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23 Abstract
24 Metabolic engineering in the post-genomic era is characterised by the development of new 

25 methods for metabolomics and fluxomics, supported by the integration of genetic engineering 

26 tools and mathematical modelling. Particularly, constraint-based stoichiometric models have 

27 been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux analysis 

28 (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics and 

29 metabolomics data to improve the predictive capabilities of these approaches. However, an 

30 in-depth comparison and evaluation of these methods is lacking. This study presents a thorough 

31 analysis of four different in silico methods tested against experimental data (metabolomics and 

32 13C-MFA) for the mesophile Escherichia coli and the thermophile Thermus thermophilus. In 

33 particular, a modified version of the recently published matTFA toolbox has been created, 

34 providing a broader range of physicochemical parameters. In addition, a max-min driving force 

35 approach (as implemented in eQuilibrator) was also performed in order to compare the 

36 predictive capabilities of both methods.

37 Validating against experimental data allowed the determination of the best 

38 physicochemical parameters to perform the TFA for E. coli, whereas the lack of metabolomics 

39 data for T. thermophilus prevented from a full analysis. Results showed that analytical 

40 conditions predicting reliable flux distributions (similar to the in vivo fluxes) do not necessarily 

41 provide a good depiction of the experimental metabolomics landscape, and that the original 

42 matTFA toolbox can be improved. An analysis of flux pattern changes in the central carbon 

43 metabolism between 13C-MFA and TFA highlighted the limited capabilities of both approaches 

44 for elucidating the anaplerotic fluxes. Finally, this study highlights the need for standardisation 

45 in the fluxomics community: novel approaches are frequently released but a thorough 

46 comparison with currently accepted methods is not always performed.

47 Keywords
48 Constraint-based modelling, fluxomics, metabolomics, thermodynamics.
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49 Author summary
50 Biotechnology has benefitted from the development of high throughput methods characterising 

51 living systems at different levels (e.g. concerning genes or proteins), allowing the industrial 

52 production of chemical commodities (such as ethylene). Recently, focus has been put on 

53 determining reaction rates (or metabolic fluxes) in the metabolic network of certain 

54 microorganisms, in order to identify bottlenecks hindering their exploitation. Two main 

55 approaches can be highlighted, termed metabolic flux analysis (MFA) and flux balance analysis 

56 (FBA), based on measuring and estimating fluxes, respectively. While the influence of 

57 thermodynamics in living systems was accepted several decades ago, its application to study 

58 biochemical networks has been only recently enabled. In this sense, a multitude of different 

59 approaches constraining well-established modelling methods with thermodynamics has been 

60 suggested. However, physicochemical parameters are not properly adjusted to the experimental 

61 conditions, which might affect their predictive capabilities. In this study, we improved the 

62 reliability of currently available tools by exploring the impact of varying said parameters in the 

63 simulation of metabolic fluxes and metabolite concentration values. Additionally, our in-depth 

64 analysis allowed us to highlight limitations and potential solutions that should be considered in 

65 future studies.

66
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67 Introduction
68 Metabolic engineering aims to improve microbial strains by considering comprehensive 

69 metabolic pathways in their entirety rather than overexpressing a single gene (1). To improve 

70 the strains, hypothesis-driven studies have attempted to rationally identify gene targets and to 

71 evaluate the effects of those changes in the network (2, 3). However, the complex nature of 

72 cellular metabolism and its regulation demands a holistic understanding, i.e. a data-driven 

73 approach (1-3). Combining metabolic engineering with systems biology and mathematical 

74 modelling allows for an optimisation of entire cellular networks considering further 

75 downstream processes at early stages (4). 

76 This systematic framework exploits information regarding the metabolic state, which 

77 comprises the metabolome (set of low-molecular-weight metabolites (<1.5 kDa)) and the 

78 fluxome (or metabolic activity, distribution of rates of conversion/transport in the metabolic 

79 network) (5, 6). Kinetic modelling can yield metabolic fluxes from metabolomics data, but lack 

80 of high-quality enzymatic parameters and computational limitations (e.g. time-consuming 

81 processes) hinder its application (7-9). As an alternative, stoichiometric modelling provides a 

82 flux distribution without any kinetic or metabolomics information (10). Briefly, a metabolic 

83 (quasi) steady-state for intracellular concentration values (C) is assumed, so the stoichiometric 

84 matrix (S) (including the stoichiometric coefficients of metabolites in each reaction of the 

85 metabolic network) constrains the set of metabolic fluxes (υ) (11):

𝑑𝐶
𝑑𝑡 = 𝑆 × 𝑣≅0 (1)

86 Two main approaches to solve this equation can be found: (i) flux balance analysis 

87 (FBA), normally applied to large models (genome-scale model, GSM) (12) or (ii) metabolic 

88 flux analysis (MFA), used for smaller metabolic networks (mainly the central carbon 

89 metabolism) (Table 1).

90 FBA solves the underdetermined system represented in Eq. 1 by maximising or 

91 minimising the value of an assumed objective function (12). A plethora of different objectives 

92 has been described in the literature (13). Three can be highlighted: maximisation of biomass 

93 yield (YX/S), maximisation of ATP yield, and minimisation of sum of fluxes, which have been 

94 suggested to compete in the regulation of bacterial metabolism (14). Hence, selecting an 

95 adequate one/multi-dimensional objective function when analysing a GSM will depend on the 

96 growth conditions to be simulated in FBA. In general, measured extracellular metabolic rates 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.932855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932855
http://creativecommons.org/licenses/by/4.0/


Predictive capabilities of thermodynamics-based stoichiometric approaches

5

97 (e.g. substrate uptake) are insufficient to properly describe the intracellular metabolic fluxes 

98 (11). In contrast, MFA is based on a least-squares-regression problem, normally solved by 

99 exploiting experimental mass isotopomer distribution (MID) of proteinogenic amino acids 

100 (13C-MFA) (11). Since this approach requires fewer assumptions and uses more experimental 

101 information than FBA, 13C-MFA is considered to be the gold standard in fluxomics (15). 

102 However, current applicability (central carbon metabolism), and technical/computational 

103 complexity (particularly for autotrophic growth (16)) limit its usage.

104 The set of constraints characterising stoichiometric modelling approaches (Eq. 1) is 

105 insufficient to guarantee thermodynamically feasible results in the flux solution space (17, 18). 

106 Both FBA and 13C-MFA assume most reactions to be reversible (11, 19): in the first case 

107 directionalities are dictated by the optimal flux distribution (which depends on the a priori 

108 chosen objective function (12)), whereas in 13C-MFA they are determined by the MIDs (20). 

109 The flux-force relationship (thermodynamic displacement from the equilibrium (21)) links 

110 thermodynamic potentials and fluxes (Eq. 2):

𝛥𝑟𝐺' = 𝛥𝑟𝐺𝑜' + 𝑅𝑇ln𝑄 = 𝑅𝑇ln(𝑄 𝑘𝑒𝑞) =‒ 𝑅𝑇ln(𝐽 + 𝐽 ‒ ) (2)

111 where and  are the Gibbs free energies of reactions (the latter referring to adjusted 𝛥𝑟𝐺' 𝛥𝑟𝐺𝑜'

112 standard conditions), Q and keq are the ratio of products to reactant concentrations or activities 

113 (the latter at equilibrium) and is the relative forward-to-backward flux (20).(𝐽 + 𝐽 ‒ ) 

114 Four main approaches exploiting thermodynamics data can be highlighted: (i) energy 

115 balance analysis (EBA), where pre-selecting  bounds leads to biased results (22), 𝛥𝑟𝐺'

116 (ii) network-embedded thermodynamic (NET) analysis, that needs pre-assigned 

117 directionalities (e.g. obtained by FBA) and evaluates the thermodynamic consistency (23), 

118 (iii) max-min driving force (MDF), which needs a flux distribution as input data to predict 

119 metabolite concentration values (24), and (iv) thermodynamically-constrained FBA. Two 

120 methods can be found within the latter: thermodynamics-based flux analysis (TFA), and an 

121 optimization problem allowing to obtain a thermodynamically realizable flux-minimised 

122 (TR-fluxmin) solution. TFA directly yields a thermodynamically feasible FBA solution (e.g. 

123 by maximising YX/S) and simulated metabolomics data (18, 25). In contrast, TR-fluxmin is 

124 based on the minimisation of sum of fluxes in the system whilst applying a penalty score for 

125 in silico metabolite concentration values (19). Other recent approaches are based on alternative 

126 constraints, such as setting an upper limit on the Gibbs energy dissipation rate (26).
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127 MDF and TFA are generally performed using eQuilibrator (24) and matTFA (18), 

128 respectively. Given the code availability for both tools, they were selected for this study. Three 

129 features from both methods should be highlighted: (i) unique values for temperature (25 ) ℃

130 are considered, (ii) salinity is not taken into account, and (iii) Gibbs free energy values are 

131 adjusted for ionic strength (I) using the extended Debye-Hückel equation (Table 1). In this 

132 sense, it should be noted that the cytosol of E. coli is normally in the interval 0.15 – 0.20 M 

133 (25) (and so, salinity is not null), and the fact that the extended Debye-Hückel equation is valid 

134 for I < 0.1 M (27). Previous attempts to adjust physicochemical parameters to in vivo 

135 conditions can be found in the literature, but they require extra assumptions and only provide 

136 information regarding reaction directionalities (28). 

137 Table 1. Comparison of frequently used approaches in fluxomics. 

13C-MFA FBA MDF TFA

Metabolic network size small GSM GSM GSM
Flux distribution generated generated input generated
Uptake rate Yes Yes - Yes
Specific growth rate, µ (h-1) - Yes - Yes
Gibbs free energy of formation ( )∆𝐺°

𝑓 - - Experimental (29), 
or CCM (30)

Experimental (29), 
or GCM (31)

Temperature, t (̊C) - - 25
Ionic strength, I (M) - - input 0.25
Salinity, S (g/kg) - - - -
Adjustment method - - Extended Debye-Hückel
Parameter A - - T-dependent
Metabolite concentration values - - Constraint or predicted
Problem formulation least square 

regression (11)
LP
(12)

LP
(24)

MILP
(18)

138 13C-MFA, 13C metabolic flux analysis; CCM, component contribution method; FBA, flux balance analysis; 

139 GCM, group contribution method; GSM, genome-scale model; LP, linear programming; MDF, max-min driving 

140 force; MILP, mixed-integer linear programming; TFA, thermodynamics-based flux analysis.

141 This study was based on determining the impact of varying and adjusting the 

142 physicochemical parameters (t, I and S) on the predictive capabilities of thermodynamic-based 

143 fluxomics/metabolomics approaches under mesophilic and thermophilic growth conditions. In 

144 order to do so, a modified matTFA was developed by increasing the number of parameters and 

145 parameter values that were originally considered (18). To validate the results, a comparison 

146 with published 13C-MFA and metabolomics data was performed.

147 Finally, flux pattern changes between in vivo and in silico fluxes in the central carbon 

148 metabolism were analysed, with a particular focus on the anaplerotic reactions. Intermediates 
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149 participating in the tricarboxylic acid (TCA) cycle are used for biosynthesis of amino acids 

150 (which is robust against changes in concentrations (32, 33)), so a continuous replenishment by 

151 anaplerosis is necessary (34). The ‘anaplerotic node’ consists of carboxylation/decarboxylation 

152 reactions including phosphoenolpyruvate, pyruvate, oxaloacetate, and malate (35). Given the 

153 fact similar MIDs (from proteinogenic amino acids) can be obtained from different precursors, 

154 13C-MFA has been noted to show a limited capability to elucidate fluxes around the anaplerotic 

155 node (32, 36, 37). An approach improving the resolution consisting in also measuring MIDs 

156 from intracellular intermediates has been suggested (32), but it is not commonly performed 

157 (11). Hence, 13C-MFA data for E. coli and T. thermophilus (38, 39) was assumed as the gold 

158 standard in this study, as stated above (15).
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159 Materials and Methods

160 Metabolic network, mapping of metabolic fluxes and experimental data

161 Two growth conditions (mesophilic and thermophilic) represented by two species were 

162 selected: Escherichia coli, widely used in biotechnology, and Thermus thermophilus, an 

163 extreme thermophile with the potential to become a non-model metabolic engineering platform 

164 (40). For E. coli, simulations were performed with the commonly used GSM iJO1366 

165 (str. K-12 substr. MG1655), as available in BiGG Models (41). This model has proven to 

166 predict phenotypes in a wide range of growth conditions (42), and was explored with the 

167 original matTFA (18). In the case of T. thermophilus, the GSM iTT548 for the strain HB27 

168 was used (43), downloaded from (http://darwin.di.uminho.pt/models/models). The metabolic 

169 networks were mapped on to previously published 13C-MFA data (S1-S2 Tables). For the sake 

170 of consistency, metabolomics and fluxomics data were obtained from the same experiment 

171 when possible (Table 2).
172 Table 2. Bioprocessing, metabolomics and fluxomics (13C-MFA) experimental data. 

Escherichia coli K-12  Thermus thermophilus HB8
Glucose uptake rate (mmol/gDCW-h) 2.93 3.7
Specific growth rate (h-1) 0.20 0.22  0.02±
YX/S (gDCW/g) 0.38 0.33  0.02±
Temperature ( )℃ 37 72
Metabolomics Yes (S2 Dataset) -
Fluxomics (13C-MFA) Yes (S1 Table) Yes (S2 Table)
Ref. (18, 38) (39)

173 It is important to note that for E. coli the same strain was used for both the GSM and the 13C-MFA, whereas for 

174 T. thermophilus strain HB27 was used for constructing the GSM, and HB8 for the 13C-MFA. The E. coli cells 

175 were grown in glucose-limited chemostats, whereas batch culture was used for T. thermophilus instead. GAM, 

176 growth-associated maintenance; NGAM, non-growth-associated maintenance; YX/S, biomass yield.

177

178 TFA required a higher glucose uptake rate than the experimental one (S1 Appendix), 

179 which provoked a difference between predicted and experimental growth rate (which is equal 

180 to the dilution rate in a continuous culture). Since the biomass elemental composition does not 

181 significantly vary due to changes in the dilution rate (44), biomass reactions remained 

182 unchanged in the model (45), and the energetic requirements were assumed to be constant for 

183 both bacteria (S1 Appendix). Using the default constraints from the metabolic networks also 

184 allowed comparing the results with previously published ones.

185 In order to achieve compatibility with the COBRA toolbox (46) and matTFA (18), some 

186 changes were applied to GSM iTT548: (i) the names of the metabolites were adapted to the 
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187 convention used in matTFA and associated to metSEED_IDs to enable access to the 

188 thermodynamics database in matTFA (S1 Dataset) (18), and (ii) the fields CompartmentData, 

189 metCompSymbol and rev were created in the model.

190

191 Modified matTFA (mod-matTFA) and parameters included in the analysis

192 The original matTFA toolbox uses unique values for t and I (18), and S is not taken into account 

193 (Table 1). To address this potential deficiency, a modified matTFA was created (mod-matTFA) 

194 as described below (Table 3). For reproducibility (47), the complete list of files used in this 

195 study was collected in S3 Table.
196 Table 3. Parameters considered in mod-matTFA.

Parameters Mesophilic conditions
(E. coli)

Thermophilic conditions
(T. thermophilus)

Temperature,  (̊C)𝑡 (0): 25
(1): 37

(0): 25
(1): 72

Ionic strength,  (M)𝐼 (0): 0
(1): 0.25

(0): 0.25
(1): 0.50

Salinity, S (g/kg) (0): 0
(1): 13.74

(0): 13.74
(1): 27.10

Adjustment method (0): Extended Debye-Hückel equation
(1): Davies equation

(0): Extended Debye-Hückel equation
(1): Davies equation

Parameter 𝐴 (0): T-dependent
(1): T,S-dependent

(0): T-dependent
(1): T,S-dependent

Metabolite concentration 
values

(0): Default matTFA
(1): experimental data

(0): Default matTFA
(1): -

197 Values 0/1 refer to the binary codification for the full factorial design (S4-S5 Tables). It is important to note that 

198 in the case of E. coli, 26 combinations were tested, whereas the lack of metabolomics data for T. thermophilus 

199 meant only 25 different tests were available. There is a ‘default matTFA’ constraint regarding set concentrations 

200 values for cofactors (AMP, ADP and ATP) as included in the original matTFA code. ‘Experimental data’ refers 

201 to the use of published metabolomics data (S2 Dataset), setting the lower and upper bound for the simulation as 

202 90-110% of the concentration values.

203

204 Since I affects the Gibbs energy of formation, an adjustment from the reference state (∆𝑓

205  was needed to obtain the standard transformed Gibbs energy of formation ( ) (29). In 𝐺𝑜
𝑗) ∆𝑓𝐺'0

𝑗

206 the original matTFA (18) and other studies (24, 26) the extended Debye-Hückel equation was 

207 used to adjust the Gibbs free energy values, with a proven validity for I < 0.1 M (27) (Eq. 3). 

208 The parameter B was assumed to be constant, with a value of 1.6 mol-1/2L1/2 (25, 29). 

209 Mod-matTFA also explored the impact of using the Davies equation (β = 0.3) (Eq. 4) as an 

210 alternative adjustment approach, with a tested validity for I < 0.5 M (27).
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∆𝑓𝐺'0
𝑗 (𝐼) = ∆𝑓𝐺𝑜

𝑗 + 𝑁𝐻(𝑗)𝑅𝑇ln (10)pH ‒ 𝑅𝑇( 𝐴 𝐼

1 + 𝐵 𝐼)(𝑧2
𝑗 ‒ 𝑁𝐻(𝑗)) (3)

∆𝑓𝐺'0
𝑗 (𝐼) = ∆𝑓𝐺𝑜

𝑗 + 𝑁𝐻(𝑗)𝑅𝑇ln (10)pH ‒ 𝑅𝑇( 𝐴 𝐼

1 + 𝐼
‒ 𝛽𝐼)(𝑧2

𝑗 ‒ 𝑁𝐻(𝑗)) (4)

211 Both formulas include terms correcting the pH and I, where  is the number of 𝑁𝐻(𝑗)

212 hydrogen atoms in species , R is the gas constant, T is the absolute temperature and  refers 𝑗 𝑧𝑗

213 to the charge of the species (29). Applying the Gibbs-Helmholtz equation would be necessary 

214 to account for temperature different from standard conditions, i.e. 25 , but the lack of ℃

215 measured changes in enthalpy ( ) for all the metabolites prevents from doing so (48). Hence, ∆𝐻𝑜

216 variations from 25  to 37  or to 72  were assumed to be small, as shown elsewhere (49). ℃ ℃ ℃

217 The parameter A is normally assumed to be constant (25) or calculated using a 

218 temperature-dependent function (Eq. 5) (18, 24), and the impact of using a 

219 temperature/salinity-dependent function (Eq. 6) (48) was also tested in this study (Fig. 1).

𝐴 (mol ‒ 1/2kg1/2) = 1.10708 ‒ 1.54508 × 10 ‒ 3𝑇 + 5.95584 × 10 ‒ 6𝑇2 (5)

𝐴 (mol ‒ 1/2kg1/2) =
𝐹3 2𝜀0𝑅3

4𝜋𝜀0𝑁𝐴
× ( 𝜌𝑠𝑤(𝑡,𝑆)

(𝜀𝑠𝑤(𝑡,𝑆)𝑇)3)1/2
(6)

220 where the first term includes physical constants (Faraday’s constant (F), vacuum permittivity 

221 (ε0), gas constant (R) and Avogadro’s number ( )), and the second the temperature (both in 𝑁𝐴

222 , T, and in , t), and salinity (S) dependent functions to calculate the density (ρsw) (50) and K ℃

223 the relative permittivity (εsw) (51) for seawater (S3 Table). It should be noted that the function 

224 to calculate the density for seawater like solutions was used for the thermophile (t = 72 )  ℃

225 beyond the limit of applicability (t < 40 ). ℃
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226

227 Fig. 1. Calculation of the parameter . The red line refers to the temperature-dependent function (Eq. 5),  𝐴
228 whereas the surface is the temperature/salinity-dependent function (Eq. 6).

229 In general, consistency in units between parameters A (mol-1/2kg1/2) and B (mol-1/2L1/2) 

230 is achieved by assuming 1 kg = 1 L. In this study, an expression for seawater (Eq. 7) (52) was 

231 used to estimate a salinity value by considering a buoyant density ( ) for bacterial cells of ρ

232 1.11 kg/L (53). For , values of 0.25 M (upper level for E. coli) (18) and 0.50 M (upper level 𝐼

233 for T. thermophilus) were used (Table 3).

𝐼(M) × ρ(kg/L) =
19.92 × 𝑆

1000 ‒ 1.005 × 𝑆
(7)

234 Assessment of fluxomics and metabolomics predictive capabilities

235 Two different growth conditions (mesophilic and thermophilic) were analysed using two 

236 bacteria (E. coli and T. thermophilus), respectively. Mod-matTFA was allowed to consider a 

237 broader range of parameters: 6 for E. coli and 5 for T. thermophilus, which yielded 64 and 32 

238 different combinations of parameter levels (Table 3). Constraints regarding substrate uptake 

239 rate, specific growth rate and energetic requirements were applied as explained in S1 Appendix, 

240 and maximisation of YX/S was selected as objective function. It is important to note that lower 

241 and upper boundaries for uptake rates for other macronutrients (such as O2) were applied as 

242 originally constrained in the metabolic networks. To compare the in silico fluxes from FBA 

243 and TFA with in vivo 13C-MFA values (or estimated and experimental metabolite concentration 

244 values), a goodness-of-fit analysis based on the Pearson correlation coefficient (r) was 

245 performed, as shown in (54). In particular, MATLAB’s in-built corrcoef function was used.
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246 In the mesophilic case (E. coli), the 64 tests were ranked according to two criteria: 

247 (i) correlation coefficient at the fluxomics level, and (ii) correlation coefficient at the 

248 metabolomics level. In order to assess the concordance of the results, the non-parametric 

249 Kendall’s W statistics was performed (S3 Table), where a value of 0 means no agreement of 

250 ranking position with respect to each criterion, and a value of 1 indicates total agreement. In 

251 contrast to the parametric equivalent (Spearman's rank correlation coefficient), Kendall’s W 

252 accounts for tied ranks (55). Finally, a joint ranking after weighting the ranking position 

253 according to each criterion was considered (the higher the score, the better the correlation in 

254 both the fluxomics and metabolomics levels).

255

256 Prediction of metabolite concentration values with an MDF-based approach (E. coli)

257 Two main distinctions between matTFA and eQuilibrator can be highlighted: (i) the necessity 

258 of a flux distribution as input in the latter (24), and (ii) the definition of the problem, which 

259 focuses on the MDF framework (24) (Table 1). In this study, the predicted flux distributions 

260 from FBA and TFA were analysed using an in-house MDF script based on the eQuilibrator API 

261 (Fig. 2), as explained in S2 Appendix. Since metabolites were needed to be named and 

262 identified after the Kyoto Encyclopedia of Genes and Genomes (KEGG) (56), a conversion 

263 from the GSM iJO1366 (42) was performed by using The Chemical Translation Service (57), 

264 followed by a manual curation (S3 Dataset). 

265

266 Fig. 2. Workflow to analyse the predictive capabilities of the MDF-based approach. pH = 7 in all cases. [met], 
267 metabolite concentration values.

268
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269 Results
270 In this study three questions were addressed: (i) how good available thermodynamic-based 

271 approaches in predicting metabolic fluxes and metabolite concentrations values are, (ii) 

272 whether there is room for improvement by widening the range of physicochemical parameters 

273 that are taken into account, and (iii) how reliable the predicted fluxes in the anaplerotic node 

274 are.

275 To tackle these problems, the published matTFA (18) toolbox was modified as shown 

276 in S3 Table to include more parameters and a broader range of parameters (Table 3). Two 

277 growth conditions represented by two species were selected: E. coli, as a widely used organism 

278 in biotechnology (mesophile) and T. thermophilus, a potential non-model metabolic 

279 engineering platform (thermophile). The metabolic network for E. coli provided with the 

280 original toolbox was used, whereas modifications were necessary to adapt the published GSM 

281 for T. thermophilus (43). FBA and TFA analysis were performed (64 tests for E. coli and 32 

282 for T. thermophilus), by assuming maximisation of biomass yield as the objective function. 

283 Results were tested against available experimental data (13C-MFA (38, 39) and metabolomics 

284 (38)) by calculating the Pearson correlation coefficient, and Kendall’s W to determine the 

285 agreement between criteria (only for E. coli). In addition, a MDF approach was tested against 

286 experimental metabolomics data to assess its predictive capabilities in comparison with 

287 mod-matTFA. Finally, flux pattern changes between in vivo and in silico fluxes in the 

288 anaplerotic node were compared to identify potential limitations in the predictive capabilities.

289

290 Simulation of metabolic fluxes and metabolite concentration values under mesophilic 

291 growth conditions (E. coli)

292 The widely used GSM iJO1366 (42) was selected for the mod-matTFA analysis, and results 

293 were compared with experimental data (metabolomics, fluxomics and bioprocessing data) 

294 (Table 2) to evaluate the predictive capabilities of mod-matTFA (S4 Dataset). Particularly, 6 

295 parameters with 2 levels each were tested (Table 3), yielding 64 runs (Fig. 3).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.932855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.932855
http://creativecommons.org/licenses/by/4.0/


Predictive capabilities of thermodynamics-based stoichiometric approaches

14

296

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Run number

C
or

re
la

tio
n 

co
ef

fic
ie

nt
 (r

)

297 Fig. 3. Goodness-of-fit analysis for predicted flux distributions under mesophilic growth conditions. 
298 ● = FBA (after fixing directionalities) against 13C-MFA, ▲ = TFA against 13C-MFA, ♦ = simulated metabolite 
299 concentrations values against experimental. Run #3 recreates the analytical conditions as performed in the original 
300 matTFA toolbox.

301 Correlation coefficients for FBA in all runs were r ≈ 0.76. For TFA, values were either 

302 r ≈ 0.91 or r ≈ 0.89, where the latter never happened when I = 0 M. Metabolite concentration 

303 values range in the interval 0 < r < 0.42. Due to the mismatch between experimental and 

304 modelling conditions,  had to be set at a value higher than uptake rate (8.16 𝑣𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑝𝑡𝑎𝑘𝑒

305 instead of 2.93 mmol/gDCW-h), as explained in S1 Appendix. Regarding µ, it was higher than 

306 the experimental value for FBA and TFA (0.69 and 0.80 h-1 versus 0.20 h-1). Hence, the 

307 predicted YX/S values were 0.47 and 0.55 g DCW/g glucose respectively, which differ from the 

308 experimental yield (0.38 g DCW/g glucose). For E. coli, a 

309  = 0.54 C-mol glucose/C-mol biomass (0.48 g DCW/g glucose, assuming 70% of water 𝑌𝑚𝑎𝑥
𝑋/𝑆

310 content (58)) has been suggested (59), which is not far from the predicted values. It should be 

311 noted that the FBA was performed after fixing directionalities and considering some 

312 thermodynamic constraints (18), rather than a traditional FBA (12).

313 The concordance analysis retrieved a Kendall's W ≈ 0.43, showing that a high 

314 correlation between experimental and simulated metabolic fluxes did not necessarily mean a 

315 high correlation between experimental and simulated metabolite concentration values. In order 
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316 to identify the run with the best predictive capability at both levels, a joint ranking was 

317 performed (Table 5).
318 Table 5. Runs with the highest score in the joint ranking. 

Rank sum 63.5 60.5 57.5 55.5 53.5 14.5
Correlation coefficient
TFA vs. 13C-MFA

0.92 0.92 0.92 0.92 0.92 0.89

Correlation coefficient metabolomics 0.41 0.35 0.17 0.04 0.03 0.05

Run number 28 60 20 24 52 56 32 64 16 48 15 47 3*
t ) (℃
(0 = 25,  1 = 37)

1 1 1 1 1 1 1 1 1 1 0 0 0

I (M) 
(0 = 0,  1 = 0.25)

1 1 1 1 1 1 1 1 1 1 1 1 1

S (g/kg) 
(0 = 0,  1 = 13.74)

0 0 0 1 0 1 1 1 1 1 1 1 0

Parameter A 
(0 = -dependent, 1 = /S-dependent)𝑡 𝑡 1 1 0 0 0 0 1 1 1 1 1 1 0

Adjustment method 
(0 = DH,  1 = Davies)

1 1 1 1 1 1 1 1 0 0 0 0 0

[met] (0 = default, 1 = experimental 
values) 0 1 0 0 1 1 0 1 0 1 0 1 0

319 Davies, Davies equation; DH, extended Debye-Hückel equation; [met], metabolite concentration values. Values 

320 of 0 and 1 in the headers refer to the binary codification from the full factorial design (S4 Table). *Run #3 

321 represents the analytical conditions from the original matTFA, added here as a reference. The complete ranking 

322 can be found in S4 Dataset. There is a ‘default matTFA’ constraint regarding set concentrations values for 

323 cofactors (AMP, ADP and ATP) as included in the original matTFA code. ‘Experimental values’ refers to the use 

324 of published metabolomics data (S2 Dataset). Correlation coefficient values were approximated to the third 

325 floating number for ranking purposes.

326 The quality of predicted flux distributions was overall high: run #3 showed 

327 approximately the same correlation coefficient as run #28 (0.89 and 0.92), whilst differing at 

328 the metabolomics level (0.05 and 0.41). Hence, varying the physicochemical parameters 

329 affected mainly the simulation of the metabolome (Fig. 3). The nature of 13C-MFA only allows 

330 determination of flux distributions in the central carbon metabolism by considering amino acid 

331 synthesis (11), which has been noted to be very robust against changes in the intermediate 

332 metabolite concentrations (32). In addition, the recent discovery of non-enzymatic 

333 metabolism-like reactions suggests that current metabolic networks evolved from prebiotic 

334 reaction sequences so that a well-established flux distribution in the central pathways can be 

335 expected (60).

336 The best results were achieved by using I = 0.25 M, as done in the original matTFA 

337 toolbox. Adjusting t at 37  along with using the Davies equation produced an improvement ℃

338 from 4% to 17% at the metabolomics level, without affecting the fluxomics predictive 

339 capabilities (4th and 3rd top values, respectively). Interestingly, the runs with the highest joint 
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340 score did not consider S, but did use the t/S-dependent function for the parameter A. Using 

341 experimental metabolomics data (38) did not improve the correlation coefficient at the 

342 fluxomics or metabolomics level in any run. However, it enabled performing a concordance 

343 analysis which showed that a predicted flux distribution with a high correlation coefficient 

344 against experimental fluxomics data did not guarantee a strong link between predicted and 

345 experimental metabolite concentrations. Consequently, this allowed identifying the set of 

346 physicochemical parameters with the highest predictive capability, an assessment that has not 

347 been performed in the literature. It has been shown exploiting metabolomics data becomes 

348 particularly useful for determining flux patterns when the uncertainty in predicted  is low ∆𝐺°
𝑓

349 (49). It should be noted that in matTFA, Gibbs free energy values are relaxed when no feasible 

350 solution is found (18) so that the constraining power of experimental metabolite concentration 

351 values is reduced.

352

353 Simulation of metabolic fluxes under thermophilic growth conditions (T. thermophilus)

354 A GSM for T. thermophilus HB27 (43) along with experimental measurements (fluxomics and 

355 bioprocessing data) for T. thermophilus HB8 (Table 2) were used to assess the fluxomics 

356 predictive capabilities of the mod-matTFA (S5 Dataset). Particularly, 5 parameters with 

357 2 levels each were tested (Table 3), yielding 32 runs (Fig. 4). 

358
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359 Fig. 4. Goodness-of-fit analysis for predicted flux distributions under thermophilic growth conditions. 
360 ● = FBA (after fixing directionalities) against 13C-MFA, ▲ = TFA against 13C-MFA. Run #1 recreates the 
361 analytical conditions as performed in the original matTFA toolbox.

362 The results for both FBA and TFA showed consistency between runs, with r ≈ 0.6 and 

363 r ≈ 0.9 respectively, using a  equivalent to 110% of an experimental value 𝑣𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑝𝑡𝑎𝑘𝑒

364 (S1 Appendix). Even though the specific growth rate was constrained in the interval 

365 0.11 to 0.60, predicted values (0.25 and 0.29 h-1 for FBA and TFA) were similar to the 

366 published value of 0.22 h-1 (Table 2). The average predicted YX/S for FBA 

367 (≈ 0.38 g DCW/g glucose) and TFA (≈ 0.44 g DCW/g glucose) proved to be close to the 

368 experimental value (≈ 0.33 g DCW/g glucose). As explained for E. coli, 

369 matTFA/mod-matTFA performs the FBA after fixing directionalities, which depends on 

370 thermodynamic parameters. Hence, runs #2, #6, #10 and #26 (both with T = 72  and ℃

371 I = 0.50 M in common) resulted from some fixed directionalities so that no feasible solution 

372 could be found in FBA and TFA. Since the lack of metabolomics data prevented from further 

373 studying the predictive capabilities at both levels, the impact of adjusting the physicochemical 

374 parameters to an environment with high salt content and temperature could not be assessed. 

375 However, it should be noted that in general, predicted metabolic fluxes in the central carbon 

376 metabolism by TFA showed a good correlation coefficient with in vivo data, as in the previous 

377 case.

378

379 Comparison of metabolomics predictions of TFA with an MDF approach (E. coli)

380 MDF-based methods are limited by the fact that they cannot generate flux distributions, so they 

381 depends on other approaches to provide that information. eQuilibrator (an user-friendly online 

382 MDF-based tool (24)) can predict metabolite concentrations values from a given flux 

383 distribution, instead of calculating both at the same time as matTFA does. The 64 flux 

384 distributions previously obtained were used as input data for an in-house MDF script (pH = 7.0 

385 with I = 0 M or I = 0.25 M) (Fig. 2), and the correlation coefficient between predicted 

386 metabolite concentration values and experimental metabolomics data was calculated. It should 

387 be noted that Gibbs free energy of formation values ( ) in the thermodynamic databases for ∆𝐺°
𝑓

388 matTFA and eQuilibrator were not exactly the same (Table 1), so that this test focused on 

389 comparing their predictive capabilities using eQuilibrator as it is available online.

390 Overall, MDF showed a better predictive capability than TFA, based on a lower 

391 variation between runs calculated with different physicochemical parameters (standard 

392 deviations lower than 0.05). For flux distributions obtained by FBA after fixing directionalities, 
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393 r ≈ 0.38 were obtained for all runs when considering both I values. Similarly, r ≈ 0.45 was 

394 achieved for TFA (S6 Dataset), which indicates a lower sensitivity to variations than TFA 

395 (Fig. 3). Thus, we believe that eQuilibrator has proven to be ideal for small metabolic networks 

396 or parts of pathways, whereas TFA-based approaches should be used when analysing GSM. In 

397 this sense, differences in the problem definition (Table 1) should be further studied to identify 

398 potential strategies allowing to improve TFA-based approaches. 
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399 Flux pattern changes between in vivo and in silico fluxes in the central carbon metabolism

400 In order to evaluate changes in reaction directionalities, the available in vivo fluxes were tested 

401 against their equivalents in the simulated TFA flux distributions (S1-S2 Tables). Overall, the 

402 ‘anaplerotic node’ (Fig. 5) is particularly affected. For E. coli, changes in the flux pattern were 

403 found for 12/40 of the central carbon metabolism reactions from 13C-MFA (Table 6), out of 

404 which three changed between the TFA runs (FBA, PYK and TALA). In the case of 

405 T. thermophilus, 14/38 mapped reactions showed a different sign from the predicted using 

406 matTFA (Table 7).

407
408 Fig. 5. Anaplerotic node for E. coli (A) and T. thermophilus (B). Set of carboxylation/decarboxylation reactions 
409 including phosphoenolpyruvate, pyruvate, oxaloacetate, and malate. Arrows indicate the expected direction of 
410 carbon fluxes. Boxes refer to reactions: blue when they are defined in both the GSM and the metabolic network 
411 used for 13C-MFA, and orange when they are exclusively considered in the GSM. In the latter case no mapping 
412 was possible (S1-S2 Tables).

413 Discrepancies in flux pattern between methods are caused by both differences in the 

414 structure of the metabolic networks and the way the problem is defined (Table 1). On the one 

415 hand, iJO1366 includes 8 reactions concerning the anaplerotic node and the glyoxylate shunt 

416 (S4 Dataset): PPC and PPCK (between phosphoenolpyruvate and oxaloacetate), PYK and PPS 

417 (between phosphoenolpyruvate and pyruvate), ME1 and ME2 (between pyruvate and malate) 

418 (Fig. 5), and finally ICL and MALS (from isocitrate to malate, via glyoxylate). In contrast, the 

419 metabolic network used for the 13C-MFA did not consider PPCK and PPS (S1 Table), which 

420 could have affected the determination of fluxes to/from phosphoenolpyruvate. Since 13C-MFA 
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421 is based on lumped reaction, branched pathways are not taken into account (11). Thus, having 

422 a smaller range of alternative pathways than FBA/TFA may affect the estimation of flux values.
423 Table 6. Flux pattern changes between 13C-MFA data and matTFA predictions in E. coli. 

Reaction
(GSM)

Definition
(GSM)

Definition
(13C-MFA)

Direction
(13C-MFA)

Corrected 
direction

(13C-MFA)

Direction
(TFA)

ACALD acald_c + coa_c + 
nad_c ↔ accoa_c + 
h_c + nadh_c

AcCoA → Ethanol + - 0

ACKr ac_c + atp_c + h_c  ↔ 
actp_c + adp_c

AcCoA → Acetate 0 0 +

ALCD2x etoh_c + nad_c ↔ 
acald_c + h_c + 
nadh_c

AcCoA → Ethanol + - +

FBA fdp_c  ↔ dhap_c + 
g3p_c

F1,6P → DHAP + G3P + + 0/+

ICL icit_c  → glx_c + 
succ_c

ICT → Glyoxylate + 
SUC

+ + 0

ME1 mal-L_c + nad_c → 
co2_c + nadh_c + 
pyr_c

MAL → PYR + CO2 + + 0

ME2 mal-L_c + nadp_c → 
co2_c + nadph_c + 
pyr_c

MAL → PYR + CO2 + + 0

PFK atp_c + f6p_c <=> 
adp_c + fdp_c

F6P -> F1,6P + + 0/+

PTAr accoa_c + h_c + pi_c  
↔ actp_c + coa_c

AcCoA → Acetate 0 0 -

PYK adp_c + pep_c  ↔ 
atp_c + pyr_c

PEP → PYR + + 0/+

SUCOAS atp_c + coa_c + succ_c  
↔ adp_c + pi_c + 
succoa_c

2-KG → SUC + CO2 + + -

TALA g3p_c + s7p_c ↔ 
e4p_c + f6p_c

S7P + G3P ↔ E4P + 
F6P

+ + -/0/+

424 Where +, flux in the forward direction; -, flux in the reverse direction; 0, no flux. Corrected direction, refers to 

425 the adjustments due to differences in the definition of the reaction between 13C-MFA and GSM (S1 Table). For 

426 example the case of ALCD2x: in vivo flux (13C-MFA) suggests production of ethanol, whereas the in silico one 

427 (GSM/TFA) predicts consumption of ethanol. Since reactions are defined in opposite directions, a correction 

428 becomes necessary. Discrepancy between corrected directions and predicted ones allowed an automated 

429 identification of flux pattern changes.

430 On the other hand, in silico flux distributions are the result of optimising the system 

431 according to the chosen objective function. Thus, FBA and TFA promote pathways with a 

432 lower energetic cost (when possible), as illustrated by the fact that PPCK (ATP-consuming 

433 reaction) carries no flux (S4 Dataset). In contrast, experimental data from E. coli grown on 

434 glucose has proven that both PPC and PPCK (which constitute a futile cycle) are active and 
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435 play a role in metabolic regulations (61). However, given the fact that ICL and ME1/ME2 do 

436 not generate any ATP, fluxes are shut down in the simulated flux distributions (as shown in 

437 (32)). In this sense, it should be noted that stochastic events or regulatory processes have been 

438 suggested to provoke a variation of the fluxes through PPCK and ME1/ME2 (62). FBA/TFA 

439 also faced problems regarding the overflow metabolism, represented by acetate production 

440 (PTAr and ACKr): acetate was consumed rather than produced (32). 

441 Results were similar for T. thermophilus. The GSM (iTT548) comprises 9 anaplerotic 

442 reactions and the glyoxylate shunt (S5 Dataset): R014 and R621 (between 

443 phosphoenolpyruvate and oxaloacetate), R013 and R412/413 (between phosphoenolpyruvate 

444 and pyruvate), R660 (between pyruvate and malate), and finally R425 and R420 (between 

445 isocitrate to malate, via glyoxylate). In this case the PEP-carboxykinase activity (R014) was 

446 included in the metabolic network for 13C-MFA (S2 Table). As for E. coli, this reaction carried 

447 no flux in the TFA (Table 7), and the pool of malate was also affected. Regarding the glyoxylate 

448 shunt, it should be noted that R425 (conversion of isocitrate into glyoxylate) carried no flux 

449 for both 13C-MFA and TFA. However, the consumption of glyoxylate was activated in TFA 

450 (R420), which suggests that alternative pathways must have participated in the production of 

451 glyoxylate.
452 Table 7. Flux pattern changes between 13C-MFA data and matTFA predictions in T. thermophilus. 

Reaction 
(GSM)

Definition
(GSM)

Definition
(13C-MFA)

Direction
(13C-MFA)

Corrected 
direction

(13C-MFA)

Direction
(TFA)

R014 atp_c + oaa_c → adp_c 
+ pep_c + co2_c

OAC + ATP → PEP + 
CO2

+ + 0

R016 atp_c + coa_c + ac_c 
→ ppi_c + amp_c + 
accoa_c

AcCoA ↔ Ac + ATP 
(net)

- + 0/+

R024 nad_c + coa_c + akg_c 
→ nadh_c + co2_c + 
succoa_c

AKG → SucCoA + CO2 
+ NADH

+ + 0

R026 succ_c + fad_c ↔ 
fadh2_c + fum_c

Suc ↔ Fum + FADH2 
(net)

+ + -

R027 mal-L_c ↔ h2o_c + 
fum_c

Fum ↔ Mal (net) + - -/0

R029 glc-D_c + q_c → 
g15lac_c + qh2_c

*G6P → 6PG + NADPH + + 0

R041 2ddg6p_c → g3p_c + 
pyr_c

KDPG → Pyr + GAP + + 0

R420 h2o_c + accoa_c + 
glx_c → h_c + coa_c + 
mal-L_c

Glyox + AcCoA → Mal 0 0 +

R621 pep_c + hco3_c ↔ pi_c 
+ oaa_c

PEP + CO2 → OAC + + -
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R660 nadp_c + mal-L_c → 
pyr_c + co2_c + 
nadph_c

Mal → Pyr + CO2 + 
NADPH

+ + 0

R710 atp_c + glcn_c → adp_c 
+ h_c + 6pgc_c

G6P → 6PG + NADPH + + 0

R713 h2o_c + g15lac_c → 
h_c + glcn_c

G6P → 6PG + NADPH + + 0

R714 6pgc_c → h2o_c + 
2ddg6p_c

6PG → KDPG + + 0

R722 ac_e ↔ ac_c Ac → Ac.ext + - -/+
453 Where +, flux in the forward direction; -, flux in the reverse direction; 0, no flux. Corrected direction, refers to 

454 the adjustments due to differences in the definition of the reaction between 13C-MFA and GSM (S2 Table). The 

455 directionality for R722 is the same: both the definition and the sign are opposed. *Glucose-6-P (G6P) is used 

456 instead of glucose (glc-D) due to an incongruence between the metabolic networks (S2 Table).

457

458 Even though flux pattern changes between predicted and experimentally determined 

459 intracellular fluxes were present, TFA offered a reliable prediction of intracellular fluxes 

460 (Figs. 3 and 4). This overall consistency has been noted in the literature by comparing an array 

461 of different objective functions and constraints (based on split ratios rather than on mapping on 

462 a reaction-by-reaction case) (13). A combination of both approaches to overcome their 

463 limitations and discerning flux space solutions has also been suggested (63, 64). However, 

464 fluxes concerning the TCA cycle, the glyoxylate shunt and acetate secretion have proven to be 

465 difficult to predict (13), as also shown in this study. Similarly, other reactions are also affected 

466 by the substrate uptake rate: ALCD2x becomes unidirectional at high glucose levels (26).

467 In addition, the nonlinear dependency of the anaplerotic fluxes on the growth rate has 

468 been reported in the literature, limiting the reliability of conclusions from experiments using 

469 single dilution rates (61, 62). Given the fact that substrate uptake rates had to be relaxed 

470 (S1 Appendix), predicted growth rates (as well as other fluxes) differed from the corresponding 

471 experimental ones (Table 2). Particularly, metabolic fluxes through the aforementioned futile 

472 cycle are expected under glucose-limited growth conditions (65), rather than being totally shut 

473 down (Fig. 5). In this sense, a higher degree of consistency between predicted and experimental 

474 flux distributions could have been achieved by (i) focusing on data from cultures with high 

475 dilution rates, so that futile cycle activity is lowered and the flux distribution becomes closer 

476 to the optimal solution, or (ii) applying further constraints to properly model the anaplerotic 

477 reactions (66). The first option is limited by the lack of published data at both the metabolomics 

478 and fluxomics levels for the same experiment, and the second one by the unavailability of the 

479 code (consequently it has not been widely used). In this sense, it was assumed that the high 

480 correlation coefficient achieved for TFA against in vivo fluxomics data (r ≈ 0.9) was high 
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481 enough to enable the analyses on the impact of varying the physicochemical parameters in the 

482 predictive capabilities.
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483 Discussion
484 In the last two decades, biotechnology and systems biology have benefitted from the 

485 development of 13C-MFA and FBA to measure and estimate intracellular metabolic fluxes in 

486 industrially relevant bacteria. Although the influence of thermodynamics in living systems has 

487 been considered since several decades ago, its application to study biochemical networks has 

488 been only recently enabled (22, 29). In this sense, a multitude of different approaches 

489 constraining well-established modelling approaches with thermodynamics have been 

490 suggested. Given their relevance and the code availability, this study focused on analysing TFA 

491 and MDF (performed by matTFA toolbox and eQuilibrator, respectively). Two main points 

492 were explored: (i) their reliability in predicting metabolic fluxes and metabolite concentration 

493 values, and (ii) the possibility of improvement by widening the range (and values) of certain 

494 physicochemical parameters. Towards this end, GSMs and in vivo fluxomics data from the 

495 mesophile E. coli and the thermophile T. thermophilus were selected.

496 Due to the interest in comparing results with the original matTFA, maximisation of 

497 biomass yield (YX/S) was selected as the objective function and energetic requirements 

498 maintained (S1 Appendix). Given the nature of 13C-MFA, the validation of predicted fluxomes 

499 between different sets of physicochemical parameters could only consider fluxes in the central 

500 carbon metabolism. Overall, TFA provided more accurate flux distributions than FBA for both 

501 bacteria, even though substrate uptake rates for TFA had to be set higher than the experimental 

502 ones to obtain a solution (as set in the original matTFA toolbox). Surprisingly, different sets of 

503 physicochemical parameters did not produce changes in the reliability of the predicted flux 

504 distributions. We hypothesise that this was due to the proven robustness of metabolic fluxes in 

505 these pathways against changes in the metabolic state, as previously noted (32, 33).

506 Regarding the metabolomics level, our modified matTFA showed that widening the 

507 range of parameters and adjusting them to the experimental growth conditions improves the 

508 predictive capabilities of TFA. Hence, we suggest the adjustment of the physicochemical 

509 parameters when simulating mesophiles and thermophiles (away from biochemical standard 

510 conditions) should be considered. The best in silico metabolite concentrations profile had a 

511 correlation coefficient with experimental data of 41%, against the 5% from the conditions 

512 recreating the original matTFA (having in both cases ≈ 90% at the fluxomics level). We believe 

513 that a combination of several limitations and factors account for this upper achievable 

514 correlation coefficient with experimental concentration values. They can be listed at different 
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515 levels: (i) thermodynamic and physicochemical parameters, (ii) problem formulation and 

516 constrains, and (iii) suitability of available experimental data.

517 Apart from intrinsic uncertainties in the experimental or theoretical determination of 

518 Gibbs free energy values, it should be noted that it was not possible to account for deviations 

519 from standard conditions in temperature by using the Gibbs-Helmholtz equation. In addition, 

520 matTFA/mod-matTFA do not consider other relevant factors affecting the thermodynamic 

521 feasibility of metabolic pathways such as Mg complexation with metabolites, or compound 

522 dissociation into more than two protonated species (17, 18) (as shown in the file 

523 calcDGspecies.m).

524 Regarding the problem formulation, although maximisation of YX/S is the default 

525 objective function, recent studies have suggested that maximisation of the ATP yield and 

526 minimisation of the sum of fluxes are competing with the former (14). In this sense, 

527 TR-fluxmin also defines the problem as a MILP, but focuses on minimising the overall sum of 

528 fluxes (whilst optimising a chosen reaction) and considers soft/hard bounds for metabolite 

529 concentrations values to allow for relaxation (19). To the best of our knowledge, matTFA does 

530 not offer those options (18). Since the objective function determines the flux space solution 

531 (12), by extension it also affects the associated metabolite concentrations profile. Hence, 

532 experimental values might be outside the allowable metabolite space solution. Studying flux 

533 pattern changes on a reaction-by-reaction basis also allowed to confirm previously reported 

534 limitations from both 13C-MFA and FBA/TFA with regards to the anaplerotic node (36, 37, 

535 66). Consequently, metabolites in the node are expected to be directly affected. Potential 

536 solutions adding extra constraints have been suggested in the literature (66), but they have not 

537 been widely implemented.

538 Our results showed that using predefined ATP/ADP/AMP concentration values (as in 

539 the original matTFA) or constraining with experimental metabolomics data lead to the same 

540 predictive capabilities (Table 5), when maximising YX/S. In this sense, the possibility of 

541 achieving different metabolic space solutions when assuming another objective function cannot 

542 be ruled out, which stresses the necessity for accurate quantitative metabolomics data (6). For 

543 the matter of our analysis, it should be noted that pre-existing metabolite concentration values 

544 focusing on the central carbon metabolism were used. Alternatively, there are theoretical 

545 approaches based on sensitivity analysis to identify metabolites of interest to be considered 

546 during the experimental design (67). As a matter of fact, relative metabolite abundance data 

547 has been successfully combined with thermodynamics to improve flux prediction between 

548 differential physiological states (54). The impact of the inherent dynamics (cell cycle and cell 
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549 ageing) has been pointed out as a source of metabolic heterogeneity in clonal microbial 

550 populations (68). In a chemostat, cells are maintained at the exponential growth phase, but the 

551 cell cycle is not synchronised across single cells unless forced (69, 70). In E. coli, concentration 

552 values for NAD(P)H oscillate along the cell cycle (71), and ATP concentration values show an 

553 asymmetric distribution across single cells in a continuous culture (72). Hence, it can be 

554 assumed that a distribution of cells at different stages is achieved in steady state, so that 

555 experimental fluxomics and metabolomics data reflect a weighted average of the different flux 

556 distributions and metabolite concentration profiles from each stage. In this sense, it should not 

557 surprise that the predicted concentration values from one flux distribution (obtained by 

558 optimising just one objective function) differ from the average experimental profile. However, 

559 given the robustness of fluxes in the central carbon metabolism (33, 60), we do not expect this 

560 phenomenon to explain by itself deviations in metabolite concentration values in the central 

561 carbon metabolism. Instead, we believe that the predictive capabilities of this approach depend 

562 on all the previously stated limitations, as well as the fact that phenomena such as substrate 

563 tunnelling (according to which intermediates are not released into solution) (73) or cell size 

564 variations over the cell cycle (which directly affects the concentration values) (74) were not 

565 considered.

566 Regarding MDF, using the predicted fluxomes (FBA and TFA) as input data for an 

567 eQuilibrator-like approach (MDF-based) did not result in remarkably improved simulated 

568 metabolite concentration values. Thus, we believe a TFA-based approach should be used for 

569 analysing GSMs, and eQuilibrator to be used as a user-friendly biochemical calculator for 

570 smaller metabolic networks. Nevertheless, similarities and differences regarding the problem 

571 definition could be an interesting source to further develop the TFA framework.

572 This study proved that the predictive capabilities of thermodynamics-based 

573 stoichiometric approaches can be improved by adjusting the considered physicochemical 

574 parameters to the experimental conditions. Additionally, our study stressed out the necessity 

575 of performing an in-depth assessment of available methods in the fluxomics field. In particular, 

576 we believe interesting published potential solutions to known problems (e.g. elucidation of the 

577 anaplerotic fluxes) should be integrated with the widely used approaches. This should increase 

578 the degree of standardisation in the community, allowing to cross-validate novel strategies and 

579 improving the reliability of the simulated data.

580
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