Association of CDH11 with ASD revealed by matched-gene co-expression analysis and mouse behavioral studies

Running title: A novel and more effective gene co-expression analysis algorithm

Nan Wu¹, Yue Wang², Jing-Yan Jia¹, Yi-Hsuan Pan¹*, Xiao-Bing Yuan¹,³*

¹Key Laboratory of Brain Functional Genomics of Shanghai and Ministry of Education, Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai 200062, People's Republic of China

²Hussman Institute for Autism, Baltimore, MD 21201, USA

³Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

*Correspondence and requests for materials should be addressed to Dr. Xiao-Bing Yuan (email: xbyuan@brain.ecnu.edu.cn) or Dr. Yi-Hsuan Pan (email: yihsuanp@gmail.com)

Keywords: CDH11, ASD, gene co-expression analysis, matched-gene co-expression analysis, MGCA

Abstract
A large number of putative risk genes of autism spectrum disorder (ASD) have been reported. The functions of most of these susceptibility genes in developing brains remain unknown, and a causal relationship between their variations and autism traits has not been established. The aim of this study is to predict putative risk genes at the whole-genome level based on the analysis of gene co-expression with a group of high-confidence ASD risk genes (hcASDs). Results showed that three gene features, including gene size, mRNA abundance, and guanine-cytosine content, affect genome-wide co-expression profiles of hcASDs. To circumvent the interference of these gene features on gene co-expression analysis (GCA), we developed a method to determine whether a gene is significantly co-expressed with hcASDs by statistically comparing the co-expression profile of this gene with hcASDs to that of this gene with permuted gene sets of feature-matched genes. This method is referred to as "matched-gene co-expression analysis" (MGCA). With MGCA, we demonstrated the convergence in developmental expression profiles of hcASDs and improved the efficacy of risk gene prediction. Results of analysis of two recently reported ASD candidate genes, CDH11 and CDH9, suggested the involvement of CDH11, but not CDH9, in ASD. Consistent with this prediction, behavioral studies showed that Cdhl1-null mice, but not Cdh9-null mice, have multiple autism-like behavioral alterations. This study highlighted the power of MGCA in revealing ASD-associated genes and the potential role of CDH11 in ASD.

Introduction
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with a complex genetic basis \[^1, 2\]. A large number of putative risk genes have been identified by genetic linkage analyses, genome-wide association studies (GWAS), whole-exome sequencing (WES), or whole-genome sequencing (WGS) \[^3-5\]. However, the functions of most of these putative risk genes in developing brains remain unknown. For some novel risk genes, the genetic evidence supporting their association with ASD is not sufficient. Therefore, a causal relationship between the variations of many risk genes and autism traits has not been established. In order to prioritize the investigation of genes and signaling pathways of high relevance to ASD, a method to determine the functional importance of a large group of putative risk genes is vital.

The highly diverse ASD risk genes are believed to functionally converge in several common molecular pathways closely related to ASD, such as the Wnt signaling pathway, the mammalian target of rapamycin (mTOR) pathway, and dendrite development and synaptic remodeling pathways \[^3, 6\]. Consistent with the functional convergence of ASD risk genes, several studies showed the convergence of developmental expression profiles of a large group of risk genes \[^7, 8\]. It is generally believed that genes with similar expression profiles are co-regulated or have related functions \[^7, 9\]. The co-expression of genes within a biological pathway is a strong indication of their shared functions \[^9\]. Based on this concept, computational analyses of various brain transcriptomes have been conducted to identify potential...
co-expression networks of ASD risk genes and to discover brain circuits that may be affected by risk genes \[7, 8, 10, 11\]. In these studies, the correlation coefficient (CC) of a pair of genes is calculated based on their expression levels in different brain regions or developmental stages. Genome-wide gene co-expression networks are constructed by setting an empirically determined threshold of CC \[7\]. Genetic mutation and protein interaction data have also been incorporated into gene co-expression analysis (GCA) along with novel data analysis algorithms, such as machine learning, to predict putative ASD risk genes and their convergent molecular pathways \[12\]. A major limitation in most of these studies is the lack of ways to overcome the potential effects of confounding factors such as the size, expression level (mRNA abundance), and guanine-cytosine (GC) content of genes on the result of GCA \[13\]. Most ASD risk genes are large genes with a higher expression level in the brain than in other tissues \[14\]. It is unclear whether the size or expression level of an ASD gene affects its co-expression with other genes. It is also unclear whether the convergent pattern of developmental expression profiles is specific to ASD risk genes or the common property of genes with similar features, such as large gene size and high mRNA abundance \[13\].

In this study, we discovered that three gene features, including mRNA abundance, gene size (genomic DNA length), and GC content of a gene, affect gene co-expression profiles in the brain. We developed a novel method called “matched-gene co-expression analysis” (MGCA) (Fig. 1) to examine whether a gene
exhibits significant co-expression with a group of high-confidence ASD risk genes (hcASDs) independent of confounding gene features. This was accomplished by statistically comparing the co-expression level of a gene with the hcASD gene set to that of this gene with a large number of permuted gene sets of matched features. MGCA effectively predicted putative ASD-associated genes and revealed functionally important convergent molecular pathways of these genes. MGCA also revealed “homophilic cell adhesion” as one of the most significantly converged pathways of risk genes. Results of further analysis of CDH11 and CDH9, two ASD candidate genes belonging to the cadherin family of adhesion molecules, suggested the involvement of CDH11, but not CDH9, in ASD. This prediction was supported by mouse behavioral studies using Cdh11- and Cdh9-null mice.

Materials and Methods

Data filtering and computation of co-expression coefficient

The human brain transcriptome dataset from BrainSpan (www.brainspan.org) (RNA-Seq Gencode v10) was used for GCA. This dataset contained 256 transcriptomes of 16 different brain regions. The developmental stages ranged from post-conception week 8 (PCW8) to 40 years old (40Y). Normalized mRNA expression values were represented by RPKM (Reads Per Kilobase Per Million Mapped Reads). The average mRNA expression level of each gene in all tissues was considered as the mRNA abundance level of a gene. Gene lengths were determined
based on gene annotations provided by the National Center for Biotechnology Information (NCBI). The GC content of a gene was obtained from Ensembl Genome Browser. Based on statistical analyses of genetic data described previously, 101 risk genes that reached a genome-wide significance threshold (false discovery rate, FDR ≤ 0.1) \([15] \) were used as the hcASD gene set (high confidence ASD risk gene set, Table S1). Genes with an abundance level lower than the lowest abundance level of hcASDs were filtered out (Table S1). Perl scripts were written to conduct most calculations. Pair-wise Pearson’s correlation coefficient (CC) was used to indicate the tendency of co-expression of a gene pair. Heatmaps were constructed with the software R based on the CC matrix of 1/100 evenly distributed genes. The mean CC was defined as co-expression coefficient (CEC), which indicates the tendency of co-expression of a gene with a specific set of genes \(\text{CEC} = \frac{1}{M} \sum_{i=1}^{M} CC_i \) , \(i = 1, 2, \ldots, M \); where \(M \) indicates the total gene number of a gene set) or the tendency of co-expression of two gene sets \(\text{CEC} = \frac{1}{MN} \sum_{k=1}^{N} \sum_{i=1}^{M} CC_{ki} \) , \(k = 1, 2, \ldots, N; i = 1, 2, \ldots, M \); where \(M \) and \(N \) represent the total gene number of two different gene sets, respectively).

Gene set definition

After data filtering, a total of 12,250 genes with information on gene length, mRNA level, and GC content available were identified and used for the study (Table S1). In addition to the hcASD gene set, the following gene sets were also used: cASD (combined ASD genes), mRand (matched random genes), Rand (random genes),
TriM (triple-matched genes), Top (Top-ranked genes by CEC value), TriM-only (genes only in TriM gene set), and Top-only (genes only in Top gene set). The cASD gene set is a combined set of ASD-associated genes containing 514 non-redundant genes from nine different sets of previously reported ASD-associated genes (Table S5) [7, 15-21]. Each mRand gene set contained 101 genes, with one of the three gene features of each gene matched with that of the corresponding hcASD gene in the hcASD gene set. To generate the mRand gene sets, each feature-matched gene was randomly selected within the ±50 range of the corresponding hcASD gene in the ranked gene list using a Perl Script. Each Rand gene set contained 101 genes randomly selected from the whole gene list using a Perl Script without considering matched gene features. TriM was the set of MGCA-revealed genes that exhibited significant co-expression with the hcASD gene set under all three matched conditions (see Figs. 1, 4A). The Top gene set contained top-ranked genes with the highest CEC values with hcASD. TriM-only and Top-only gene sets contained non-overlapped genes present only in the TriM or the Top gene set.

Gene ontology (GO) analysis

GO analysis was performed using DAVID v6.8 (http://david.ncifcrf.gov/tools.jsp), and the human whole-genome genes provided by DAVID were used as the background list. A corrected P-value of 0.05 (Benjamini-Hochberg method) was used.
Pathway enrichment analysis

Metascape (http://metascape.org) was used to perform pathway enrichment analysis and draw heatmaps. Pairwise similarities between any two significant terms were computed based on Kappa-test scores. The enriched terms were then hierarchically clustered into a tree with a kappa score of 0.3 as the threshold. Boxes were colored according to their P-values. Gray boxes indicate a lack of enrichment for a specific GO term.

Ethics approval

Animal care and handling were performed according to the guidelines for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments were approved by the Animal Care and Use Committees of Hussman Institute for Autism (06012015D), University of Maryland School of Medicine (0515017), and East China Normal University (m20190236).

Animals

$Cdh9$-null mice ($Cdh9^{laz}$, C57BL/6-ICR mixed background) [22] were provided by Dr. Joshua R. Sanes at Harvard University. $Cdh11$-null mice [23] were from the Jackson Labs ($Cdh11^{Tm1Mta}$/HensJ, https://www.jax.org/strain/023494, C57BL/6-129Sv-CD-1 mixed background). All mice were housed in groups of five with free access to food and water and kept on a 12-hour light/dark cycle. Mice were tattooed on the tail using
fluorescent ink for identification. A UV flashlight was used to visualize the tattooed identification numbers. All behavioral tests were conducted during the daytime on mice 2-5 months of age. The experimenter was blind to the genotype of the animal during behavioral experiments. The surface of the apparatus for behavioral tests was cleaned with 50% ethanol between tests. At least 5 min between cleaning and the next test was allowed for ethanol evaporation and odor dissipation.

Genotyping

Genotyping of Cdh9-null mice was done by PCR as previously described. The PCR product for the wildtype (WT) Cdh9 allele was 550 bp amplified with the primer pair Cdh9-P1 (CCA CTA CAG GAA ACC TTT GGG TT) and Cdh9-P3 (ATG CAA ACC ATC AGG TAT ACC AAC C), and that of the mutant allele was 430 bp amplified with the primer pair Cdh9-P1 and Cdh9-P2 (CGT GGT ATC GTT ATG CGC CT). The annealing temperature for Cdh9 PCRs was 63°C. For genotyping of Cdh11-null mice, the primer pair Cdh11-P1 (CGC CTT CTT GAC GAG TTC) and Cdh11-P2 (CAC CAT AAT TTG CCA GCT CA) were used for amplification of the mutant allele, and the primer pair Cdh11-P3 (GTT CAG TCG GCA GAA GCA G) and Cdh11-P2 were used for the WT allele. The annealing temperatures for PCR were 63.1°C and 56°C for the mutant and WT alleles, respectively. The sizes of the PCR products for the mutant and WT alleles were 500 bp and 400 bp, respectively.
Behavioral tests

Mice of 3-5 months old were used for these behavioral tests. Animals were handled before the test (10 min/day for 3 days). The general order of behavioral tests was the open field test, elevated plus maze, sociability test, rotarod test, and gripping force test. Animals rested for at least 3 days after finishing one behavioral experiment. During all behavioral experiments, the experimenter was blind to mouse genotypes. Three batches of mice were analyzed, and data were pooled for analysis.

Open field test. The test mouse was allowed to freely explore the open field arena (50 cm × 50 cm) for 30 min. The mouse’s motion was videoed and tracked by an automated tracking system (EthoVision XT 11.5), which also recorded rearing, hopping, turning, self-grooming, moving time, total moving distance, and time spent in the center of the arena (1/2 of total size).

Elevated plus maze test. The standard elevated plus maze (EPM) apparatus consisted of two open and two closed arms, 30 × 5 cm each, connected by a central platform (5 cm × 5 cm). The maze was 30 cm off the ground. The test mouse was gently placed on the central platform with its head facing one closed arm and was allowed to explore for 10 min freely. The mouse’s time stayed in the two open arms and the frequency of open arm entry were recorded.

Grip strength test. The test mouse was placed on a metal grid on top of a transparent chamber. The grid was quickly inverted, and the time for the mouse to drop off the grid was determined. Five consecutive trials were carried out, and the average
hanging time for each mouse was calculated. The maximum hanging time was set for 1 min. After 1 min of hanging, the trial was stopped, and the hanging time was recorded as 1 min.

Horizontal bar test. The mouse was gently placed on a metal wire, with the two forepaws gripping the wire. The length of time which the mouse hung on the wire was measured. The maximum hanging time was set for 1 min. The average hanging time was calculated from 5 consecutive trials.

Rotarod test. Mice were habituated to the rotarod apparatus (Harvard Apparatus 760770) by leaving them on the low-speed rotating rod (4 rpm) for 5 min each day for 3 days and tested on the fourth day on the accelerating rod. The time and the maximum rotation speed that the test mouse maintained the balance on the rotating rod were measured. Five consecutive trials were done for each mouse.

Social preference test. A modified three-chamber apparatus was used. The apparatus comprised 3 rectangular (25 cm × 38 cm) chambers made of white Plexiglas with a 13 cm gate connecting the two side chambers to the middle chamber. A 3-sided (13 cm wide for each side) fence made of transparent Plexiglas was placed inside each side chamber facing the door of the side chambers, creating a 13 cm × 13 cm square area separated from the side chambers but connected to the middle chamber through the door (Fig. 7A). The two side chambers were covered by transparent Plexiglas to minimize odorant diffusion. The test mouse was placed inside the middle chamber and freely explored the middle chamber and the square zone in each side chamber for
10 min. Three social partner mice were then placed into the fenced area in one side chamber, and the test mouse was allowed to **explore for another 10 min freely**.

Another 3 social partner mice were then placed in the other side chamber, and the behavior of the test mouse was tracked for 10 min. The time that the test mouse spent in each chamber was measured.

Experimental Design and Statistical Analysis

The effects of three different gene features on gene co-expression profiles were first analyzed. MGCA ([Fig. 1](#)) was then performed to determine the convergence in developmental expression profiles of hcASDs and detect genes that were significantly co-expressed with hcASDs in the whole genome. The effectiveness of MGCA in predicting putative ASD-associated genes was analyzed by comparing its results with those of GCA, which does not consider. **CDH11** and **CDH9** were selected as example genes, and mouse behavioral experiments were conducted in gene knockout mice to verify the findings of MGCA.

Data are presented as mean ± standard error of the mean (SEM). The upper fence test and Grubbs’ test were performed to evaluate whether the hcASD-hcASD expression level (CEC value) was significantly higher than the CEC values of feature-matched (mRand-mRand; hcASD-mRand) or non-matched non-hcASD gene sets (Rand-Rand; hcASD-Rand). Grubb’s test was done using the “grubbs.test” script in the R software package. The false discovery rate (FDR) of a gene was determined
by the frequency of this gene significantly co-expressed ($P < 0.001$) with 5,000 mRand gene sets determined by MGCA. Gene enrichment P-value was determined with the Chi-Square test. Pathway enrichment P-values were determined with Metascape. Behavioral data were analyzed by Student t-test and by one-way ANOVA followed by Dunnett’s t-test as post hoc analysis using SPSS (IBM, Armonk, USA) or GraphPad Prism (GraphPad Software, La Jolla, CA, USA).

Availability of data and materials
Perl scripts for data analysis are available on GitHub
(https://github.com/wunan124/MGCA)

Results
Effects of gene features on gene co-expression profiles
The potential effect of the three gene features, including mRNA abundance, gDNA size, and GC content, on gene co-expression profiles was first analyzed. The BrainSpan human brain transcriptome dataset was used for this analysis. This dataset contains transcriptomes of human (both sex) brain tissues from 16 different brain regions of various developmental stages and ages (from PCW8 to 40Y). A total of 12,250 genes with information on all 3 gene features were used for analyses. These genes were placed in ascending order of mRNA abundance, gDNA size, or GC content as ranked gene lists (**Table S1**). The correlation coefficient (CC) of each gene
pair was calculated to reflect the co-expression level of the two genes, and results were displayed in pseudo-color-coded matrices. In each of the CC matrices (Fig. 2A), these 12,250 genes were placed in ascending order on both x and y axes. All three CC matrices exhibited variable color intensity in different areas with higher intensity corresponding to higher CC values. The overall color intensity was the highest in areas corresponding to medium mRNA abundance, medium to large gDNA size, and low GC content (Fig. 2A). This result suggests that all three gene features affect gene co-expression profiles.

Most hcASDs are large genes with medium to large mRNA abundance but with no apparent bias in GC content (Fig. S1). To determine whether each of these three gene features affects the co-expression of a gene with the hcASD gene set as a whole, the co-expression coefficient (CEC, mean CC between a gene and each of the hcASD genes) of each of the 12,250 genes with the entire hcASD gene set was calculated (blue dots in Fig. 2B; Table S1). In each of the 3 panels (Fig. 2B), the 12,250 genes were placed in ascending order (x-axis). A noise-reduced (by data averaging) CEC distribution curve was then generated by plotting the average CEC of a gene with its neighboring 20 (10 above and 10 below; ±10), 50 (±25), 100 (±50), or 200 (±100) genes on the gene lists under each gene ranking condition. Results showed a bell-shaped curve when genes were ranked by mRNA abundance, suggesting that genes with medium expression levels are more likely to co-express with the hcASD gene set (Fig. 2B, left panel). There was an overall positive correlation between the
gDNA size of a gene and its CEC with the hcASD gene set (Fig. 2B, middle panel).

The CEC maintained a relatively high level (0.28 - 0.35) when the GC content ranged from low to medium level (approximately < 45%, x-axis < 6000) and then gradually declined with increasing GC content (Fig. 2B, right panel; Table S1).

With cubic regression, each noise-reduced CEC distribution curve was found to have an R^2 value > 0.88 (Fig. S2; Table S2), indicating a significant correlation between each of these gene features and the tendency of co-expression of a gene with the hcASD gene set. When the 12,250 genes were placed in stochastic (random) orders, CECs were evenly distributed, and the noise-reduced CEC distribution curves were largely flat (Fig. 2C).

Similar genome-wide gene co-expression profiles of the hcASD gene set were observed in transcriptomes of early (8PCW - 2Y) and late (4Y - 40Y) stages (Fig. S3A), both sex, and different brain regions (Fig. S3B, C). These findings suggest that the co-expression profile of hcASD genes is affected by all three gene features, regardless of developmental stages, sex, and brain areas. Similar effects of these three gene features on the co-expression profiles of hcASD genes were observed when a set of 64 high susceptibility genes [24] were used as the hcASD gene set (Fig. S4).

Similar co-expression profiles of feature-matched gene sets

The genome-wide gene co-expression profile of the hcASD gene set was then compared to the profiles of 200 feature-matched non-hcASD gene sets. Each gene set
comprised an equal number (101) of randomly selected and feature-matched non-hcASD genes under the three different gene ranking conditions (Fig. 3A). These gene sets were named “matched random” (mRand) gene sets (see methods). In general, the genome-wide CEC distribution of hcASDs was similar to that of each of the 200 mRand gene sets under all three gene ranking conditions. These findings suggest that gene sets with matched gene features have a similar genome-wide co-expression profile as the hcASD gene set. However, genes with low to moderate mRNA abundance (approximately 1.2 - 30 RPMK, 1 - 10500 on x-axis) had higher noise-reduced CECs with the hcASD gene set than with any of the 200 mRand gene sets. In contrast, high mRNA abundance genes (> 30 RPKM; 10500 - 12250 on the x-axis) had lower noise-reduced CECs with the hcASD gene set than with most mRand gene sets. Moreover, genes with medium to large sizes had higher noise-reduced CECs with the hcASD gene set than with most size-matched mRand gene sets. Except those with the highest GC content, most genes had higher noise-reduced CECs with the hcASD gene set than with most GC content-matched mRand gene sets.

Co-expression of ASD risk genes

To determine whether hcASDs exhibit a significant tendency of co-expression with each other, the mean CEC of each of the 101 hcASDs with the hcASD gene set as a whole (hcASD-hcASD, see method) was compared to that of a large number of
permuted gene sets, each comprised equal number of feature-matched non-hcASD
genes (mRand-mRand) or randomly selected non-hcASD genes (Rand-Rand), and to
the CEC between hcASD and mRand (hcASD-mRand) or Rand (hcASD-Rand) gene
sets. Two hundred each of mRand and Rand gene sets were first analyzed. Results
showed that feature-matched gene sets (mRand) had overall higher CECs than
random gene sets (Rand) under all three matched conditions (@@@ in Fig. 3B),
suggesting that genes with similar features tend to co-express with each other. The
CEC of hcASD-hcASD (dashed line in Fig. 3B) was beyond the 3 times interquartile
range \([Q3 + 3 \times (Q3 - Q1), 3x upper fence]\) of the CECs of mRand-mRand,
Rand-Rand, hcASD-mRand, and hcASD-Rand gene sets. Results of Grubbs’ test
confirmed this tendency (** in Fig. 3B). These results suggest that hcASDs have a
significantly greater co-expression tendency with each other than with other
feature-matched non-hcASD genes or randomly selected genes. To corroborate this
finding, a permutation test was conducted with 100,000 permuted sets of genes with
matched or non-matched features. The CEC of hcASD-hcASD was again found to be
significantly larger (permutation \(P\)-value < 0.00001) than that of hcASD-mRand,
mRand-mRand, hcASD-Rand, or Rand-Rand (### in Fig. 3B), indicating a significant
co-expression tendency of hcASDs.

Significant co-expression of hcASDs was also observed in transcriptomes of
brain tissues from both early (8PCW – 2Y) and late (4Y – 40Y) stages (Fig. S5A, B),
both sex (Fig. S5C, D), and different brain regions (Fig. S6A-C). These results
indicate a highly conserved co-expression profile of hcASDs. Combined ranking of -log10 P-values of Grubbs’ test under all three different matched conditions was then performed to determine the relative significance level of co-expression of hcASDs with each other in different brain regions (Fig. S6D). The top four brain regions with the highest significance levels were cerebellum (CB), striatum (STR), orbital frontal cortex (OFC), and dorsal frontal cortex (DFC); these are the brain regions previously implicated in ASD [25-32]. These results suggest that hcASDs play important roles in the development and function of these ASD-relevant brain regions.

ASD-associated genes and pathways identified by MGCA

Genes whose CECs with hcASDs were significantly higher than with permuted gene sets composed of feature-matched genes under each of the three matched conditions were considered significantly co-expressed with hcASDs (estimated FDR of each gene below 1.25×10^{-4}). These genes were named TriM (triple-matched) genes (Figs. 1, 4A; Table S3). TriM genes were then compared with a gene set containing 514 non-redundant genes from nine different sets of previously reported ASD-associated genes (cASD, see methods) and with a set of “True negative” ASD-associated genes, which were genes associated with non-mental health diseases but not with ASD [12]. When the permutation P-value was either below 0.0001 or below 0.00001, the TriM gene set showed a significant enrichment of cASD genes ($P = 0.0027$ and $P < 0.0001$, respectively; chi-square test, Fig. 4B). This result suggests that at a permutation
\(P \)-value below 0.0001, TriM genes have a high rate of positive prediction of being ASD-associated genes. When the permutation \(P \)-value was below 0.00001, TriM genes exhibited a significant negative enrichment of “True negative” genes \((P = 0.0068; \text{chi-square test, Fig. 4B}) \), suggesting a significantly low false-positive rate in the prediction of ASD-associated genes.

Altogether, MGCA revealed 2370 TriM genes with a permutation \(P \)-value < 0.0001. These genes (TriM-2370) were compared with an equal number (2370) of genes that had the highest CECs with the hcASD gene set (referred to as Top-2370 gene set, Table S3). TriM-2370 and Top-2370 gene sets had 1414 genes in common (overlapped), and each had 956 non-overlapped genes. These two non-overlapped gene sets were named TriM-only and Top-only, respectively (Fig. 4C; Table S3).

Most Top-only genes had a medium mRNA abundance level, a large gene size, and a high CEC value \((> 0.46)\), whereas TriM-only genes had a broad range of mRNA abundance, gene size, and CEC values (Fig. 4C). Gene ontology (GO) enrichment analysis of the TriM-2370 gene set showed significant over-representation of genes in molecular pathways closely related to ASD, including gene transcription regulation, homophilic cell adhesion, axon guidance and axon extension, synapse assembly, Wnt signaling pathway, neuron migration, covalent chromatin modification, and protein polyubiquitination. Fewer pathways relevant to ASD were revealed in the Top-2370 gene set by GO analysis, including covalent chromatin modification, transcription regulation, protein polyubiquitination, Wnt signaling pathway, and negative
regulation of autophagy (Fig. 4D; Table S4). To investigate the functional relationship between cASD and TriM-2370 or Top-2370 gene sets, the enriched molecular pathways of cASD, TriM-only, Top-only, and overlapped gene sets were subject to pathway enrichment analysis \(^{[33]}\) (Fig. S7). Results showed that TriM-only and Top-only gene sets converged in different but complementary molecular pathways. The molecular pathways of the cASD gene set were found to cluster closer to those of the TriM-only set than to those of the Top-only set, suggesting that TriM-only genes have a closer functional relationship with cASD genes than with Top-only genes. Some well-established ASD risk genes, such as \textit{FOXP1}, \textit{TBRI}, \textit{SHANK2}, \textit{SYNGAP1}, and \textit{PCDH9}, were found in the TriM-only gene set, suggesting a better performance of MGCA than conventional GCA in revealing ASD-relevant molecular pathways.

The effectiveness of MGCA in predicting ASD-relevant genes was compared with that of GCA and two other risk gene prediction algorithms. One was DAWN (Detecting Association With Networks), which has been used to analyze the association between rare genetic variations and gene co-expression in the mid-fetal prefrontal and somatosensory cortex \(^{[34]}\). The other algorithm was EWML (Evidence-Weighted Machine Learning) that has been used to predict the probability of ASD association with whole-genome genes based on data of gene co-expression, genetic mutations, and protein-protein interaction \(^{[12]}\). The combined ASD risk gene set (cASD) and the “true negative” gene set were used to conduct the
cross-comparison between different algorithms. At a permutation P-value of 0.0001 or
0.00001, TriM genes had higher enrichment of cASD genes than an equal number of
genes with highest CEC values (Top), an equal number of top-ranked ASD-linked
genes predicted by EWML, and network ASD genes (nASD) identified by DAWN
(Fig. 4E). Furthermore, fewer TriM genes overlapped with “True negative” genes
than genes predicted by DAWN and EWML, which had significant enrichment of
“true negative” genes (Fig. 4E), suggesting a lower rate of false-positive prediction by
MGCA than that by EWML and DAWN (Fig. 4E). Thus, MGCA performs better
than GCA by a higher positive prediction rate and performs better than the EWML
and DAWN algorithms by both a higher positive prediction rate and a lower prediction
error.

Co-expression of cadherin genes with hcASDs

Consistent with previous findings [8], we found that homophilic cell adhesion is the
most significantly over-represented pathway of TriM-2370 genes (Fig. 4D; Table S4).
Some cadherin family members in the TriM-2370 gene set, such as PCDH19, are
known to be high-risk ASD genes (Table S6) that play important roles in brain circuit
development [35, 36]. Several cadherin family members were also found in the
TriM-2370 gene set, including many members of the protocadherins β gene cluster
and Dachsous Cadherin-related 1 ($DCHS1$), suggesting that these genes also
participate in the development and function of ASD-relevant brain circuits. Some
cadherin genes were not significantly co-expressed with hcASDs under any of the matched conditions; these genes were referred to as tri-negative genes (TriN; **Table S6**). Several recent genetic studies have implicated two type II cadherins, *CDH11* and *CDH9*, in ASD and other psychiatric diseases [37-41]. The CEC values of *CDH11* and *CDH9* with hcASDs were ranked at 5244 and 9581, respectively, in whole-genome genes. Therefore, neither of them belonged top-ranked genes based on traditional GCA. Using MGCA, we found that *CDH11* and *CDH9* belonged to TriM and TriN gene sets, respectively. We thus hypothesized that *CDH11*, but not *CDH9*, is more likely to be associated with ASD.

Autism-like traits of Cdh11-null mice

To assess the functional relevance of *CDH11* and *CDH9* to ASD, the behaviors of *Cdh11*- and *Cdh9*-null mice were investigated. In the open field test (OFT), both male and female *Cdh11*-null mice spent a longer time exploring the central area of the open field arena than wild type (WT) littermates (**Fig. 5A, D**). Heterozygous littermates showed a similar but less significant pattern. Total locomotion distance and average moving speed of *Cdh11*-null mice were slightly reduced compared to WT littermates (**Fig. 5B, C**). Both male and female *Cdh9*-null mice were largely normal in the OFT (**Fig. 5E-G**).

In the elevated plus maze test, female *Cdh11*-null mice visited the open arm more frequently and spent a significantly longer time there. Heterozygous females
spent a slightly but not statistically significantly more time in the open arm (Fig. 5H, I). The increased time and frequency of open arm exploration by female Cdh11-null mice is consistent with the results of a previous study using the same mouse line of mixed sex [42]. Male Cdh9-null mice showed longer exploration of the open arm, but female Cdh9-null mice did not, although female heterozygotes showed an increased frequency of open arm entry (Fig. 5J, K).

Individuals with ASD often have a weaker grip strength than age-matched controls [43]. The gripping strength test and the horizontal bar test showed that both male and female Cdh11-null mice exhibited significantly shorter hanging duration than WT littermates (Fig. 6A, B), indicating reduced gripping strength or impaired motor coordination. The gripping strength of Cdh9-null mice was normal (Fig. 6C).

The rotarod test was conducted to evaluate motor-related functions of null mice. Since female and male mutant mice displayed similar behaviors in most of the above behavioral tests, only female mice were analyzed in this test. Compared to WT littermates, Cdh11-null mice, but not Cdh9-null mice, stayed longer on the rotarod and endured a higher rotation speed in the initial trial (Fig. 6D-G). In subsequent trials, Cdh11-null mice did not display significant performance improvement (Fig. 6D, E), indicating impaired motor learning. The enhanced performance of Cdh11-null mice in the initial trial was very similar to the phenotype of several other well-characterized ASD mouse models and suggested increased repetitive motion of these mutant mice [44].
Repetitive behaviors were then evaluated by measuring the duration and frequency of self-grooming within 10 minutes, during which mice were placed in a novel or a relatively familiar environment. As shown in Fig. 6H-I, during the first 10 minutes of exploring a novel chamber, Cdh11-null mice exhibited a significantly greater frequency of self-grooming than WT littermates, indicating elevated repetitive behavior in a novel environment. Cdh11-null mice also showed a significantly higher frequency of self-grooming than WT littermates during the second 10-minute period (Fig. 6J, K), indicating elevated repetitive behavior even in a relatively familiar environment. No such behavioral alteration was observed in Cdh9-null mice (Fig. 6L, M).

The modified three-chamber social preference test was conducted to evaluate the sociability of mutant mice. One main modification was an enlargement of the area for housing social partner mice to reduce their potential stress and anxiety. Another major modification to the protocol was using three mice instead of a single mouse as social partners. This was done to increase the availability of social cues and reduce the variability of test results caused by differences in the sociability of individual social partners (Fig. 7A). In addition, the two side chambers were covered on the top to slow the diffusion and mixing of odorant cues. Results showed that female Cdh11-null mice exhibited a significant preference to social partner mice than to an object and a significant preference to novel partners than to familiar ones (Fig. 7B, C). However, compared to WT littermates, mutant mice spent a significantly longer time in the
middle chamber but significantly shorter time interacting with partner mice (Fig. 7B, C), indicating reduced sociability. In contrast, Cdh9-null mice did not show any abnormality in this test (Fig. 7D, E).

Discussion

Gene co-expression analysis (GCA) is a powerful tool to find functionally convergent genes. Several previous GCA studies had considered the potential effect of gene size and GC content on the co-expression of ASD risk genes [7]. In the present study, we discovered that three gene features, including mRNA abundance, gDNA size, and GC content, affected the genome-wide gene co-expression profiles in the brain. Although the mechanisms by which different gene features affect gene co-expression are unknown, our findings suggest the importance of considering the effect of these gene features in gene co-expression analysis (GCA). As an example of the potential influence of confounding gene features on GCA, genes that are stably expressed in the brain may have high CCs with each other. These aleatory high CCs of high-abundance genes do not mean a real co-expression relationship of genes of common molecular pathways. One possible influence of gene size on GCA is that large-size genes may have long noncoding regions that could be potential regulatory elements. Thus, compared to small genes, large genes may have more shared regulatory elements, which means a higher chance of being co-regulated by common transcription factors. Considering that most hcASD genes are large-size genes, they
may have a higher tendency of co-expression with large genes. Genes with high GC
content have higher mRNA stability and thus have higher chances of co-existence
with each other. However, since most hcASD genes have low to medium GC content
(Fig 2B), it may explain an overall negative correlation between the GC content of
genes and their co-expression with hcASDs.

Almost all previous studies ignored these important confounding factors and just
selected high-CC gene pairs to construct the gene co-expression network. Without
correcting the effect of this confounding factor, the effectiveness of GCA would be
compromised. Instead of setting a CC threshold for GCA as in most other studies, we
screened for significant co-expression relationships by comparing the co-expression
coefficient (CEC) of a gene with the hcASD gene set to that with permuted gene sets
of matched gene features. Only genes that had a CEC with the hcASD gene set
significantly higher than its CECs with permuted sets of feature-matched genes were
considered being co-expressed with hcASDs. This matched-gene co-expression
analysis (MGCA) paradigm (Fig. 1) allowed the demonstration of significant
co-expression of hcASDs and avoided the potential bias caused by an empirically
determined threshold for CC of gene pairs in GCA. Our results revealed that MGCA
is more efficient in predicting gene association than the pre-existing methods DAWN,
an algorism integrating genetic variants and gene co-expression data, and EWML, a
sophisticated machine learning algorithm with the integration of gene co-expression,
gene mutation database, and PPI network. We believe that the high performance of
MGCA could be attributed to the correction of three confounding gene features in the
determination of functionally relevant gene co-expression. Although correlations of
these confounding gene features with the co-expression with hcASDs have been
considered [7], the potential interference of these gene features on the construction of
gene co-expression networks was not considered in previous studies. Therefore,
MGCA will be an important complement to current gene association prediction
algorithms (Fig. 1). As MGCA is based solely on the gene co-expression data, future
algorithms combining MGCA with genetic mutation data and machine learning will
further improve its efficacy.

An important finding in this study is the plausible association of CDH11 with
ASD determined by MGCA. Cadherins have been shown to accumulate in synaptic
junctions and regulate dendrite development and synapse maturation [45-48]. Several
cadherin family members, such as some protocadherins in the FAT cadherin
subfamily, have been implicated in ASD [49-58]. A genetic association study of a large
cohort of ASD individuals and matched controls revealed genes in the protocadherin
α gene cluster (PCDHA) as ASD risk genes [51]. Mutations in the PCDH19 gene have
been shown to cause early-onset epilepsy, and many individuals with these mutations
also display autistic features [52-54]. Mutations in the cadherin EGF LAG seven-pass
G-type receptor 2 gene (CELSR2) were speculated to be responsible for the Joubert
syndrome, a disease with a high degree of autistic features [59, 60]. It is uncertain
whether other cadherins are also high-risk factors. Using MGCA, we found that a
group of cadherin superfamily members exhibited a high co-expression with hcASDs, suggesting shared functions with hcASDs and a role in ASD etiology. Among them, several protocadherins, mainly PCDHBs, exhibited significant co-expression with hcASDs (Table S6). The functions of these putative ASD-associated cadherins in the brain remain to be determined. One of such cadherins identified by MGCA is CDH11.

In this study, we found that Cdh11-null mice had significantly increased repetitive behaviors. The brain regions, including the neocortex, CB, and STR, are known to be involved in the control of repetitive behaviors \[^{[61]}\]. It is likely that cadherins, Cdh11 in particular, play important roles in mediating synapse formation during the wiring of circuits in these brain areas. Consistent with this postulation, our recent work showed Cdh11 expression in ASD-associated sub-regions in the CB of developing mouse brain \[^{[62]}\].

In human studies, partial deletion of CDH11 was observed in a sporadic case of non-syndromic ASD, mild intellectual disability, and attention deficit hyperactivity disorder (ADHD) \[^{[37]}\]. A case-control association study revealed a high prevalence of a homozygous single nucleotide variant rs7187376C/C of CDH11 in patients with ASD \[^{[37]}\]. Several other coding variants of CDH11 were also discovered in ASD individuals \[^{[37]}\]. Behavioral changes that we have observed in Cdh11-null mice, including reduced anxiety, increased repetitive behavior, and reduced sociability, are highly consistent with the non-syndromic ASD case with partial deletion of CDH11 \[^{[37]}\]. This observation supports the notion that loss-of-function of a single gene, such as
CDH11, is sufficient to cause major autism traits. Recessive mutations have been implicated in ASD, and biallelic disruption of recessive neurodevelopmental genes in ASD has been reported [62]. We found that homozygous Cdh11-null mice, but not heterozygous Cdhl1-null mice, displayed autism-like behavioral deficits. This suggests that CDH11 may be a recessive gene of ASD. However, clinical data from more families with CDH11 mutations are needed to determine whether it is true in the future. Behavioral phenotypes of ASD are highly heterogeneous. Some individuals with ASD are hypoactive with elevated anxiety, and some have attention deficit hyperactivity disorder (ADHD) but with reduced anxiety [64-67]. The genetic and neurobiological mechanisms underlying this behavioral heterogeneity have not been fully determined. Further investigation with a larger cohort of patient families is needed to determine whether loss-of-function mutations of CDH11 are associated with ADHD.

Most genetic variants found in patients with ASD are heterozygous. In some behavioral tests, heterozygous Cdhl1-null mice showed a similar trend of behavioral alterations as homozygous null mice, but not at a statistically significant level (Figs. 6J, K; 7C). As ASD has a complex genetic basis and is affected by environmental factors, it is conceivable that the haplodeficiency of a single risk gene causes a relatively mild behavioral phenotype in mice. More severe behavioral deficits may result if the haplodeficiency of Cdhl1 is combined with other genetic or environmental factors. Our findings suggest that CDH11 is significantly co-expressed
with hCASDs and that its mutations may exert a causal effect in autism traits.

Cdh11-null mice would be very useful in dissecting the circuit mechanisms underlying a subgroup of ASD and in screening drugs targeting this subgroup of ASD.

CDH9 plays a vital role in establishing specific synaptic wiring in both the hippocampus and the retina [22, 68]. Its association with ASD has been suggested by several studies on exome sequencing [49, 69]. The primary evidence linking **CDH9** to ASD is the strong association of the single nucleotide polymorphism rs4307059 located in the intergenic region between **CDH10** and **CDH9** with ASD [70]. However, this rs4307059 genotype was not correlated with the expression of either **CDH9** or **CDH10** in adult brains [70, 71], and whether a correlation exists in fetal brains is unknown. Recently, an antisense noncoding RNA of the moesin pseudogene 1 (MSNP1AS) was shown to be transcribed from the locus harboring rs4307059. Alterations in this pseudogene were postulated to contribute to ASD [71-73]. Whether **CDH9** deficiency is a causal factor for ASD remains undetermined. Our MGCA showed that, unlike **CDH11**, **CDH9** was not co-expressed with hCASDs. This is an indication that **CDH9** may not play an essential role in the wiring of ASD-relevant circuits. Consistent with this notion, behavioral tests showed that _Cdh9-null_ mice exhibited a very mild behavioral abnormality only in the elevated plus maze test but not in any other tests. With recent findings by other researchers [74], our results suggest that **CDH9** deficiency may not have a significant effect on autism traits.
In conclusion, this study revealed the importance of considering matched gene features in the analysis of gene co-expression and demonstrated the effectiveness of MGCA in the identification of putative ASD-associated genes and their convergent signaling pathways. The application of MGCA led to the determination of CDH11 as a putative ASD-associated gene. Our results also showed that Cdh11-null mice could be used to study circuit mechanisms of a subgroup of ASD and explore therapeutic strategies for ASD.

Acknowledgments: We thank Elizabeth Benevides for editing the manuscript. This work was funded by the National Science Foundation of China (NSFC-31871501, NSFC-ISF-32061143016) and Hussman Foundation (HIAS15006). X.Y. was supported by the Simons Foundation (296143).

Authors' contributions: N.W., Y.W., and Y.P. analyzed data and generated figures. J.J and X.Y. conducted behavioral tests. Y.P. and X.Y. designed the study and wrote the manuscript.

Conflict of interest: The authors declare that they have no competing financial interests.

References

[38] Gasso P, Ortiz AE, Mas S, Morer A, Calvo A, Bargallo N, et al. Association between genetic variants related to glutamatergic, dopaminergic and...

Legends:

Figure Legends:

Figure 1. Flowchart of the matched gene co-expression analysis (MGCA).

Whole-genome genes were ranked by gene features, creating various gene lists ①. For each gene in the hcASD gene set (hcASD-1, hcASD-2, ... to hcASD-101), a feature-matched gene was randomly selected from the range of 50 genes above and 50 genes below (±50 range) this gene in the ranked gene lists ② to generate a matched random gene set (mRand) ③. For each gene in the whole genome, its co-expression coefficient (CEC) with each of the mRand gene set (CEC_i) was computed ④, and 100,000 permutations were conducted (i=1,2,…100000). Each CEC_i was compared to
the CEC of the same gene with the hcASD gene set (CEC_{hcASD}). Count the number of permutations with CEC_i < CEC_{hcASD} (n started from 0 for each gene evaluated, n+1 if CEC_i < CEC_{hcASD}) \textcircled{⑤}. At the end of 100000 permutations, genes with n > 99990, which corresponded to a permutation P-value < 0.0001, were considered significantly co-expressed with hcASDs under a feature-matched condition \textcircled{⑥}. Genes significantly co-expressed with hcASDs under all three feature-matched conditions were defined as Triple-matched genes (TriM) \textcircled{⑦}.

Figure 2. Effect of gene features on genome-wide gene co-expression profiles. A total of 12,250 genes with information on all 3 gene features were identified, placed in Table S1 as gene lists, and used for analyses. A: Heatmaps of correlation coefficients (CCs) of genome-wide gene pairs. Genes were ranked according to mRNA abundance, gDNA size, or GC content. The correlation coefficient (CC) of each gene with all genes was plotted and displayed in pseudo-color-coded matrices. B: Genome-wide distribution of co-expression coefficients (CECs) of each gene with the hcASD gene set under three different gene ranking conditions. In each of the 3 matrix panels, the 12,250 genes were placed in ascending order on the x-axis, with 1 being the lowest mRNA abundance and GC content or shortest in gDNA size and 12,250 being the highest in mRNA abundance and GC content or the longest in gDNA size. Each blue dot represents the CEC of a gene with the hcASD gene set. Purple, yellow, green, and red dots represent noise-reduced (average) CEC of a gene with its neighboring 20 (10
above and 10 below; ± 10), 50 (± 25), 100 (± 50), or 200 (± 100) genes on the gene lists, respectively. Rods at the bottom of each panel show locations of hcASD genes on the ranked gene lists. C: Genome-wide distribution of CECs of each gene with the hcASD gene set when genes are placed in stochastic (random) orders.

Figure 3. Convergent expression of hcASD genes determined by MGCA. A: Comparison of noise-reduced CEC distribution curves between the hcASD gene set and 200 matched random gene sets (mRand) under different gene ranking conditions. The X-axis represents gene ranks. B: CECs of hcASD-hcASD, hcASD-mRand, mRand-mRand, hcASD-Rand, and Rand-Rand gene set pairs. 200 each of mRand and Rand gene sets were analyzed. Box plots show ranges of CECs of hcASD-mRand, mRand-mRand, hcASD-Rand, and Rand-Rand gene set pairs. In each box plot, the central rectangles span the first quartile to the third quartile of 200 ranked CEC values. The white bar inside the rectangle shows the median CEC value, and whiskers above and below the box show the maximum and minimum values, respectively. The dotted line represents the CEC among hcASDs (hcASD-hcASD) in each panel. Three statistical methods were used to determine whether the CEC of hcASD-hcASD is significantly higher than that of hcASD-mRand, mRand-mRand, hcASD-Rand, and Rand-Rand. Upper fences test: red triangles stand for the boundaries of significant difference (3 x fence). Grubbs’ test: ***$P < 0.001$. Permutation test: ### $P < 0.001$. The student’s t-test was used to determine whether the CECs of hcASD-mRand and
mRand-mRand are significantly greater than those of hcASD-Rand and Rand-Rand, respectively. @ $P < 0.05$; @@ $P < 0.001$.

Figure 4. Evaluation of TriM genes identified by MGCA. **A:** Schematic of the TriM gene identification. TriM genes were significantly co-expressed with hcASDs under all three matched conditions determined by MGCA. **B:** Enrichment of ASD-associated genes and negative genes in TriM gene sets at different ranges of P-values. Fold enrichment (\log_2) of cASD (left) and “True negative” (right) genes in different groups of TriM genes are shown. **$P < 0.01$, *** $P < 0.001$, chi-square test. **C:** Three-dimensional distribution of TriM genes ($P < 0.0001$) and an equal number (2370) of genes with highest CEC with hcASDs (Top). The three axes are CEC value, gDNA size (bp), and mRNA abundance (RPKM). Each dot in the graph represents a gene. The TriM-specific genes, Top-specific genes, and overlapped genes are shown in purple, blue, and black. **D:** Gene Ontology (GO) analysis of TriM ($P < 0.0001$) and Top (2370) genes. Significantly enriched GO terms are shown ($P < 0.05$, Benjamini-Hochberg correction). **E:** Comparison of the enrichment of cASD genes and “True negative” genes in TriM, Top, EWML-identified genes, and DAWN-identified genes. *** $P < 0.001$, chi-square test.

Figure 5. Open field and elevated plus maze tests of Cdh11- and Cdh9-null mice. **A:** Heatmaps showing cumulated frequency of locations visited by Cdh11-null mice,
heterozygote (Het), and WT mice in the open field arena. B, C, and D: Moving
distance, moving speed, and center exploration time of Cdh11-null mice. E, F, and G:
Moving distance, moving speed, and center exploration time of Cdh9-null mice. (male
Cdh11-null: n=21, Het: n=22, WT: n=14; female Cdh11-null: n=21, Het: n=22, WT:
n=21; male Cdh9-null: n=14, Het: n=15, WT: n=12; female Cdh9-null: n=8, Het:
n=15, WT: n=12). J and K: Time spent in open arm and open arm entry frequency of
Cdh11-null mice. H and I: Time spent in open arm and open arm entry frequency of
Cdh9-null mice (male Cdh11-null: n=14, Het: n=14, WT: n=8; female Cdh11-null:
n=15, Het n=14, WT n=12; male Cdh9-null: n=13, Het: n=15, WT: n=10; female
Cdh9-null: n=9, Het: n=9, WT: n=10). Data are mean ± SEM. Statistical difference
was determined by Student t-test (*P < 0.05) and by one-way ANOVA followed by
Dunnett’s t-test (*P < 0.05, **P < 0.01).

Figure 6. Gripping strength and repetitive behaviors of Cdh11- and Cdh9-null mice.
A and B: Results of gripping test and horizontal bar test for Cdh11-null mice (male
Cdh11-null: n=21, Het: n=23, WT: n=14; female Cdh11-null: n=12, Het: n=14, WT:
n=12). C: Results of gripping test for Cdh9-null mice (male Cdh9-null: n=11, Het:
n=11, WT: n=7, female Cdh9-null: n=5, Het: n=5, WT mice n=4). D-G: Latency to
fall (D, F) and maximum durable speed (E, G) in rotarod test for female Cdh11- and
Cdh9-null mice (Cdh11-null: n=14, Het: n=14, WT: n=17; Cdh9-null: n=10, Het:
n=12; WT: n=9). Numbers below the X-axis (1-5) represent different trials of tests.
H-K: Frequency and duration of self-grooming of female Cdh11-null mice during the first (stage 1, H, I) and the second (stage 2, J, K) 10 min in the open field arena (Cdh11-null: n=8, Het: n=7, WT n=7). L and M, Frequency and duration of self-grooming of female Cdh9-null mice during the first (stage 1) and second (stage 2) 10 min in the open field arena (Cdh9-null: n=11, Het: n=17, WT: n=14). Data are mean ± SEM. Statistical difference was determined by Student t-test (’P < 0.05) and by one-way ANOVA followed by Dunnett’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001, compared to first trial. # P < 0.05, ## P < 0.01, compared to mice of the WT littermates).

Figure 7. Modified three-chamber test of female Cdh11- and Cdh9-null mice. a: Schematics of standard and modified three-chamber tests. b and c: Results of sociability and social novelty preference tests of Cdh11-null mice (Cdh11-null: n=9, Het: n=8; WT: n=9). d and e: Results of sociability and novelty preference tests of Cdh9-null mice (Cdh9-null: n=13, Het: n=5, WT: n=10). Data are Mean ± SEM. Statistical difference was determined by Student t-test (’P < 0.05) and by one-way ANOVA followed by Dunnett’s t-test (*P < 0.05, **P < 0.01, ***P < 0.001, compared to the duration spent in the other side chamber. #P < 0.05, compared to WT littermates).

Supplementary Information
Supplemental_Fig. S1

Distribution of hcASDs in gene rank matrices. Genes in the whole genome were ranked by gDNA size, GC content (horizontal axis), and mRNA abundance level (vertical axis) and plotted in matrices. Each blue dot represents a single gene, and each red dot represents an hcASD gene. Values of both horizontal and vertical axes are ranks (orders) of the 12,250 genes under 3 different gene ranking conditions.

Supplemental_Fig. S2

Fitting (regression) of CEC distribution curves under three different gene ranking conditions.

Supplemental_Fig. S3

CEC distribution curves for different developmental stages, sex, and brain regions.

Supplemental_Fig. S4

Genome-wide distribution of CECs of each gene with the hcASD (64) gene set under three different gene ranking conditions.

Supplemental_Fig. S5
Co-expression of hcASDs in the brain of different developmental stages and sex. A and B show data from early (8PCW - 2Y) and late (3Y - 40Y) developmental stages, respectively. C and D show data from male and female brain tissues, respectively.

Supplemental_Fig. S6

Co-expression of hcASDs in different brain regions. A-C: Box plots show the range of CECs of hcASD-mRand in different brain regions. D: Significant scores of co-expression of hcASDs in different brain regions. Score = N - R. N: number of brain regions. R: integrated ranking (average of 3 conditions) of -Log(P-value) in Grubbs’ test under four different gene ranking conditions.

Supplemental_Fig. S7

Clustering analysis of –Log(P) values in GO analysis of TriM-only, Top-only, Overlapped, and combined ASD gene sets (cASDs). –Log(P) values (0 - 20) are color-coded and shown in the heatmap.

Supplemental_Table_S1

List of total genes and hcASDs included in this study.

Supplemental_Table_S2

Parameters of fitted curves (regression curves) in supplemental_Fig_S2.
Supplemental_Table_S3

P-value and FDR of each gene under different gene ranking conditions and lists of TriM, Top, TriM-only, Top-only, and Overlap genes.

Supplemental_Table_S4

GO entries of TriM ($P < 0.0001$) and Top (2370) genes.

Supplemental_Table_S5

Lists of cASDs, True negative genes, EWML genes, and DAWN genes.

Supplemental_Table_S6

List of TriM- and TriN-cadherins
Fig. 1 Flowchart of the matched gene co-expression analysis (MGCA).

1. Ranking of whole-genome genes

2. hcASD-1, hcASD-2, hcASD-101, ...

3. mRand(i, j) for i = 1, 2, ..., 100000 and j = 1, 2, ..., 101

4. CEC_i
 \[i = 1, 2, \ldots, 100000 \]

5. If CEC_{hcASD} > CEC_i

6. Significant genes (Single feature matched)

7. TriM
 - DNA-Size Matched
 - GC-Content Matched
 - BRASS Abundance Matched

When i = 100000
- If n > 99990 (P-Value < 0.0001)

n + 1

When n > 99990 (P-Value < 0.0001)
Fig. 2 Effect of gene features on genome-wide gene co-expression profiles.

A

B

C

Raw Average (±10) Average (±25) Average (±50) Average (±100)

CC-BY-NC-ND 4.0 International license available under a CC-BY-NC-ND 4.0 International license.
Fig. 3. Convergent expression of hcASD genes determined by MGCA.
Fig. 4 Evaluation of TriM genes identified by MGCA.

- Regulation of transcription, DNA-templated
- Homophilic cell adhesion via plasma membrane adhesion molecules
- Axon guidance
- Positive regulation of synapse assembly
- Positive regulation of axon extension
- Wnt signaling pathway
- Neuron migration
- Negative chemotaxis
- Covalent chromatin modification
- Protein polyubiquitination
- Covalent chromatin modification
- Protein polyubiquitination
- Viral process
- mRNA export from nucleus
- Regulation of transcription from RNA polymerase II promoter
- Wnt signaling pathway
- Cellular response to DNA damage stimulus
- Intracellular transport of virus
- Vesicle-mediated transport
- Phosphatidylinositol biosynthetic process
- Negative regulation of autophagy
- mRNA splicing, via spliceosome
- Regulation of cell morphogenesis
- Cellular response to nerve growth factor stimulus
- Peptidyl-serine phosphorylation
- Regulation of signal transduction by p53 class mediator
Fig. 5: Open field and elevated plus maze tests of Cdh11- and Cdh9-null mice.

A. WT

B. Open field (Cdh11)

C. Open field (Cdh11)

D. Open field (Cdh11)

E. Open field (Cdh9)

F. Open field (Cdh9)

G. Open field (Cdh9)

H. Elevated plus maze (Cdh11)

I. Elevated plus maze (Cdh11)

J. Elevated plus maze (Cdh9)

K. Elevated plus maze (Cdh9)

Moving distance (cm)
Moving speed (cm/s)
Center time (s)
Time in open arms (s)
Frequency into open arms

* P = 0.107
** P = 0.052
*** P = 0.053

Elevated plus maze (Cdh9)

P = 0.097
P = 0.085

P = 0.052
P = 0.053
P = 0.053

P = 0.038
P = 0.039
P = 0.043

WT
Het
Null
Fig. 6. Gripping strength and repetitive behaviors of Cdh11- and Cdh9-null mice.

A) Gripping test (Cdh11)
B) Horizontal bar test (Cdh11)
C) Gripping test (Cdh9)
D) Rotarod (Cdh11)
E) Rotarod (Cdh11)
F) Rotarod (Cdh9)
G) Rotarod (Cdh9)
H) Grooming stage 1 (Cdh11)
I) Grooming stage 1 (Cdh11)
J) Grooming stage 2 (Cdh11)
K) Grooming stage 2 (Cdh11)
L) Grooming stage 1 (Cdh9)
M) Grooming stage 1 (Cdh9)
Fig. 7 Modified three-chamber test of female Cdh11- and Cdh9-null mice.

A) Three-chamber test (Standard) and (Modified).

B, C) Sociability (Cdh11) and Social Novelty (Cdh11) with interaction time (s) for Object, Middle, Partner, Familiar, and Novel.

D, E) Sociability (Cdh9) and Social Novelty (Cdh9) with interaction time (s) for Object, Middle, Partner, Familiar, and Novel.