many of the identified associations using a dual approach that combined automated 442 

database mining with manual curation. 443 

 Previous platform-specific genetic studies of blood metabolites have been substantially smaller 444 

in size due to being restricted to a single platform and/ or study2–10. We build on these earlier studies 445 

to identify and demonstrate enrichment of rare and low-frequency coding variants in enzyme and 446 

transporter genes with large effects and reveal the importance of non-linear associations at several 447 

loci.  448 

 Our results not only provide detailed insight into the genetic determinants of human 449 

metabolism but consider their relevance for disease aetiology and prediction. We explore both 450 

locus-specific and polygenic score effects and provide tangible examples with clear translational 451 

potential. We discovered a strong link between GLP2R, citrulline metabolism and T2D, and 452 

demonstrate that the p.Asp470Asn variant underlying the citrulline and T2D associations leads to 453 

significantly reduced recruitment of beta-arrestin to GLP2R in various cellular models, providing an 454 

explanation for a possible pathological mechanism of a variant previously predicted to be benign24. 455 

 The finding that a standard deviation increase in serine levels via a genetic score is associated 456 

with 95% lower risk of MacTel shows that genetic differences resulting in very specific metabolic 457 

consequences can have profound effects on health. Our results suggest that inclusion of genetic 458 

scores for metabolite levels can improve identification of high risk individuals. Serine and glycine 459 

supplementation and/ or pharmacologic modulation of serine metabolism may help to reduce 460 

development or alter the prognosis of this rare, severe eye disease, specifically if targeted to people 461 

genetically with a genetic susceptibility to low serine levels. It is important to note, that randomized 462 

control trials are needed testing this hypothesis before any recommendations on supplementations 463 

could be made.   464 

 We finally show specific examples where common genetic variation in IEM-related genes is 465 

associated with phenotypes that are also caused by rare highly penetrant mutations. These results 466 

suggest that rare variants in metabolite regulating genes newly identified in our study may be 467 

valuable candidate genes in patients without a genetic diagnosis but severe alterations in the 468 

corresponding or related metabolites. Hence these results provide a new starting point for further 469 

investigations into the relationships between human metabolism and common and rare disorders.  470 
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Methods 471 

Study design and participating cohorts 472 

 We performed genome-wide meta-analyses of the levels of 174 metabolites from 7 biochemical 473 

categories (amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, 474 

lysophosphatidylcholines, sphingomyelins, and sum of hexoses) captured by the Biocrates p180 kit 475 

measured using mass spectrometry (MS). As described in more detail below, a total of 174 476 

metabolites were successfully measured in up to 9,363 plasma samples from genotyped participants 477 

of the Fenland study35. 478 

 To maximise sample size and power, we meta-analysed genome-wide association (GWAS) 479 

results from the Fenland cohort with those run in the EPIC-Norfolk 36 and INTERVAL 37 studies, in 480 

which metabolites were profiled using MS (Metabolon Discovery HD4 platform) or protein nuclear 481 

magnetic resonance (1H-NMR) spectrometry 3839 (Supplementary Tab. 1). Ten of the 174 Biocrates 482 

metabolites were covered across all platforms, while 38 were available on the Biocrates and 483 

Metabolon platforms and 126 were unique to Biocrates (Fig. 1). We integrated publicly available 484 

summary statistics from genome-wide meta-analyses of the same metabolites measured using MS 485 

(with Biocrates or Metabolon platforms) or 1H-NMR spectrometry (Supplementary Tab. 1). 486 

Metabolites were matched across platforms by comparing metabolite names and biochemical 487 

formulas. Mapping across different Metabolon platforms was done based on retention time/index 488 

(RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data). 489 

Scientists at Metabolon Inc. independently reviewed and confirmed metabolite matches. 490 

 A summary of the characteristics of participating cohorts is given in Supplemental Table S1. The 491 

Fenland study is a population-based cohort study of 12,435 participants without diabetes born 492 

between 1950 and 1975 35. Participants were recruited from general practice surgeries in Cambridge, 493 

Ely and Wisbech (United Kingdom) and underwent detailed metabolic phenotyping and genome-494 

wide genotyping. Ethical approval for the Fenland study was given by the Cambridge Local Ethics 495 

committee (ref. 04/Q0108/19) and all participants gave their written consent prior to entering the 496 

study. The European Prospective Investigation of Cancer (EPIC)-Norfolk study is a prospective cohort 497 

of 25,639 individuals aged between 40 and 79 and living in the county of Norfolk in the United 498 

Kingdom at recruitment 36. The study was approved by the Norfolk Research Ethics Committee (REC 499 

ref. 98CN01) and all participants gave their written consent before entering the study. INTERVAL is a 500 

randomised trial of approximately 50,000 whole blood donors enrolled from all 25 static centres of 501 

NHS Blood and Transplant, aiming to determine whether donation intervals can be safely and 502 

acceptably decreased to optimise blood supply whilst maintaining the health of donors37. All 503 
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participants of the study gave written informed consent and the study was approved by NRES 504 

Committee East of England - Cambridge East (ref. 11/EE/0538). 505 

Metabolomics measurements 506 

 The levels of 174 metabolites were measured in the Fenland study by the AbsoluteIDQ® 507 

Biocrates p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria) as reported elsewhere in 508 

detail39,40. We used a Waters Acquity ultra-performance liquid chromatography (UPLC; Waters ltd, 509 

Manchester, UK) system coupled to an ABSciex 5500 Qtrap mass spectrometer (Sciex ltd, 510 

Warrington, UK). Samples were derivatised and extracted using a Hamilton STAR liquid handling 511 

station (Hamilton Robotics Ltd, Birmingham, UK). Flow injection analysis coupled with tandem mass 512 

spectrometry (FIA-MS/MS) using multiple reaction monitoring (MRM) in positive mode ionisation 513 

was performed to measure the relative levels of acylcarnitines, phosphatidylcholines, 514 

lysophosphatidylcholines and sphingolipids. The level of hexose was measured in negative ionisation 515 

mode. Ultra-performance liquid chromatography coupled with tandem mass spectrometry using 516 

MRM was performed to measure the concentration of amino acids and biogenic amines. The 517 

chromatography consisted of a 5-minute gradient starting at 100% aqueous (0.2% Formic acid) 518 

increasing to 95% acetonitrile (0.2% Formic acid) over a Waters Acquity UPLC BEH C18 column (2.1 x 519 

50 mm, 1.7 μm, with guard column). Isotopically labelled internal standards are integrated within 520 

the Biocrates p180 Kit for quantification. Data was processed in the Biocrates MetIDQ software. Raw 521 

metabolite readings underwent extensive quality control procedures. Firstly, we excluded from any 522 

further analysis metabolites for which the number of measurements below the limit of 523 

quantification (LOQ) exceeded 5% of measured samples. Excluded metabolites were carnosine, 524 

dopamine, putrescine, asymmetric dimethyl arginine, dihydroxyphenylalanine, nitrotyrosine, 525 

spermine, sphingomyelines SM(22:3), SM(26:0), SM(26:1), SM(24:1-OH), phosphatidylcholine acyl-526 

alky 44:4, and phosphatidylcholine diacyl C30:2. Secondly, in samples with detectable but not 527 

quantifiable peaks, we assigned random values between 0 and the run-specific LOQ of a given 528 

metabolite. Finally, we corrected for batch-effects with a “location-scale” approach, i.e. with 529 

normalization for mean and standard deviation of batches. 530 

 The levels of up to 38 metabolites were measured in EPIC-Norfolk and INTERVAL using the 531 

Metabolon HD4 Discovery platform. Measurements were carried out using MS/MS instruments. For 532 

these measurements, instrument variability, determined by calculating the median relative standard 533 

deviation, was of 6%. Data Extraction and Compound Identification: raw data was extracted, peak-534 

identified and quality control-processed using Metabolon’s hardware and software. Compounds 535 

were identified by comparison to library entries of purified standards or recurrent unknown entities. 536 

Metabolon maintains a library, based upon authenticated standards, that contains the retention 537 
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time/index (RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral 538 

data) of all molecules present in the library. Identifications were based on three criteria: retention 539 

index, accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores 540 

between the experimental data and authentic standards. Metabolite Quantification and Data 541 

Normalization: Peaks were quantified using area-under-the-curve. A data normalization step was 542 

performed to correct variation resulting from instrument inter-day tuning differences. Essentially, 543 

each compound was corrected in run-day blocks by registering the medians to equal one (1.00) and 544 

normalizing each data point proportionately (termed the “block correction”). 545 

 The serum levels of 230 metabolites were measured in the INTERVAL study using 1H-NMR 546 

spectroscopy38,41. Among those, 10 metabolites (creatinine, alanine, glutamine, glycine, histidine, 547 

isoleucine, leucine, valine, phenylalanine, and tyrosine) overlapped with what is captured by the 548 

Biocrates p180 Kit and were used in the present study. Further details of the 1H-NMR spectroscopy, 549 

quantification data analysis and identification of the metabolites have been described previously38,42. 550 

Participants with >30% of metabolite measures missing and duplicated individuals were removed. 551 

Metabolite data more than 10 SD from the mean was also removed. 552 

GWAS and meta-analysis 553 

 In Fenland and EPIC-Norfolk, metabolite levels were natural log-transformed, winsorised to 554 

five standard deviations and then standardised to a mean of 0 and a standard deviation of 1. 555 

Genotypes were measured using Affymetrix Axiom or Affymetrix SNP5.0 genotyping arrays. In brief, 556 

genotyping in Fenland was done in two waves including 1,500 (Affymetrix SNP5.0) and 9,369 557 

(Affymetrix Axiom) participants and imputation was done using IMPUTE2 to 1000 Genomes Phase 558 

1v3 (Affymetrix SNP5.0) or phase 3 (Affymetrix Axiom) reference panels (Supplemental Tab. S1). 559 

Plasma metabolite and genotype data was available for 8,714 (Affymetrix Axiom) and 1,022 560 

(Affymetrix SNP5.0) unrelated individuals. In EPIC-Norfolk, 21,044 samples were forwarded to 561 

imputation using 1000 Genomes Phase 3 (Oct. 2014) reference panels (Supplemental Tab. S1). 562 

Imputed SNPs with imputation quality score less than 0.3 or minor allele account less than 2 were 563 

removed from the imputed dataset. Genome-wide association analyses were carried out using BOLT-564 

LMM v2.2 adjusting for age, sex, and study-specific covariates in mixed linear models. Alternatively 565 

(when the BOLT-LMM algorithm failed due to heritability estimates close to zero or one) analyses 566 

were performed using SNPTEST v2.4.1 in linear regression models, additionally adjusting for the top 567 

4 genetic ancestry principal components and excluding related individuals (defined by proportion 568 

identity-by-descent calculated in Plink43 > 0.1875 as recommended44). GWAS analyses in Fenland 569 

were performed within genotyping chip, and associations meta-analysed.  570 
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 In INTERVAL, genotyping was conducted using the Affymetrix Axiom genotyping array. Standard 571 

quality control procedures were conducted prior to imputation. The data were phased and imputed 572 

to a joint 1000 Genomes Phase 3 (May 2013)-UK10K reference imputation panel. After QC, a total of 573 

40,905 participant remained with data obtained by 1H-NMR spectroscopy. For variants with a MAF 574 

of >1% and imputed variants with an info score of >0.4 a univariate GWAS for each of the ten 575 

metabolic measures was conducted, after adjustment for technical and seasonal effects, including 576 

age, sex, and the first 10 principal components, and rank-based inverse normal transformation. The 577 

association analyses were performed using BOLT-LMM v2.2 and R. Data based on the Metabolon 578 

HD4 platform was available for 8,455 participants. Prior to the Metabolon HD4 genetic analysis, 579 

genetic data were filtered to include only variants with a MAF of >0.01% and imputed variants with 580 

an info score of >0.3. Phenotype residuals corrected for age, gender, metabolon batch, INTERVAL 581 

centre, plate number, appointment month, the lag time between the blood donation appointment 582 

and sample processing, and the first 5 ancestry principal components were calculated for each 583 

metabolite and the residuals were standardised prior to the genetic analyses in SNPTEST v2.5.1.  584 

 For all GWAS analysis within Fenland, EPIC-Norfolk and INTERVAL, variants with Hardy-585 

Weinberg equilibrium p<1⨯10-6 and associations with absolute value of effect size >5 or standard 586 

error (SE) >10 or <0 were excluded; insertions and deletions were excluded.  587 

 For each metabolite, we performed a meta-analysis of z-scores (betas divided by standard 588 

errors) as a measure of association, signals and loci (see below), using METAL software. 589 

Heterogeneity between studies for each association was estimated by Cochran’s Q-test. For each 590 

metabolite, we also performed a meta-analysis of beta and standard errors for the subset of studies 591 

(Fenland and, when available, EPIC-Norfolk and/or INTERVAL) where we had access to individual 592 

level data and standardised phenotype preparation to estimate effect sizes. Quality filters 593 

implemented after meta-analysis included exclusion of SNPs not captured by at least 50% of the 594 

participating studies and 50% of the maximum sample size for that metabolite and variants with a 595 

minor allele frequency below 0.5%. As a result, meta-analyses assessed the associations of up to 596 

13.1 million common or low-frequency autosomal SNPs. Chromosome and base pair positions are 597 

determined referring to GRCh37 annotation. To define associations between genetic variants and 598 

metabolites, we corrected the conventional threshold of genome wide significance for 102 tests (i.e. 599 

p<4.9x10-10), corresponding to the number of principal components explaining 95% of the variance 600 

of the 174 metabolites in the Fenland cohort, as previously described45. 601 

 602 

 603 
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Signal selection 604 

 For each metabolite, we ranked associated SNPs (p <4.9x10-10) by z-score to select trait-sentinel 605 

SNPs and defined an “association” region as the region extending 1 Mb to each side of the trait-606 

sentinel SNP. During forward selection of trait-sentinel SNPs and loci for each trait, adjacent and 607 

partially overlapping association regions were merged by extending region boundaries to a further 1 608 

Mb. After defining trait-sentinel SNPs and association regions we defined overall lead-sentinel SNP 609 

and loci for any metabolite using a similar approach. Trait-sentinel SNPs were sorted by z-score for 610 

the forward selection of lead-sentinel SNPs and a “locus” was defined as the region extending 1 Mb 611 

each side of the lead-sentinel SNP. Regions larger than 2 Mb defined in the trait-sentinel association 612 

region definition were carried over in the definition of lead-sentinel SNP loci. As a result, all lead-613 

sentinel SNPs were >1Mb apart from each other and had very low or no linkage disequilibrium (R2 < 614 

0.05). 615 

 For a given locus, independent signals across metabolites were determined based on linkage 616 

disequilibrium (LD)-clumping of SNPs that reached the Bonferroni corrected p-value. SNPs with the 617 

smallest p-values and an R2 less than 0.05 were identified as independent signals. LD patterns were 618 

estimated with SNP genotype data imputed using the haplotype reference consortium (HRC) 619 

reference panel, with additional variants from the combined UK10K plus 1000 Genomes Phase 3 620 

reference panel in the EPIC-Norfolk study (n = 19,254 after removing ancestry outliers and related 621 

individuals).  622 

 Throughout the manuscript, the term “locus” indicates a genomic region (≥1 Mb each side) of a 623 

lead-sentinel SNP harbouring one or more trait-sentinel SNPs; “signal” indicates a group of trait-624 

sentinel SNPs in LD with each other but not with other trait-sentinel SNPs in the locus (R2 < 0.05); 625 

“association” indicates trait-sentinel SNP to metabolite associations defined by a trait-lead SNP and 626 

its surrounding region (≥1 Mb each side). 627 

 We tested at each locus for conditional independent variants using exact stepwise conditional 628 

analysis in the largest Fenland sample (n = 8,714) using SNPTEST v2.5 with the same baseline 629 

adjustment as in the discovery approach. To refine signals at those loci we used a more recent 630 

imputation for this analysis based on the HRC v1 reference panel and additional SNPs imputed using 631 

UK10K and 1000G phase 3. We defined secondary signals as those with a conditional p-value < 5x10-632 

8. To avoid problems with collinearity we tested after each round if inclusion of a new variant 633 

changed associations of all previous variants with the outcome using a joint model. If this model 634 

indicated that one or more of the previously selected variants dropped below the applied 635 

significance threshold we stopped the procedure, otherwise we repeated this procedure until no 636 
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further variant met the significance threshold in conditional models. We considered only locus–637 

metabolite associations meeting the GWAS-threshold for significance in the Fenland analysis 638 

(n=228).  639 

Investigation of heterogeneity 640 

 We used a meta-regression model to identify factors associated with larger I² values across all 641 

499 identified SNP-metabolite associations. To this end, a vector of heterogeneity estimates, I², from 642 

the meta-analysis was obtained as outcome and the following explanatory variables were 643 

considered: strength of effect (absolute Z-score of the SNP – metabolite association), biochemical 644 

class, dummy variables indicating the study of origin (related to the measurement platform), and the 645 

number of contributing studies as an estimate of sample size. A significant effect of any of those 646 

terms in a linear regression model was taken to indicate a source of heterogeneity across SNP-647 

metabolite associations and hence identified systematic factors contributing to any observed cross-648 

platform heterogeneity. 649 

Statistical fine-mapping 650 

 We used statistical fine mapping to determine 99%-credible intervals for all independently 651 

associated SNPs using the R package ‘corrcoverage’. Briefly, regional summary statistics (betas and 652 

standard errors) were converted to approximate Bayes factors as described in Wakefield et al.46 to 653 

calculate the posterior probability (PP) for each variant driving the association. Credible sets are 654 

subsequently defined as the ranked list of variants cumulatively covering 99% of the PP to cover the 655 

true causal signal. For loci with evidence of independent secondary signals we used GCTA COJO-cond 656 

algorithm to generate conditional association statistics conditioning on all other independent signals 657 

in the locus. Since the calculation of approximate Bayes factors requires betas and standard errors 658 

we used meta-analysis results across studies for which we had access to individual data (Fenland, 659 

EPIC-Norfolk, and INTERVAL). However, out of 546 detected signals 473 reached genome-wide 660 

significance (p<5x10-8) in this smaller subset and we restricted fine-mapping to those associations. 661 

Muli-trait colocalisation across metabolites 662 

 We used hypothesis prioritisation in multi-trait colocalisation (HyPrColoc)15 at each of the 663 

identified 144 loci 1) to identify metabolites sharing a common causal variant over and above what 664 

could be identified in the meta-analysis to increase statistical power, and 2) to identify loci with 665 

evidence of multiple causal variants with distinct associated metabolite clusters. Briefly, HyPrColoc 666 

aims to test the global hypothesis that multiple traits share a common genetic signal at a genomic 667 

location and further uses a clustering algorithm to partition possible clusters of traits with distinct 668 

causal variants within the same genomic region. HyPrColoc provides for each cluster three different 669 
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types of output: 1) a posterior probability (PP) that all traits in the cluster share a common genetic 670 

signal, 2) a regional association probability, i.e. that all the metabolites share an association with one 671 

or more variants in the region, and 3) the proportion of the PP explained by the candidate variant. 672 

We considered a highly likely alignment of a genetic signal across various traits if the PP > 75% or the 673 

regional association probability > 80% and the PP > 50%. The second criterion takes into account 674 

that metabolites may share multiple causal variants at the same locus. We used the same set of 675 

summary statistics as described for statistical fine-mapping, i.e. based on betas and standard errors 676 

across studies for which we had access to individual level data. We further filtered metabolites with 677 

no evidence of a likely genetic signal (p>10-5) in a region before performing HyPrColoc, which 678 

improved clustering across traits by minimizing noise. We used the same workflow to test for the 679 

alignment of a genetic signal at the GLPR2 locus using summary statistics from T2D (see below), a 680 

meta-analysis for body mass index across GIANT and UK Biobank, plasma GIP, and plasma citrulline. 681 

Testing for non-linear effects 682 

 We tested each of the 499 identified SNP (j) – metabolite (i) pairs for the deviation from an 683 

additive linear model by introducing a dummy variable encoding heterozygous carriers (D), i.e. D = 1 684 

if heterozygous and 0 otherwise, in the following regression model: 685 

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑖 ~ 𝛽1 +  𝛽2 ∗ 𝑆𝑁𝑃𝑗 + 𝛽3 ∗  𝐷 + ⋯ 𝐶𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟 … +  𝜖  686 

A significant estimate 𝛽3indicates departure from linearity. In a more formal framework this test 687 

allows to test for either a dominant negative or positive model of inheritance depending on the 688 

coding of the effect allele. We implemented this test in STATA version 13 using individual level data 689 

from the Fenland cohort. 690 

Metabolic network and community detection 691 

 We used Gaussian graphical modelling (GGMs) to construct a metabolic network across all 174 692 

metabolites in a data-driven manner2. Briefly, GGMs are based on partial correlation minimizing 693 

confounding and have been shown to recover tight biochemical dependencies from single spot 694 

blood measurements. The final network comprised 167 metabolites and 554 significant (p<3.3x10-6) 695 

edges. We next preformed community detection using the Girvan-Newman algorithm, which 696 

successively removes edges with high edge betweenness creating a dendrogram of splits of the 697 

network into communities, as implemented in the R package igraph. We obtained 14 distinct 698 

communities including those covering metabolites of distinct biochemical species as well as 699 

subdividing larger metabolite classes (Supplemental Fig. S2). 700 

 701 
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Hypothesis-free (genetic) assignment of causal genes 702 

 To assign likely causal genes to lead SNPs at each locus we generated a scoring system. We 703 

identified the nearest gene for each variant by querying HaploReg47. Next we integrated expression 704 

quantitative trait loci (eQTL) studies (GTEx v6p) to identify genes whose expression levels are 705 

associated with metabolite levels using TWAS/FUSION (Transcriptome-wide association study / 706 

Functional summary-based imputation)48. In doing so, we assigned to each variant-metabolite 707 

association one or more associated genes using the variant as common anchor. We further assigned 708 

higher impact for a causal gene if either the metabolite variant itself or a proxy in high linkage 709 

disequilibrium (R2>0.8) was a missense variant for a known gene again using the HaploReg database 710 

to obtain relevant information. Based on those three criteria we ranked all possible candidate genes 711 

and kept those with the highest score as putative causal gene. 712 

Knowledge-based (biological) assignment of causal genes 713 

 Metabolite traits are unique among genetically evaluated phenotypes in that the functional 714 

characterization of the relevant genes has often already been carried out using classic biochemical 715 

techniques. The objective for the knowledge-based assignment strategy was to find the 716 

experimental evidence that has previously linked one of the genes proximal to the GWAS lead 717 

variant to the relevant metabolite. For many loci and metabolites this ‘retrospective’ analysis has 718 

already been carried out 3149.For these cases, previous causal gene assignments were generally 719 

adopted. For novel loci, we employed a dual strategy that combined automated database mining 720 

with manual curation. In the automated phase, seven approaches were employed to identify 721 

potential causal genes among the 20 protein-coding genes closest to each lead variant, as described 722 

in detail below, using the shortest distance determined from the lead SNP to each gene’s 723 

transcription start site (TSS) or transcription end site (TES), with a distance value of 0 assigned if the 724 

SNP fell between the TSS and TES.   725 

These 7 approaches were as follows: 726 

1) HMDB metabolite names50 were compared to each entrez gene name;  727 

2) Metabolite names were compared to the name and synonyms of the protein encoded by each 728 

gene51 729 

3) HMDB metabolite names and their parent terms (class) were compared to the names for the 730 

protein encoded by each gene (UniProt). 731 

4) Metabolite names were compared to rare diseases linked to each gene in OMIM32 after 732 

removing the following non-specific substrings from disease names: uria, emia, deficiency, disease, 733 
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transient, neonatal, hyper, hypo, defect, syndrome, familial, autosomal, dominant, recessive, benign, 734 

infantile, hereditary, congenital, early-onset, idiopathic; 735 

5) HMDB metabolite names and their parent terms were compared to all GO biological processes 736 

associated with each gene after removing the following non-specific substrings from the name of the 737 

biological process: metabolic process, metabolism, catabolic process, response to, positive 738 

regulation of, negative regulation of, regulation of. For this analysis only gene sets containing fewer 739 

than 500 gene annotations were retained. 740 

6) KEGG maps52 containing the metabolite as defined in HMDB were compared to KEGG maps 741 

containing each gene, as defined in KEGG. For this analysis the large “metabolic process” map was 742 

omitted. 743 

7) Each proximal gene was compared to the list of known interacting genes as defined in HMDB. 744 

For each text-matching based approach, a fuzzy text similarity metric (pair coefficient) as encoded in 745 

the ruby gem “fuzzy_match” was used with a score greater than 0.5 considered as a match. 746 

In the next step, all automated hits at each locus were manually reviewed for plausibility. In 747 

addition, other genes at each locus were reviewed if the Entrez gene or UniProt description of the 748 

gene suggested it could potentially be related to the metabolite. If existing experimental evidence 749 

could be found linking one of the 20 closest genes to the metabolite, that gene was selected as the 750 

biologically most likely causal gene. If no clear experimental evidence existed for any of the 20 751 

closest protein coding genes, no causal gene was manually selected. In a few cases multiple genes at 752 

a locus had existing experimental evidence. This frequently occurs in the case of paralogs with 753 

similar molecule functions. In these cases, all such genes were flagged as likely causal genes. 754 

For each manually selected causal gene, the earliest experimental evidence linking the gene 755 

(preferably the human gene) to the metabolite was identified. The median publication year for the 756 

identified experimental evidence was 2000. 757 

Enrichment of type 2 diabetes associations among metabolite associated lead variants 758 

 We examined whether the set of independent lead metabolite associated variants (N=168) 759 

were enriched for associations with type 2 diabetes. We plotted observed versus expected -log10(p 760 

values) for the 168 lead variants in a QQ-plot, using association statistics from a type 2 diabetes 761 

meta-analysis including 80,983 cases and 842,909 non-cases from the DIAMANTE study 53 (55,005 762 

T2D cases, 400,308 non-cases), UK Biobank54 (24,758 T2D cases, 424575 non-cases, application 763 

number 44448) and the EPIC-Norfolk study (additional T2D cases not included in DIAMANTE study: 764 

1,220 T2D cases and 18,026 non-cases). This QQ-plot was compared to those for 1000 sets of 765 
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variants, where variants in each set were matched to the index metabolite variants in terms of MAF, 766 

the number of variants in LD (R2>0.5), gene density and distance to nearest gene (for all parameters 767 

+/- 50% of the index variant value), but otherwise randomly sampled from across the autosome 768 

excluding the HLA region. MAF and LD parameters for individual variants were determined from the 769 

EPIC-Norfolk study (using the combined HRC, UK10K and 1000G imputation as previously described) 770 

and gene information was derived from GENCODE v19 annotation55. A one-tailed Wilcoxon rank sum 771 

test was used to compare the distribution of association –log10 p-values for the metabolite 772 

associated variants with that for the randomly sampled, matched, variants. 773 

Functional characterisation of D470N mutant GLP2R 774 

 To investigate the functional differences between wild-type (WT) GLP2R and the D470N 775 

mutant GLP2R we generated D470N GLP2R mutant constructs using site-directed mutagenesis and 776 

characterised canonical GLP2R signalling pathways via cAMP as well as alternative signalling 777 

pathways via β-arrestin and P-ERK. 778 

Generation of D470N GLP2R mutant expressing constructs 779 

 Human GLP2R cDNA within the pcDNA3.1+ vector was purchased, and Gibson cloning was 780 

completed to insert an internal ribosome entry site (IRES) and venus gene downstream of the GLP2R 781 

sequence. Following this, QuikChange Lightning site directed mutagenesis was used to perform a 782 

single base change from GAC (encoding aspartic acid) to AAC (encoding asparagine) at amino acid 783 

position 470 (Supplemental Fig. 4A-B). Successful mutagenesis was confirmed by DNA Sanger 784 

sequencing (Supplemental Fig. 4C), and the successful products were scaled up for use in functional 785 

assays. The WT and mutant GLP2R constructs within the pcDNA3.1+ vector were used to assess 786 

signalling by cAMP and P-ERK. To determine β-arrestin recruitment using NanoBiT® technology, an 787 

alternative vector was required for lower expression of GLP2R, and fusion of GLP2R to the Large BiT 788 

subunit of NanoBiT®. For this, GLP2R was cloned into the pBiT1.1_C[TK/LgBiT] vector using 789 

restriction cloning and ligation. DNA Sanger sequencing was then used for confirmation of successful 790 

cloning.  791 

Comparison of WT and D470N GLP2R signalling via cAMP 792 

After generation of WT and D470N GLP2R containing constructs, these were used to assess 793 

differences in WT and mutant GLP2R signalling. The initial signalling pathway to be assessed was Gαs 794 

signalling via cAMP. CHO K1 cells were transiently transfected with WT or mutant GLP2R constructs, 795 

then after 16-24 hours were treated with a dose response of GLP-2. cAMP levels were measured 796 

following 30 minutes of GLP-2 treatment, in an end-point lysis HitHunter® cAMP assay. The presence 797 

of IRES-Venus within the GLP2R expressing vectors allowed transfection efficiency to be determined 798 
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for each construct. Transfection efficiency was approximately 60-70%, with no differences between 799 

the WT and mutant constructs. Comparison of the GLP-2 dose-response in WT and mutant GLP2R 800 

expressing cells revealed no significant differences in signalling, with an almost overlapping dose 801 

response curve (Fig. 5E).  802 

Comparison of β-arrestin recruitment to the WT and D470N GLP2R 803 

Both β-arrestin 1 and β-arrestin 2 recruitment were assessed using a Nano-Glo® live cell 804 

assay in transiently transfected HEK293 cells. Briefly, the recruitment of β-arrestin to GLP2R brings 805 

the large and small BiT subunit of NanoBiT® together, resulting in increased luciferase activity. The 806 

top concentrations from the GLP-2 dose response in the cAMP assay (1–100 nmol/l GLP-2) were 807 

chosen for stimulation of the GLP2R and observation of β-arrestin recruitment. Both β-arrestin 1 and 808 

β-arrestin 2 were recruited to the WT GLP2R upon GLP-2 stimulation, in a dose-dependent manner 809 

(Supplemental Fig. 5a, c). The maximal luciferase activity for both β-arrestin 1 and β-arrestin 2 810 

recruitment to the mutant GLP2R was significantly decreased when compared to the WT GLP2R, 811 

indicating the extent of β-arrestin recruitment was markedly decreased (Supplemental Fig. 5b, d). 812 

The example traces indicate that neither β-arrestin 1 or β-arrestin 2 were recruited to the mutant 813 

GLP2R upon stimulation with 1 nmol/l GLP-2, however the same concentration of GLP-2 induced β-814 

arrestin recruitment to the WT GLP2R. Overall there was a significant decrease in β-arrestin 1 and β-815 

arrestin 2 recruitment to the D470N GLP2R mutant (Figure 5F-G). 816 

Genetic score and Mendelian randomization analysis for macular telangiectasia type 2  817 

 For each metabolite a genetic score (GS) was calculated using all variants meeting genome-818 

wide significance and their beta-estimates as weights obtained from the meta-analysis of studies for 819 

which individual level data was available. We used fixed-effect meta-analysis to test for the effect of 820 

the GS on MacTel risk using the summary statistics from the most recent GWAS. A conservative 821 

Bonferroni-correction for the number of tested GS’s was used to declare significance (p<3.5x10-4). 822 

Sensitivity analyses were performed where the pleiotropic GCKR variant was removed.     823 

 To test for causality between circulating levels of glycine and serine for MacTel we 824 

performed two types of Mendelian randomization (MR) analysis. In a two-sample univariable MR56 825 

we tested for an individual effect of serine (n=4 SNPs) or glycine (n=15 SNPs) on the risk of MacTel 826 

using independent non-pleiotropic (i.e. the variant in GCKR) genome-wide SNPs as instruments. To 827 

this end, we used the inverse variance weighted method to pool SNP ratio estimates using random 828 

effects as implemented in the R package MendelianRandomization. SNP effects on the risk for 829 

MacTel were obtained from28. To disentangle the individual effect of those two highly correlated 830 

metabolites at the same time we used a multivariable MR model57 including all SNPs related to 831 
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serine or glycine (n=15 SNPs). Beta estimates and standard errors for both metabolites and all SNPs 832 

were obtained from the summary statistics and mutually used as exposure variables in multivariable 833 

MR. Effect estimates were again pooled using a random effect model as implemented in the R 834 

package MendelianRandomization. This procedure allowed us to obtain causal estimates for both 835 

metabolites while accounting for the effect on each other. Estimates can be interpreted as increase 836 

in risk for MacTel per 1 SD increase in metabolite levels while holding the other metabolite constant.   837 

 To estimate a potential clinical usefulness of the identified variants we constructed two 838 

GRS’s for MacTel using a) sex, the first genetic principal component, and the SNPs rs73171800 and 839 

rs9820286 which were identified by the MacTel GWAS study28 but not found to be related to either 840 

glycine or serine in our study and b) all the previous but additionally including genetically predicted 841 

serine and glycine at individual levels, via GS, to the model. An interaction between serine and sex at 842 

birth was included to reflect the interaction between SNP rs715 and sex as previously identified 28. 843 

To assess the predictive ability of both models, receiver operating characteristic curves were 844 

computed based on prediction values in 1,733 controls and 476 MacTel cases. 845 

Identification of genes related to inborn errors of metabolism 846 

 Biologically or genetically assigned candidate genes were annotated for IEM association 847 

using the Orphanet database32. Using a binomial two-tailed test, enrichment of metabolic loci was 848 

assessed by comparing the annotated list with the full list of 784 IEM genes in Orphanet against a 849 

backdrop of 19,817 protein-coding genes58. IEM-annotated loci for which the associated metabolite 850 

matched or was closely biochemically related to the IEM corresponding metabolite(s) based on 851 

IEMBase59 were considered further for analysis.  852 

 We hypothesised that IEM-annotated loci with metabolite-specific consequences could also 853 

have phenotypic consequences similar to the IEM. To test this, we first obtained terms describing 854 

each IEM and translated them into IEM-related ICD-10 codes using the Human Phenotype Ontology 855 

and previously-generated mappings60,61. We obtained association statistics from the 85 IEM SNPs for 856 

phenotypic associations with corresponding ICD-codes among UK Biobank restricting to diseases 857 

with at least 500 cases (N=93, Fig. 7B, http://www.nealelab.is/uk-biobank). We tested locus-disease 858 

pairs meeting statistical significance (controlling the false discovery rate at 5% to account for 859 

multiple testing) for a common genetic signal with the corresponding locus-metabolite association 860 

using statistical colocalisation. Because of the hypothesis-driven nature of the approach, i.e. prior 861 

knowledge of the causal gene and metabolite effect for a given IEM, we adopted an FDR-based 862 

strategy to account for multiple testing. We further highlight only those examples with strong 863 

evidence for a shared genetic signal (see below).  864 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 3, 2020. ; https://doi.org/10.1101/2020.02.03.932541doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932541


30 

 

Colocalisation analyses 865 

 We used statistical colocalisation62 to test for a shared genetic signal between a metabolite and 866 

a disease of interest. We obtained posterior probabilities (PP) of: H0 – no signal; H1 – signal unique 867 

to the metabolite; H2 – signal unique to the trait; H3 – two distinct causal variants in the same locus 868 

and H4 – presence of a shared causal variant between a metabolite and a given trait. PPs above 80% 869 

were considered highly likely. We used p-values and MAFs obtained from the summary statistics 870 

with default priors to perform colocalisation. 871 
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TABLES 1075 
 1076 
Table 1 Genomic loci with effect sizes larger than 0.25 units in standard deviation of metabolite 1077 
levels per allele. 1078 
rsID Position* Metabolite EA/OA EAF N MA p-value Beta (se)** Candidate genes Expl. var. (%) 

rs13538 2:73868328 Acetylornithine A/G 0.78 30692 1.99E-1984 0.85 (0.01) NAT8, ACTG2 18.4 

rs3916 12:121177272 Butyrylcarnitine C/G 0.26 30694 1.67E-2010 0.81 (0.01) ACADS, 16.9 

rs12587599 14:104575130 Asparagine T/C 0.14 23606 8.98E-294 0.49 (0.013) ASPG, ADSSL1 8.2 

rs3970551 22:18906839 Proline G/A 0.11 23618 1.10E-224 0.48 (0.015) PRODH 5.0 

rs174547 11:61570783 lysoPC a C20:4 T/C 0.67 16829 4.42E-398 0.47 (0.015) FADS1, DAGLA 9.9 

rs174545 11:61569306 PC aa C38:4 C/G 0.67 16828 1.37E-361 0.45 (0.015) FADS1, 9.2 

rs715 2:211543055 Glycine C/T 0.31 80000 3.00E-1632 0.44 (0.006) CPS1, IDH1 12.9 

rs174564 11:61588305 PC ae C42:3 A/G 0.66 9363 5.72E-183 0.44 (0.015) FADS1, DAGLA 8.9 

rs174547 11:61570783 PC aa C36:4 T/C 0.67 16830 3.25e-313 0.43 (0.015) FADS1, DAGLA 8.6 

rs1171617 10:61467182 Carnitine T/G 0.77 31001 2.06E-444 0.43 (0.011) SLC16A9, 7.0 

rs102275 11:61557803 PC ae C40:5 T/C 0.67 16839 8.23E-202 0.43 (0.015) C11orf10, DAGLA 8.7 

rs7157785 14:64235556 PC aa C28:1 T/G 0.16 16833 4.60E-136 0.35 (0.019) SGPP1,SYNE2 3.3 

rs174547 11:61570783 PC ae C36:5 T/C 0.67 16828 2.48E-185 0.33 (0.015) FADS1, DAGLA 5.1 

rs102275 11:61557803 PC aa C38:5 T/C 0.67 16836 8.31E-198 0.33 (0.015) C11orf10, DAGLA 5.0 

rs174564 11:61588305 PC ae C42:2 A/G 0.66 9363 7.04E-99 0.32 (0.015) FADS1, DAGLA 4.8 

rs174564 11:61588305 lysoPC a C26:1 A/G 0.66 9363 1.38E-91 0.32 (0.016) FADS1, DAGLA 4.6 

rs7157785 14:64235556 SM (OH) C14:1 T/G 0.16 16833 1.65E-96 0.29 (0.019) SGPP1 2.2 

rs174546 11:61569830 PC aa C24:0 C/T 0.67 13184 4.16E-89 0.29 (0.016) FADS1, DAGLA 3.6 

rs174546 11:61569830 PC ae C38:5 C/T 0.67 16839 8.98E-146 0.29 (0.015) FADS1, DAGLA 3.9 

rs7552404 1:76135946 Octanoylcarnitine A/G 0.69 31969 2.30E-260 0.28 (0.01) ACADM 2.8 

rs1171615 10:61469090 Propionylcarnitine T/C 0.77 32590 7.09E-185 0.27 (0.011) SLC16A9 3.1 

rs1171617 10:61467182 Acetylcarnitine T/G 0.77 31008 1.92E-156 0.27 (0.011) SLC16A9 3.3 

rs2286963 2:211060050 Nonaylcarnitine G/T 0.36 13925 5.46E-159 0.26 (0.016) ACADL 3.2 

rs12210538 6:110760008 Octadecandienylcarnitine A/G 0.77 30227 1.69E-144 0.26 (0.011) SLC22A16 1.0 

rs102275 11:61557803 PC aa C36:5 T/C 0.66 16835 2.09E-120 0.25 (0.015) C11orf10, DAGLA 3.0 

rs174550 11:61571478 PC ae C36:3 C/T 0.33 16830 2.05E-105 0.25 (0.015) FADS1, DAGLA 2.7 

EA = effect allele; OA = other allele; MA = meta-analysis; se = standard error; *Chromosome:Position based on Genome 1079 
Reference Consortium Human Build 37; **based on meta-analysis across cohorts for which individual-level data was 1080 
available (more information is provided in Supplementary Tab. S2). 1081 
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 1083 

Table 2 Results from Mendelian randomisation (MR) analysis between metabolite levels and risk of  1084 
macular telangiectasia type 2. 1085 
 1086 
Metabolite Univariable MR Multivariable MR 

Serine (4 SNPs)   
Odds ratio per SD increase 0.06 (0.03; 0.13) 0.10 (0.05; 0.21) 
p-value 9.45x10-12 2.95x10-9 

Glycine (15 SNPs)   
Odds ratio per SD increase 0.17 (0.08; 0.37) 0.50 (0.29; 0.87) 
p-value 9.99x10-6 1.35x10-2 

MR estimates are based on the inverse variance-weighted method using random effects to pool estimates.  All single 1087 
nucleotide polymorphisms (SNPs) significantly associated with either serine or glycine have been included in multivariable 1088 
MR analysis. SD = standard deviation 1089 

 1090 
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