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Abstract 23 

Metabolic engineering in the post-genomic era is characterised by the development of new 24 

methods for metabolomics and fluxomics, supported by the integration of genetic engineering 25 

tools and mathematical modelling. Particularly, constraint-based stoichiometric models have 26 

been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux 27 

analysis (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics 28 

and metabolomics data to improve the predictive capabilities of these approaches. However, 29 

an in-depth comparison and evaluation of these methods is lacking. This study presents a 30 

thorough analysis of two different in silico methods tested against experimental data 31 

(metabolomics and 13C-MFA) for the mesophile Escherichia coli. In particular, a modified 32 

version of the recently published matTFA toolbox was created, providing a broader range of 33 

physicochemical parameters. Validating against experimental data allowed the determination 34 

of the best physicochemical parameters to perform the TFA (Thermodynamics-based Flux 35 

Analysis). An analysis of flux pattern changes in the central carbon metabolism between 13C-36 

MFA and TFA highlighted the limited capabilities of both approaches for elucidating the 37 

anaplerotic fluxes. In addition, a method based on centrality measures was suggested to 38 

identify important metabolites that (if quantified) would allow to further constrain the TFA. 39 

Finally, this study emphasised the need for standardisation in the fluxomics community: 40 

novel approaches are frequently released but a thorough comparison with currently accepted 41 

methods is not always performed. 42 

Keywords 43 

Constraint-based modelling, fluxomics, metabolomics, thermodynamics, centrality measures. 44 
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Author summary 45 

Biotechnology has benefitted from the development of high throughput methods 46 

characterising living systems at different levels (e.g. concerning genes or proteins), allowing 47 

the industrial production of chemical commodities. Recently, focus has been placed on 48 

determining reaction rates (or metabolic fluxes) in the metabolic network of certain 49 

microorganisms, in order to identify bottlenecks hindering their exploitation. Two main 50 

approaches are commonly used, termed metabolic flux analysis (MFA) and flux balance 51 

analysis (FBA), based on measuring and estimating fluxes, respectively. While the influence 52 

of thermodynamics in living systems was accepted several decades ago, its application to 53 

study biochemical networks has only recently been enabled. In this sense, a multitude of 54 

different approaches constraining well-established modelling methods with thermodynamics 55 

has been suggested. However, physicochemical parameters are generally not properly 56 

adjusted to the experimental conditions, which might affect their predictive capabilities. In 57 

this study, we have explored the reliability of currently available tools by investigating the 58 

impact of varying said parameters in the simulation of metabolic fluxes and metabolite 59 

concentration values. Additionally, our in-depth analysis allowed us to highlight limitations 60 

and potential solutions that should be considered in future studies. 61 
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Introduction 63 

Metabolic engineering aims to improve microbial strains by considering comprehensive 64 

metabolic pathways in their entirety rather than overexpressing a single gene (1). To improve 65 

the strains, hypothesis-driven studies have attempted to rationally identify gene targets and to 66 

evaluate the effects of those changes in the network (2, 3). However, the complex nature of 67 

cellular metabolism and its regulation demands a holistic understanding, i.e. a data-driven 68 

approach (1-3). Combining metabolic engineering with systems biology and mathematical 69 

modelling allows for an optimisation of entire cellular networks considering further 70 

downstream processes at early stages (4).  71 

This systematic framework exploits information regarding the metabolic state, which 72 

comprises the metabolome (complete set of low-molecular-weight metabolites (<1.5 kDa)) 73 

and the fluxome (or metabolic activity, distribution of rates of conversion/transport in the 74 

metabolic network) (5, 6). Kinetic modelling can yield metabolic fluxes from metabolomics 75 

data, but lack of high-quality enzymatic parameters and computational limitations (e.g. time-76 

consuming processes) hinder its application (7-9). Performing an elementary flux mode 77 

analysis (EFMA) to decompose the metabolic network into minimal subsets allowing to 78 

maintain the steady state provides useful information (10). However, the combinatorial 79 

explosion makes the algorithm computationally expensive and therefore limits the size of the 80 

network that can be analysed  (10, 11). Alternatively, stoichiometric modelling can provide a 81 

flux distribution for larger networks without any kinetic or metabolomics information (12). 82 

Briefly, a metabolic (quasi) steady state for intracellular concentration values (C) is assumed, 83 

so that the stoichiometric matrix (S) (including the stoichiometric coefficients of metabolites 84 

in each reaction of the metabolic network) constrains the set of metabolic fluxes (υ) (13): 85 

��
�� � � � � � 0 (1) 

Two main approaches to solve this equation can be found: (i) flux balance analysis 86 

(FBA), normally applied to large models (genome-scale model, GSM) (14) or (ii) metabolic 87 

flux analysis (MFA), used for smaller metabolic networks (mainly the central carbon 88 

metabolism) (Table 1). FBA solves the underdetermined system represented in Eq. 1 by 89 

maximising or minimising the value of an assumed objective function (14). A plethora of 90 

different objectives has been described in the literature (15). Three of them can be 91 

highlighted: maximisation of biomass yield (YX/S, equal to the ratio growth rate/substrate 92 

uptake rate), maximisation of ATP yield, and minimisation of sum of fluxes, which have 93 
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been suggested to compete in the regulation of bacterial metabolism (16). Hence, selecting an 94 

adequate one/multi-dimensional objective function when analysing a GSM will depend on 95 

the growth conditions to be simulated in FBA. In general, measured extracellular metabolic 96 

rates (e.g. substrate uptake) are insufficient to properly constrain the intracellular metabolic 97 

fluxes (13). In contrast, MFA is based on a least-squares-regression problem, normally solved 98 

by exploiting experimental mass isotopomer distribution (MID) of proteinogenic amino acids 99 

(13C-MFA) (13). Since this approach requires fewer assumptions and uses more experimental 100 

information than FBA, 13C-MFA is considered to be the gold standard in fluxomics (17). 101 

However, current applicability (central carbon metabolism), and technical/computational 102 

complexity (particularly for autotrophic growth (18)) limit its usage. 103 

The set of constraints characterising stoichiometric modelling approaches (Eq. 1) is 104 

insufficient to guarantee thermodynamically feasible results in the flux solution space (19, 105 

20). Both FBA and 13C-MFA assume most reactions to be reversible (13, 21): in the first case 106 

directionalities are dictated by the optimal flux distribution (which depends on the a priori 107 

chosen objective function (14)), whereas in 13C-MFA they are determined by the MIDs (22). 108 

The flux-force relationship (thermodynamic displacement from the equilibrium (23)) links 109 

thermodynamic potentials and fluxes (Eq. 2): 110 

Δ��� � Δ���� � � ln� � � ln�� ���⁄ � � �� ln��� ��⁄ �  
2) 

where Δ�G� and Δ�G�� are the Gibbs free energies of reactions (the latter referring to adjusted 111 

standard conditions), Q and keq are the ratio of products to reactant concentrations or 112 

activities (the latter at equilibrium) and ��� ��⁄ � is the relative forward-to-backward flux (22). 113 

Four main approaches exploiting thermodynamics data can be highlighted: (i) energy 114 

balance analysis (EBA), where pre-selecting Δ�G� bounds leads to biased results (24), 115 

(ii) network-embedded thermodynamic (NET) analysis, that needs pre-assigned 116 

directionalities (e.g. obtained by FBA) and evaluates the thermodynamic consistency (25), 117 

(iii) max-min driving force (MDF), which needs a flux distribution as input data to predict 118 

metabolite concentration values (26), and (iv) thermodynamically-constrained FBA. Two 119 

methods were developed in the latter approach: thermodynamics-based flux analysis (TFA), 120 

and an optimization problem allowing to obtain a thermodynamically flux-minimised 121 

(TR-fluxmin) solution. TFA directly yields a thermodynamically feasible FBA solution (e.g. 122 

by maximising YX/S) and simulates metabolomics data (20, 27). In contrast, TR-fluxmin is 123 
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based on the minimisation of sum of fluxes in the system whilst applying a penalty score for 124 

in silico metabolite concentration values (21). Other recent approaches are based on 125 

alternative constraints, such as setting an upper limit on the Gibbs energy dissipation rate 126 

(28), or only provide information regarding reaction directionalities (29). With regards to 127 

EFMA, even though using thermodynamics reduces the aforementioned limitations due to 128 

combinatorial explosion, the network size is still a limiting factor (30). 129 

MDF and TFA are generally performed using eQuilibrator (26) and matTFA (20), 130 

respectively. Since matTFA can be directly used to analyse a GSM, it was selected for this 131 

study. Three features should be highlighted: (i) unique values for temperature (25 �) are 132 

considered, (ii) salinity (S) is not taken into account when calculating parameter A, and (iii) 133 

Gibbs free energy values are adjusted for ionic strength (I) using the extended Debye-Hückel 134 

equation (Table 1). In this sense, it should be noted that the cytosol of E. coli is normally in 135 

the interval 0.15 – 0.20 M (27) (and so, salinity is not null), and the fact that the 136 

extended Debye-Hückel equation is only valid for I < 0.1 M (31).  137 

Table 1. Comparison of frequently used approaches in fluxomics. Parameter A is used in the extended 138 

Debye-Hückel equation. 139 

 
13C-MFA FBA TFA 

Metabolic network size small GSM GSM 

Flux distribution generated generated generated 

Uptake rate Yes Yes Yes 

Specific growth rate, µ (h-1) - Yes Yes 

Gibbs free energy of 
formation (∆��

°) 
- - Experimental (32), or 

GCM (33) 

Temperature, t (�C) - - 25 

Ionic strength, I (M) - - 0.25 

Salinity, S (g/kg) - - - 

Adjustment method - - Extended Debye-Hückel 

Parameter A - - T-dependent 

Metabolite concentration 
values 

- - Constraint or predicted 

Problem formulation least square 
regression (13) 

LP 
(14) 

MILP 
(20) 

13C-MFA, 13C metabolic flux analysis; FBA, flux balance analysis; GCM, group contribution method; 140 

GSM, genome-scale model; LP, linear programming; MILP, mixed-integer linear programming; 141 

TFA, thermodynamics-based flux analysis. 142 

This study was based on determining the impact of varying and adjusting the 143 

physicochemical parameters (t, I and S) on the predictive capabilities of TFA under 144 

mesophilic growth conditions. In order to do so, a modified matTFA was developed by 145 
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increasing the number of parameters and parameter values that were originally considered 146 

(20). To validate the results, a comparison with published 13C-MFA and metabolomics data 147 

was performed. In particular, flux pattern changes between in vivo and in silico fluxes in the 148 

central carbon metabolism were analysed, with a focus on the anaplerotic reactions. In 149 

addition, a method based on centrality measures was suggested to identify important 150 

metabolites that (if quantified) would allow to further constrain the TFA.  151 

 152 

  153 
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Materials and methods 154 

Metabolic network, mapping of metabolic fluxes and experimental data 155 

Mesophilic growth conditions were studied by selecting a GSM for Escherichia coli 156 

(str. K-12 substr. MG1655): iJO1366, which has proven to predict phenotypes in a wide 157 

range of growth conditions (34). For the sake of consistency, metabolomics and fluxomics 158 

data were obtained from the same experiment (S1 Dataset and S1 Table) (35). Briefly, cells 159 

were grown in glucose-limited chemostats at 37 � with minimal medium and a fixed specific 160 

growth rate (µ) of 0.20 h-1. The experimental glucose uptake rate (2.93 mmol gDCW-1 h-1) 161 

was used as a constraint, leaving the default lower and upper bounds for transport reactions. 162 

Maximisation of the biomass yield was selected as the objective function, and no flux value 163 

was forced through the biomass reactions (vbiomass). Directionalities of resulting flux values 164 

from TFA were compared on a reaction-by-reaction case against in vivo fluxes from 13C-165 

MFA, for which a mapping and directionality correction step was needed (S1 Table). 166 

 167 

Generation of experimental design  168 

The original matTFA toolbox uses unique values for t and I (20), and S is not taken into 169 

account (Table 1). To explore their potential impact in the predictive capabilities, a modified 170 

matTFA (mod-matTFA) allowing to consider alternative parameters values and methods was 171 

created (Table 2). For the sake of reproducibility (36), the complete list of files used in this 172 

study was collected in S2 Table, and are publicly available in Nottingham SBRC’s GitHub 173 

profile (https://github.com/SBRCNottingham/Impact-of-Physicochemical-Parameters-on-174 

thermodynamics-based-FBA). Analyses were performed using the COBRA toolbox (37) in 175 

MATLAB R2016b with the solver CPLEX 12.8.0 to ensure compatibility. 176 

 177 

Table 2. Factors considered in mod-matTFA. Values 0/1 refer to the binary codification for the full factorial 178 
design (S3 Table). In total, 26 combinations were tested. 179 

Temperature, � (�C) (0): 25 
(1): 37 

Ionic strength, � (M) (0): 0 
(1): 0.25 

Salinity, S (g/kg) (0): 0 
(1): 13.74 

Adjustment method (0): Extended Debye-Hückel equation 
(1): Davies equation 

Parameter � (0): T-dependent* 
(1): T,S-dependent 

Metabolite concentration (0): Default matTFA 
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values (1): experimental data 
*T is temperature in K. There is a ‘default matTFA’ constraint regarding set concentrations values for cofactors 180 

(AMP, ADP and ATP) as included in the original matTFA code. ‘Experimental data’ refers to the use of 181 

published metabolomics data (S2 Dataset), setting the lower and upper bound for the simulation as 90-110% of 182 

the concentration values.  183 

 184 

Since I affects the Gibbs energy of formation, an adjustment from the reference state 185 

(∆	�
�� was needed to obtain the standard transformed Gibbs energy of formation (∆	�
��) 186 

(32). In the original matTFA (20) and other studies (26, 28) the extended Debye-Hückel 187 

equation was used to adjust the Gibbs free energy values, with a proven validity for I < 0.1 M 188 

(31) (Eq. 3). The parameter B was assumed to be constant, with a value of 1.6 mol-1/2L1/2 (27, 189 

32). Mod-matTFA also explored the impact of using the Davies equation (β = 0.3) (Eq. 4) as 190 

an alternative adjustment approach, with a tested validity for I < 0.5 M (31). 191 

∆	�
����� � ∆	�
� � ��� �� ln�10�pH � � $ %√�
1 � '√�( )*
� � ��� �+ (3) 

∆	�
����� � ∆	�
� � ��� �� ln�10�pH � � $ %√�
1 � √� � ,�( )*
� � ��� �+ (4) 

Both formulas include terms correcting the pH and I, where ��� � is the number of 192 

hydrogen atoms in species  , R is the gas constant, T is the absolute temperature and *
  refers 193 

to the charge of the species (32). Applying the Gibbs-Helmholtz equation would be necessary 194 

to account for temperature different from standard conditions, i.e. 25 �, but the lack of 195 

measured changes in enthalpy (∆-�) for all the metabolites prevents from doing so (38). 196 

Hence, variations from 25 � to 37 � were assumed to be small, as shown elsewhere (39). 197 

The parameter A is normally assumed to be constant (27) or calculated using a 198 

temperature-dependent function (Eq. 5) (20, 26), and the impact of using a 199 

temperature/salinity-dependent function (Eq. 6) (38) was also tested in this study (Fig. 1). 200 

% �mol�/�kg/�� � 1.10708 � 1.54508 � 10��� � 5.95584 � 10���� (5) 

% �mol�/�kg/�� � 8�92;��

4<;���

� = >����, ��
�;����, �����@/� (6) 

where the first term in Eq. (6) includes physical constants (Faraday’s constant (F), vacuum 201 

permittivity (ε0), gas constant (R) and Avogadro’s constant (��)), and the second the 202 

temperature (T in K and t in �), and salinity (S) dependent functions to calculate the density 203 

(ρsw) (40) and the relative permittivity (εsw) (41) for seawater (S2 Table).  204 
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 205 

Fig. 1. Calculation of the parameter �. The red line refers to the temperature-dependent function (Eq. 5), 206 
whereas the surface is the temperature/salinity-dependent function (Eq. 6). 207 

In general, consistency in units between parameters A (mol-1/2kg1/2) and B (mol-1/2L1/2) 208 

is achieved by assuming 1 kg = 1 L. In this study, an expression for seawater (Eq. 7) (42) was 209 

used to estimate a salinity value by considering a buoyant density (ρ) for bacterial cells of 210 

1.11 kg/L (43). For �, a value of 0.25 M was used (Table 2). 211 

��M� � ρ�kg/L� � 19.92 � S
1000 � 1.005 � S (7) 

 212 

Assessment of fluxomics and metabolomics predictive capabilities 213 

Mesophilic growth conditions for E. coli were selected as a case study to explore the impact 214 

of metabolic and physiochemical constraints on the predictive capabilities of TFA at the 215 

fluxomics and metabolomics level. Accordingly, 64 different factor combinations (Table 2) 216 

were tested using mod-matTFA. It is important to note that not all test yielded a solution 217 

where cell growth was achieved (i.e. vbiomass > 0 mmol gDCW-1 h-1). Since different factor 218 

combinations converged into the same set of solutions, tests were characterised at the 219 

fluxomics and metabolomics levels by considering either the full set of values, or the subset 220 

with an experimental counterpart. 221 

Results yielding feasible solutions were also compared against 13C-MFA flux values 222 

(S1 Table) and experimental metabolomics data (S1 Dataset), respectively. A goodness-of-fit 223 

analysis based on the Pearson correlation coefficient (r) was performed, as shown in (44).  In 224 

order to identify the test(s) with the best predictive capabilities at both levels, they were 225 
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separately ranked according to two criteria: (i) correlation coefficient at the fluxomics level, 226 

and (ii) correlation coefficient at the metabolomics level.  The concordance between results 227 

was assessed by the Kendall’s W statistics (S2 Table), where a value of 0 means no 228 

agreement of ranking position with respect to each criterion, and a value of 1 indicates total 229 

agreement. This statistics is a normalisation of the Friedman test, which simply tests whether 230 

samples are from the same population or not (45). Finally, a joint ranking after weighting the 231 

ranking position according to each criterion was considered (the higher the score, the better 232 

the correlation in both the fluxomics and metabolomics levels). 233 

 234 

Thermodynamics-enriched network analysis 235 

The constraining capacity of metabolites is not uniform, and depends on their connectivity in 236 

the network (20, 46). To further constrain the model, a priority list of metabolites to be 237 

quantified should be considered when designing the metabolomics protocol. In this study, the 238 

suitability of the selected dataset for this purpose was analysed (S1 Dataset). The importance 239 

of each metabolite in the network was measured by means of PageRank as implemented in 240 

MATLAB. This algorithm was developed by Google (47) and has been recently applied to 241 

metabolic networks (48). In this sense, the presence of over-represented metabolites (e.g. 242 

proton donor) biases centrality measures (48). Therefore, a removal of these currency (49), 243 

side (48) or pool (50) metabolites from the network was performed (S1 Appendix). 244 

Non-redundant flux distributions from TFA were selected and subjected to network 245 

simplification and correction. Briefly, only active metabolites and reactions were kept, and 246 

stoichiometric coefficients were corrected so that they reflected the flux direction of each 247 

reaction. Centrality measures require a graph G, defined as a pair G = (V, E), where the 248 

vertices (or nodes) V are the metabolites, and the edges E the reactions connecting them. The 249 

stoichiometric matrix was converted into an adjacency matrix using an in-house script 250 

(S1 Appendix), which was later used to generate a G ready for the PageRank analysis. The 251 

final lists of metabolites were ranked by their centrality score, and the top 50% compared 252 

against the list of available experimental values. 253 

 254 

  255 
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Results and discussion 256 

In the last two decades, biotechnology and systems biology have benefitted from the 257 

development of 13C-MFA and FBA to measure and estimate intracellular metabolic fluxes in 258 

industrially relevant bacteria. Although the influence of thermodynamics in living systems 259 

has been considered for several decades, its application to study biochemical networks has 260 

been only recently enabled (24, 32). In this sense, a multitude of different approaches 261 

constraining well-established modelling approaches with thermodynamics have been 262 

suggested. Given its relevance, this study focused on analysing TFA (performed by matTFA 263 

toolbox (20)). This study aimed at: (i) assessing and improving TFA’s reliability of predicting 264 

metabolic fluxes and metabolite concentration values, and (ii) identifying important 265 

metabolites to further constrain the model. In order to do so, (i) the published matTFA 266 

toolbox was modified to include a broader range of parameters (and parameter values) as well 267 

as alternative equations and constraints (Table 2), and (ii) an in-house script was developed to 268 

perform a GSM-wide network analysis exploiting TFA-derived reaction directionalities. 269 

 270 

Evaluation of the reliability of predicted flux and concentration values  271 

A full factorial design comprising 26 tests (Table 2) was applied in TFA to constrain the GSM 272 

iJO1366 (34), selecting the maximisation of biomass yield as the objective function. An 273 

experimental glucose uptake rate was set (2.93 mmol gDCW-1 h-1), reaching a µ F 0.28 h-1 274 

(the experimental was 0.20 h-1) for all FBA and TFA tests. Overall, 26/64 tests were 275 

unsuccessful (no cell growth), and the remaining 38/64 converged into common optimal 276 

solutions (S4 Table). At the fluxomics level, a single flux distribution was achieved in FBA 277 

for all tests, whereas for TFA a different number of non-redundant solutions were found: 5 278 

(when considering all reactions) or 4 (only those with an experimental counterpart). 279 

Likewise, at the metabolomics level, the 38 tests were reduced to 9 optimal solutions. Results 280 

were tested against available experimental data (13C-MFA (35, 51) and metabolomics (35)) 281 

by calculating the Pearson correlation coefficient. Therefore, each successful test was 282 

characterised by the optimal solutions it achieved and the correlation coefficients at both the 283 

fluxomics and metabolomics levels. 284 

The importance of each factor was assessed by means of decision trees (CART® in 285 

Minitab 19) (Table 3). Briefly, models were built considering categorical predictors (the 286 

factors after the codification (S3 Table)) and responses: the importance of a factor measured 287 

the improvement on the model when using it to split the data. Accordingly, the relative 288 
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importance was calculated with respect to the best predictor (Table 3). The � (M) was the top 289 

one for all responses except for TFA (full), where it equalised � (�) at 95.7 % and was 290 

second to the adjustment method. In all cases, using either default concentrations values for 291 

AMP, ADP and ATP (as included in the original matTFA), or experimental data made no 292 

difference. As a result, tests only differing in this factor showed the same correlations with 293 

experimental data (Table 4).  294 

Table 3. Relative factor importance. The type of analysis depended on the nature of the response: 295 
classification was selected for TFA (full), TFA (match 13C-MFA), concentration values (full) and concentration 296 
values (match experimental), and regression for r (fluxomics) and r (metabolomics). The former was suited for 297 
categorical responses (i.e. which solution is achieved, as shown in S4 Table), and the latter for continuous 298 
responses (for Pearson's r, from -1 to +1). 299 
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� (M) 95.7 100.0 100.0 100.0 100.0 100.0 

S (g/kg) 19.9 7.8 27.5 27.5 - - 

Parameter 	 - 1.0 50.0 50.0 2.6 - 

Adjustment method 100.0 52.1 44.4 44.4 52.3 0.9 

[met] - - - - - - 

 300 

Correlation coefficients for FBA in all tests was r ≈ 0.02, whereas for TFA it varied 301 

within the range from 0.90 to 0.95. A reaction-by-reaction comparison of flux directionalities 302 

in central metabolism showed inherent differences between 13C-MFA and FBA/TFA, as 303 

discussed in the last section of this study. At the metabolomics level, it ranged from 0.08 to 304 

0.18 (S4 Table). Tests were ranked independently by both criteria, showing a notable 305 

agreement in their positions (Kendall's W ≈ 0.81). Scoring the position according to each 306 

criterion allowed creating a joint ranking to identify the test(s) with the best predictive 307 

capability at both levels (Table 4). Four tests held the first position, since they all converged 308 

into the same optimal solutions (S4 Table). Specifically, t = 37 � , I = 0.25 M and the Davies 309 

equations as adjustment method were used. Following the relative factor importance 310 

(Table 3), correlation coefficients were not affected by S and the selection of concentrations 311 

values. 312 
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Table 4. Tests with the highest score in the joint ranking. The full list is available in (S4 Table). *(run #3) 313 
reflects the conditions used in the original matTFA. 314 
 315 

Rank sum 62.5 59.5 56.5 51.5 

Correlation coefficient 
TFA vs. 13C-MFA 

0.95 0.95 0.90 0.90 

Correlation coefficient metabolomics 0.18 0.17 0.17 0.15 

Run number 20 24 52 56 28 60 32 64 12 44 3* 

t 
�)  
(0 = 25,  1 = 37) 

1 1 1 1 1 1 1 1 1 1 0 

I (M)  
(0 = 0,  1 = 0.25) 

1 1 1 1 1 1 1 1 1 1 1 

S (g/kg)  
(0 = 0,  1 = 13.74) 

0 1 0 1 0 0 1 1 0 0 0 

Parameter A  
(0 = �-dependent, 1 = �/S-dependent) 

0 0 0 0 1 1 1 1 1 1 0 

Adjustment method  
(0 = DH,  1 = Davies) 

1 1 1 1 1 1 1 1 0 0 0 

[met] (0 = default, 1 = experimental 
values) 

0 0 1 1 0 1 0 1 0 1 0 

Davies, Davies equation; DH, extended Debye-Hückel equation; [met], metabolite concentration values. Values 316 
of 0 and 1 in the headers refer to the binary codification from the full factorial design (S3 Table). *Run #3 317 
represents the analytical conditions from the original matTFA, added here as a reference. There is a ‘default 318 
matTFA’ constraint regarding set concentrations values for AMP, ADP and ATP, as included in the original 319 
matTFA script. ‘Experimental values’ refers to the use of published metabolomics data (S1 Dataset). Correlation 320 
coefficient values were rounded to the closest integer for ranking purposes. 321 

 322 

This analysis showed that adjusting the physicochemical parameters to the 323 

experimental conditions did improve the predictive capabilities of TFA, but certain technical 324 

limitations at both levels need to be discussed. The nature of 13C-MFA only allows 325 

determining the flux distribution in the central carbon metabolism by considering amino acid 326 

synthesis (13), which has been noted to be very robust against changes in the intermediate 327 

metabolite concentrations (52, 53). The recent discovery of non-enzymatic metabolism-like 328 

reactions suggests that current metabolic networks evolved from prebiotic reaction 329 

sequences. Therefore, a well-established flux distribution in the central pathways can be 330 

expected (54). In order to discern among tests, focus on highly variable flux values should be 331 

promoted, but the variance among them was low (S2 Dataset). In fact, only 36/1679 showed a 332 

variance greater than zero, where 6 reactions had an experimental counterpart to compare 333 

against. Optimal solutions for all tests were similar (reducing the discerning capacity), which 334 

explained the overall high correlation coefficients for all tests. Therefore, results from the 335 

comparison of predicted and experimental metabolite concentration values are paramount to 336 

better understand the impact of varying the physicochemical parameters. 337 

Regarding the metabolomics level, the 9 non-redundant solutions were subjected to a 338 

similar analysis. Likewise, only 46/972 metabolites had a variance among tests greater than 339 
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zero (S3 Dataset), out of which 7 were quantified: L-aspartate, phosphoenolpyruvate, ATP, 340 

L-valine, pyruvate, NADP+, and FAD. Reliable quantitation of energy-carrying molecules 341 

and redox cofactors is not easily achievable, given the inherent cell dynamics (e.g. cell cycle 342 

and cell size variations) and degradation during extraction (55-63). Since the correlation 343 

coefficients were calculated using a dataset blind to highly variable metabolites (e.g. 344 

3-phosphohydroxypyruvate ranged four orders of magnitude), resulting values were similar 345 

for different factor combinations (Table 4). Thus, said metabolites should be quantified to 346 

deconvolute the impact of using default or experimental concentration values in the 347 

predictive capabilities. 348 

Other limitations refer to the design of the tool itself. This method does not consider 349 

other complex phenomena affecting the thermodynamic feasibility of metabolic pathways, 350 

such as Mg complexation with metabolites, or compound dissociation into more than two 351 

protonated species (19, 20) (as shown in the file calcDGspecies.m). In addition, Gibbs free 352 

energy values are relaxed when no feasible solution is found, so the constraining power of 353 

experimental metabolite concentration values is reduced (20). Related to this, an approach 354 

allowing to identify metabolites to further constrain the model was developed in this study 355 

(next section). Finally, it should be noted that to apply matTFA to thermophilic species (e.g. 356 

Thermus thermophilus, a potential non-model metabolic engineering platform (64)), recent 357 

methods to adjust Gibbs free energies to high temperatures should be considered (65).  358 

 359 

Identification of central metabolites to further constrain the model 360 

Successful tests converged into 5 solutions at the fluxomics level (S4 Table), which are 361 

structurally equivalent. Therefore, a single stoichiometric matrix was considered for further 362 

analysis. After the simplification step (removal of inactive metabolites and reactions, as well 363 

as side compounds) 622/1805 metabolites were left in the network. The experimental dataset 364 

included information about 44 metabolites (S1 Dataset), out of which 34 were also 365 

considered in the simplified network, and the rest was discarded as side compounds. 366 

PageRank scores were calculated, allowing to identify metabolites in the top 50% for 367 

which experimental data was available (Table 5). Overall, 18/34 quantified metabolites were 368 

in the top 50%, with only 7 in the top 10%. The lack of high centrality for most metabolites 369 

explains the aforementioned result, where tests only differing in the set of concentrations 370 

values used as a constraint (default ATP/ADP/AMP or experimental) led to the same optimal 371 

solution (e.g. tests 20 and 52, Table 3).  372 
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Table 5. Quantified metabolites in the top 50% of PageRank (PR) based analysis. The last position in the 373 
ranking (#622) was L-Tyrosine (PR score = 0.0004), which had been quantified. The full list can be found in 374 
(S4 Dataset). 375 

Quantile Ranking 
position Metabolite Node PR 

score 

10% 

1 L-Glutamate glu-L_c 0.0172 

2 Pyruvate pyr_c 0.0126 

4 D-Fructose 6-phosphate f6p_c 0.0079 

6 Acetyl-CoA accoa_c 0.0071 

7 L-Methionine met-L_c 0.0071 

23 Succinyl-CoA succoa_c 0.0046 

44 L-Serine ser-L_c 0.0034 

30% 

69 Dihydroxyacetone phosphate dhap_c 0.0029 

70 L-Tryptophan trp-L_c 0.0029 

88 Phosphoenolpyruvate pep_c 0.0026 

103 S-Adenosyl-L-methionine amet_c 0.0024 

129 L-Alanine ala-L_c 0.0021 

157 L-Histidine his-L_c 0.0020 

161 D-Glucose 1-phosphate g1p_c 0.0019 

177 L-Proline pro-L_c 0.0019 

181 3-Phospho-D-glycerate 3pg_c 0.0018 

50% 
249 D-Fructose 1,6-bisphosphate fdp_c 0.0016 

258 L-Leucine leu-L_c 0.0015 

 376 

The priority list is led by L-glutamate, pyruvate, 2-oxoglutarate (not quantified), 377 

D-fructose-6-P and glyceraldehyde 3-phosphate (not quantified). Both L-glutamate and 378 

2-oxoglutarate participate in the assimilation of nitrogen in E. coli, where the former also 379 

plays a role as nitrogen donor in the biosynthesis of nucleic acids (66) . The latter along with 380 

the rest (except for glyceraldehyde 3-phosphate), and acetyl-CoA are important biosynthetic 381 

precursors used in modelling (49). Accordingly, other metabolites participating in central 382 

pathways such as glycolysis (glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, etc.) 383 

and protein biosynthesis (amino acids) were also identified.  Important metabolites 384 

highlighted here agree with results from the seminal work by Wagner et al. (49), where they 385 

used a smaller network (317 vs. 931 reactions). Due to computational costs, other attempts 386 

specifically focusing on the constraining capacity with regards to TFA (Thermodynamics-387 

based Metabolite Sensitivity Analysis, TMSA) are also limited by the network size (156 388 

reactions in (46)). In particular, this approach identified pyruvate as the most significant 389 

metabolite in terms of reducing the variability in the thermodynamic properties of reactions, 390 

and attributed it to its high connectivity in the network. Other important compounds included 391 

phosphate, NAD+, NADH, CO2, menaquinol-8, menaquinone-8 and D-lactate. All but the 392 
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latter were classified as side compounds for this study (and therefore excluded), since the 393 

centrality measures are biased by ubiquitous metabolites (48). 394 

The impact of the inherent dynamics (cell cycle and cell ageing) has been pointed out 395 

as a source of metabolic heterogeneity in clonal microbial populations (55). In a chemostat, 396 

cells are maintained at the exponential growth phase, but the cell cycle is not synchronised 397 

across single cells unless forced (56, 57). In E. coli, concentration values for NAD(P)H 398 

oscillate along the cell cycle (58), and ATP concentration values show an asymmetric 399 

distribution across single cells in a continuous culture (59). From a metabolomics point of 400 

view, an unbiased extraction and quantitation method is yet to be developed (60). 401 

Particularly, ATP/ADP/AMP quantitation require specific culture conditions (61), and 402 

nicotinamides parallel protocols to avoid degradation . Overall, the method developed here 403 

generated a priority list to be considered when selecting a metabolomics protocol aiming at 404 

providing data to further constrain a model in TFA. 405 

 406 

Reaction directionalities in the central carbon metabolism 407 

Finally, flux pattern changes between in vivo and in silico fluxes in the central carbon 408 

metabolism were analysed, with a particular focus on the anaplerotic reactions. The 409 

‘anaplerotic node’ (Fig. 2) consists of carboxylation/decarboxylation reactions including 410 

intermediates participating in the tricarboxylic acid (TCA) cycle that are used for 411 

biosynthesis of amino acids (67). Given the fact similar MIDs (from proteinogenic amino 412 

acids) can be obtained from different precursors, 13C-MFA has been noted to show a limited 413 

capability to elucidate fluxes around the anaplerotic node (52, 68, 69). In order to evaluate 414 

changes in reaction directionalities, the available in vivo fluxes were tested against their 415 

equivalents in the simulated TFA flux distributions (S1 Table). Overall, 13/40 flux directions 416 

disagree between approaches (Table 6).  417 

 418 
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Fig. 2. Anaplerotic node for E. coli. Set of carboxylation/decarboxylation reactions including 420 

phosphoenolpyruvate, pyruvate, oxaloacetate, and malate. Arrows indicate the expected direction of carbon 421 

fluxes. Boxes refer to reactions: blue when they are defined in both the GSM and the metabolic network used 422 

for 13C-MFA, and orange when they are exclusively considered in the GSM. In the latter case no mapping was 423 

possible (S1 Table). 424 

Discrepancies in flux pattern between methods are caused by both differences in the 425 

structure of the metabolic networks and the way the problem is defined (Table 1). On the one 426 

hand, iJO1366 includes 8 reactions concerning the anaplerotic node and the glyoxylate shunt: 427 

PPC and PPCK (between phosphoenolpyruvate and oxaloacetate), PYK and PPS (between 428 

phosphoenolpyruvate and pyruvate), ME1 and ME2 (between pyruvate and malate) (Fig. 2), 429 

and finally ICL and MALS (from isocitrate to malate, via glyoxylate). In contrast, the 430 

metabolic network used for the 13C-MFA did not consider PPCK and PPS (S1 Table), which 431 

could affect the determination of fluxes to/from phosphoenolpyruvate. Since 13C-MFA is 432 

based on lumped reaction, branched pathways are not taken into account (13). Thus, having a 433 

smaller range of alternative pathways than FBA/TFA may affect the estimation of flux 434 

values. 435 

 436 

Table 6. Flux pattern changes between 13C-MFA data and matTFA predictions.  437 

Reaction 
(GSM) 

Definition 
(GSM) 

Definition 
(13C-MFA) 

Direction 
(13C-MFA) 

Corrected 
direction 

(13C-MFA) 

Direction 
(TFA) 

ACALD acald_c + coa_c + 
nad_c ↔ accoa_c + h_c 
+ nadh_c 

AcCoA → Ethanol + - 0 
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ACKr ac_c + atp_c + h_c  ↔ 
actp_c + adp_c 

AcCoA → Acetate 0 0 + 

ACONTb acon-C_c + h2o_c  <=> 
icit_c 

CIT -> ICT + + 0/+ 

ALCD2x etoh_c + nad_c ↔ 
acald_c + h_c + nadh_c 

AcCoA → Ethanol + - + 

FBA fdp_c  ↔ dhap_c + 
g3p_c 

F1,6P → DHAP + G3P + + 0/+ 

ICL icit_c  → glx_c + 
succ_c 

ICT → Glyoxylate + 
SUC 

+ + 0 

ME1 mal-L_c + nad_c → 
co2_c + nadh_c + pyr_c 

MAL → PYR + CO2 + + 0 

ME2 mal-L_c + nadp_c → 
co2_c + nadph_c + 
pyr_c 

MAL → PYR + CO2 + + 0 

PFK atp_c + f6p_c <=> 
adp_c + fdp_c 

F6P -> F1,6P + + 0/+ 

PTAr accoa_c + h_c + pi_c  
↔ actp_c + coa_c 

AcCoA → Acetate 0 0 -/0 

PYK adp_c + pep_c  ↔ 
atp_c + pyr_c 

PEP → PYR + + 0/+ 

SUCOAS atp_c + coa_c + succ_c  
↔ adp_c + pi_c + 
succoa_c 

2-KG → SUC + CO2 + + - 

TALA g3p_c + s7p_c ↔ 
e4p_c + f6p_c 

S7P + G3P ↔ E4P + F6P + + -/0 

Where +, flux in the forward direction; -, flux in the reverse direction; 0, no flux. Corrected direction, refers to 438 
the adjustments due to differences in the definition of the reaction between 13C-MFA and GSM (S1 Table). For 439 
example the case of ALCD2x: in vivo flux (13C-MFA) suggests production of ethanol, whereas the in silico one 440 
(GSM/TFA) predicts consumption of ethanol. Since reactions are defined in opposite directions, a correction 441 

becomes necessary. Discrepancy between corrected directions and predicted ones allowed an automated 442 
identification of flux pattern changes. 443 

On the other hand, in silico flux distributions are the result of optimising the system 444 

according to the chosen objective function. Accordingly, when maximising the biomass 445 

production (which requires ATP), FBA and TFA promote pathways that reduce wasting ATP 446 

in the optimal solution (14). For instance, PPCK (ATP-consuming reaction) carried no flux. 447 

In contrast, experimental data from E. coli grown on glucose has proven that both PPC and 448 

PPCK (which constitute a futile cycle) are active and play a role in metabolic regulations 449 

(70). However, given the fact that ICL and ME1/ME2 do not generate any ATP, fluxes are 450 

shut down in the simulated flux distributions (as shown in (52)). In this sense, it should be 451 

noted that stochastic events or regulatory processes have been suggested to provoke a 452 

variation of the fluxes through PPCK and ME1/ME2 (71). FBA/TFA also faced problems 453 

regarding the overflow metabolism: acetate was predicted to be produced (PTAr and ACKr), 454 

as opposed to the lack of flux according to 13C-MFA. 455 
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Even though flux pattern changes between predicted and experimentally determined 456 

intracellular fluxes were present, TFA offered a reliable prediction of intracellular fluxes 457 

(Table 4). This overall consistency has been noted in the literature by comparing an array of 458 

different objective functions and constraints (based on split ratios rather than on mapping on 459 

a reaction-by-reaction case) (15). A combination of both approaches to overcome their 460 

limitations and different flux space solutions has also been suggested (72, 73). However, 461 

fluxes concerning the TCA cycle, the glyoxylate shunt and acetate secretion have proven to 462 

be difficult to predict (15), as also shown in this study. Similarly, other reactions are also 463 

affected by the substrate uptake rate: ALCD2x becomes unidirectional at high glucose levels 464 

(28). 465 

In addition, the nonlinear dependency of the anaplerotic fluxes on the growth rate has 466 

been reported in the literature, limiting the reliability of conclusions from experiments using 467 

single dilution rates (70, 71). Particularly, metabolic fluxes through the aforementioned futile 468 

cycle are expected to be active under glucose-limited growth conditions (74), rather than 469 

being totally shut down (Fig. 2). In this sense, a higher degree of consistency between 470 

predicted and experimental flux distributions could have been achieved by (i) focusing on 471 

data from cultures with high dilution rates, so that futile cycle activity is lowered and the flux 472 

distribution becomes closer to the optimal solution, or (ii) applying further constraints to 473 

properly model the anaplerotic reactions (75). The first option is limited by the lack of 474 

published data at both the metabolomics and fluxomics levels from the same experiment, and 475 

the second one by the lack of implementation. 476 

 Consequently, it was assumed that the high correlation coefficient achieved for TFA 477 

against in vivo fluxomics data (r ≈ 0.9) was high enough to enable the analyses on the impact 478 

of varying the physicochemical parameters in the predictive capabilities. Studying flux 479 

pattern changes on a reaction-by-reaction basis also allowed to confirm previously reported 480 

limitations from both 13C-MFA and FBA/TFA with regards to the anaplerotic node (68, 69, 481 

75). Thus, metabolites in the node are expected to be directly affected. 482 

  483 
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Conclusions 484 

This study showed that the predictive capabilities of TFA can be potentially improved by 485 

using physicochemical parameters closer to the experimental conditions and adequate 486 

equations. In addition, we proposed a method based on centrality measures to identify 487 

important metabolites allowing to further constrain the TFA. In contrast to previous attempts, 488 

our strategy is not limited by the size of the network and is computationally cheap. Therefore, 489 

a preliminary TFA could be considered when designing a metabolomics protocol to maximise 490 

the constraining power of the experimental concentration values. Overall, our study stressed 491 

the necessity of performing an in-depth assessment of available methods in the fluxomics 492 

field. For instance, interesting published potential solutions to known problems (e.g. 493 

elucidation of the anaplerotic fluxes) should be integrated with the widely used approaches. 494 

This should increase the degree of standardisation in the community, allowing to cross-495 

validate novel strategies and improving the reliability of the simulated data. 496 
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