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Abstract:
In this paper, we analyze the dynamical behavior of the tumor suppressor protein p53, an
essential player in the cellular stress response, which prevents a cell from dividing if severe
DNA damage is present. When this response system is malfunctioning, e.g. due to mutations in
p53, uncontrolled cell proliferation may lead to the development of cancer. Understanding the
behavior of p53 is thus crucial to prevent its failing. It has been shown in various experiments
that periodicity of the p53 signal is one of the main descriptors of its dynamics, and that its
pulsing behavior (regular vs. spontaneous) indicates the level and type of cellular stress. In the
present work, we introduce an algorithm to score the local periodicity of a given time series
(such as the p53 signal), which we call Detrended Autocorrelation Periodicity Scoring (DAPS).
It applies pitch detection (via autocorrelation) on sliding windows of the entire time series to
describe the overall periodicity by a distribution of localized pitch scores. We apply DAPS to
the p53 time series obtained from single cell experiments and establish a correlation between the
periodicity scoring of a cell’s p53 signal and the number of cell division events. In particular,
we show that high periodicity scoring of p53 is correlated to a low number of cell divisions
and vice versa. We show similar results with a more computationally intensive state-of-the-
art periodicity scoring algorithm based on topology known as Sw1PerS. This correlation has
two major implications: It demonstrates that periodicity scoring of the p53 signal is a good
descriptor for cellular stress, and it connects the high variability of p53 periodicity observed in
cell populations to the variability in the number of cell division events.
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1. INTRODUCTION

The tumor suppressor p53 is one of the most studied pro-
teins due to its importance in preventing cancer, see e.g.
Lahav (2009); Levine (1997, 2020); Vogelstein et al. (2000)
for an overview. p53 is activated by cellular stress, such
as DNA damage. As a consequence, the stress response
pathway is initiated, leading to cellular outcomes such as
DNA repair, cell-cycle arrest, or apoptosis (cell death).
Malfunction of p53 can leave DNA damage undetected,
causing uncontrolled cell proliferation, and subsequently,
cancer.

It has been shown that in more than half of all human can-
cers the p53 gene is mutated, and that the associated pro-
tein is frequently inactive (Levine (1997); Jin and Levine
(2001)). In order to detect and prevent p53 malfunction,
it is thus important to understand its behavior under both
stressed and unstressed conditions.

Many studies have been devoted to the functionality and
behavior of p53, see Levine (2020) and references therein.
In this paper we are interested in one important aspect,
namely, p53’s long-term (5 day) dynamics in single cells.

It has been demonstrated in multiple experiments that p53
shows oscillatory behavior when exposed to stress such as
gamma radiation (for example, see Geva-Zatorsky et al.
(2006); Lahav et al. (2004); Reyes et al. (2018); Loewer
et al. (2013)), but the dynamics might vary across tissues
(Stewart-Ornstein and Lahav (2017)). The observed oscil-
lations were reported to be either damped or periodic in
cell populations, and they were found to be periodic only
in single cells. The observed damped oscillatory behavior
was therefore a result of averaging over many cells in a
population (Lahav et al. (2004); Lahav (2009)). Further-
more, single-cell experiments (e.g., Lahav et al. (2004);
Reyes et al. (2018)) show that the pulses of p53’s periodic
oscillations become more regular when the cell is exposed
to more radiation, which, as a result, increases the amount
of DNA damage.

The induction of p53 under an exterior stress (such as
radiation) is experimentally well-studied, and explained
via a negative feedback loop with Mdm2 (Geva-Zatorsky
et al. (2006); Lev Bar-Or et al. (2000); Ma et al. (2005)).
Under basal (i.e., unstressed) conditions, however, p53 was
believed to stay at a low level —an assumption again based
on averaging over cell populations (Lahav (2009); Loewer
et al. (2010); Michael and Oren (2003)). The single cell
experiments of Loewer et al. (2010) show that prolifer-
ating cells exhibit spontaneous pulses in p53, which are
connected to intrinsic cell damage during normal growth.
They further explain that a cell can distinguish between
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modest damage (e.g., due to growth) and sustained dam-
age (e.g., due to radiation). Cells with spontaneous pulsing
behavior in p53 do not activate the stress response path-
way. All of the discussed experiments and results show that
periodicity of the p53 signal is one of the main descriptors
of its dynamics, and that the pulsing behavior (e.g., regular
or spontaneous) further indicates the level and type of
cellular stress.

One of the main tools to analyze periodicity of time series
is the autocorrelation function (ACF). It provides infor-
mation about the internal structure of a time series signal
by measuring the correlation (similarity), if any, between
data points in the signal and their shifted counterparts, see
Box and Jenkins (1976). The ACF can provide some inter-
esting insights on time series, e.g., randomness, short-term
correlation, non-stationarity, and periodic fluctuations, cf.
Chatfield (2003). Different algorithms, based on the ACF,
have been proposed to detect periodic variations in time
series, e.g., Martin and Mailhes (2010) and Vlachos et al.
(2005). Regularity of periodicity is often analyzed with
pitch detection, through the autocorrelation function (see
Box and Jenkins (1976)), and used to analyze p53 signals
in e.g., Geva-Zatorsky et al. (2006). Via autocorrelation,
a value between 0 and 1 (called the pitch score) is as-
signed to a given time series, where the value 1 means
maximal periodicity. For example, the sine curve has a
pitch score equal to 1. In the present work, we propose
an algorithm, called Detrended Autocorrelation Periodicity
Scoring (DAPS), which is localized version of the pitch
detection algorithm, to analyze the dynamical behavior of
single cell p53 time series.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the main components of the proposed
algorithm for general time series analysis, and, in partic-
ular, for single-cell p53 time series. We start by briefly
introducing sliding window embeddings in Section 2.1.
Then, the ACF and the pitch score are defined in Sec-
tion 2.2, before describing the main steps of the proposed
localized version of the pitch detection algorithm DAPS in
Section 2.3. The latter applies pitch detection to shorter
sliding windows of a normalized version of the original time
series, resulting in a distribution of pitch scores, rather
than a single pitch score. To empirically validate DAPS,
we use the state-of-the-art periodicity scoring algorithm
Sw1Pers (Sliding Window 1-Persistence Scoring) of Perea
and Harer (2015), which is briefly described in Section 2.4.
We further introduce the AUROC (area under ROC curve)
in Section 2.5, which is used to statistically test our hy-
potheses.

Next in Section 3.1, we argue that the pitch score distribu-
tions produced by DAPS give a more refined description
of the overall periodic behavior of p53 signals. Indeed,
localization is particularly advantageous in cases where
the time series shows different periodicity behavior in the
course of a single experiment. Change of periodic behavior
is observed in long-term experiments (> 1 day), as the cell
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usually undergoes more than one cell cycle. In Section 3.2,
we study the long-term (5 days) basal behavior of p53
in single cells using DAPS. While Loewer et al. (2010)
describe the basal dynamics in single cells (traced over
1 − 2 days) by spontaneous pulsing (as opposed to reg-
ular pulsing), it is reported that, to their surprise, a fair
amount of unstressed cells do actually show regular pulsing
behavior similar to the one of irradiated cells. A similar
behavior of p53 in cells under basal conditions is observed
in the experiments of Reyes et al. (2018). We show a
correlation between p53 periodicity (computed via DAPS)
and the number of cell division events 1 . In particular,
we show that high periodicity scoring is correlated to low
number of cell divisions, and vice versa. This implies that
a cell population exhibiting variability in the number of
cell divisions will also have variable p53 periodicity across
the population.

The connection between number of cell divisions and p53
periodicity can also be rationalized from a biological point
of view: High periodicity scoring translates to p53 activity,
which stops cells from dividing, allowing time for DNA
repair and preventing the expansion of damaged cells.
Naturally, in the case of cell death, the cell stops dividing
as well. However, the number of cell deaths encountered
in the experimental data we analyze was negligible. Un-
der basal conditions, there is no targeted exterior stress
imposed on the cells (such as radiation), which would
explain high p53 activity. It is nevertheless possible that
cellular stress is present due to other (unknown) internal
or external sources leading to p53 activation.

2. LOCALIZED PERIODICITY SCORING

We now present details of the two tools we use to score
periodicity in time series. In the discussion below, we con-
sider a sequence of time-series data points x = {xi}Ni=1 ≡
{x(ti)}Ni=1 of length N . In our application, the time series
is sampled once every 30 minutes, and N = 240, for a total
of 5 days.

2.1 Sliding Window Embeddings

Before we introduce the tools, we first present a prepro-
cessing step common to both. The M -dimensional sliding
window embedding transforms a 1D time series into a
sequence of M -dimensional Euclidean vectors as follows

SWM [x]i =


xi
xi+1

...
xi+M−1

 ∈ RM . (1)

This transforms a time series into a point cloud. For
instance, periodic time series turn into sampled loops,
which we exploit in our analysis. More generally, the
sliding window embedding stems from a theoretical result
that allows one to reconstruct a state space of a dynamical
system from a single observable, cf. Takens (1981), and it
has been used in myriad applications, including analysis
1 In the experimental p53 data we analyze in this paper, after a cell
divides, one of its daughter cells is picked at random to continue with
the measurement of p53.

of vocal fold disorders (Herzel et al. (1994)), EEG analysis
(Stam (2005)), activity recognition (Frank et al. (2010);
Venkataraman and Turaga (2016)), and music information
retrieval (Bello (2011)).

2.2 Autocorrelation function

Let the mean value of a time series x be denoted by x̄. The
ACF for lag τ is defined as follows:

ACF(τ) =

N−τ∑
i=1

(xi − x̄)(xi+τ − x̄)

N∑
i=1

(xi − x̄)2

. (2)

We also define the pitch score as the highest local maxi-
mum of the corresponding ACF

pitch score = max
ACF(τ) 6=1

ACF(τ). (3)

The pitch score is a value between 0 and 1, where 1 means
maximal periodicity. The higher the pitch score, the more
regular the pulses are. For example, a pitch score of 1 is
assigned to a sine curve.

2.3 DAPS - Detrended Autocorrelation Periodicity Scoring

We now describe the algorithm we propose in this
study, called Detrended Autocorrelation Periodicity Scor-
ing (DAPS). The first step is a detrending and amplitude
normalization using the sliding window embedding, which
is performed as follows:

(1) Given the sliding window of length M of an N -length
time series x, arrange all of the sliding windows into
the columns of an M×(N−M+1) matrix X, so that
the ith column of X is SWM [x]i. We note that X is a
Hankel matrix; that is Xi,j = Xi+k,j−k for all integer
k so that 1 ≤ i+ k ≤M and 1 ≤ j − k ≤ N −M + 1

X =


x1 x2 x3 . . . xN−M+1

x2 x3 x4 . . . xN−M+2

x3 x4 x5 . . . xN−M+3

...
...

... . . .
...

xM xM+1 xM+2 . . . xN


In other words, the ith skew-diagonal of X is a
constant value equal to the ith value of the time series
xi. We will exploit this observation in step 4. In the
p53 application, we let M = 11, or 5.5 hours, which
is roughly the length of one period of p53, cf. Geva-
Zatorsky et al. (2006).

(2) Subtract off the mean of each column of X from that
column. This will normalize for linear drift in the time
series, and it is referred to as “point centering” by
Perea and Harer (2015).

(3) After point-centering, normalize each column to have
unit norm. This is meant to control for changes in
amplitude, and is referred to as “sphere normaliza-
tion” by Perea and Harer (2015). We now refer to
the point-centered/sphere-normalized sliding window

matrix as X̂.
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Fig. 1. The detrending steps of DAPS allow us to extract
periodic portions of a signal that is undergoing drift
and amplitude variations.

(4) At this stage, we deviate from Perea and Harer
(2015). While they directly analyze the transformed

point cloud represented by the matrix X̂ (Sec-
tion 2.4), we instead solve for a time series whose

sliding window is as close as possible to X̂, which
should look like a version of x that is detrended.
After the normalizations in steps 2 and 3, however,
X̂ is no longer a Hankel matrix, which is a necessary
condition for a sliding window matrix of a time series,
as observed in step 1. Hence, we project X̂ onto
the space of Hankel matrices (under the Frobenius
metric) by creating a new matrix Y , so that

Yi,j = meank(X̂i+k,j−k),

1 ≤ i+ k ≤M, 1 ≤ j − k ≤ N −M + 1

Expressed in simpler terms, Y is merely Hankel
matrix in which each element is the mean of its
corresponding skew-diagonal in X̂. We can now read-
off a time series from Y as the value of each successive
skew diagonal. We refer to this final, detrended time
series as y.

A simple example of the detrending is warranted at this
point. Consider the first 50 samples of the time series

xi = i ∗ (i+ (−1)i)

This is a linearly drifting and linearly amplitude mod-
ulated signal with oscillations hidden inside of it, and
Figure 1 shows the detrending steps applied to this signal
for a sliding window of size M = 5, which results in a
periodic signal without drift (up to edge effects).

Now that we have a detrended time series, we pull out
every 24 hour contiguous chunk of y (48 samples), which
we refer to as a “block” of y, and we compute a pitch
score (Equation 3) for that block, which completes the
DAPS algorithm. Based on the computed scores in each
window, we obtain a distribution that reflects the local
periodicity of the entire time series. A summary of the
DAPS algorithm is outlined in Figure 2.

Fig. 2. Schematic summary of the DAPS algorithm (Sec-
tion 2.3) applied to a p53 time series. A time series
is assigned a periodicity score distribution via the fol-
lowing steps: (i) Normalization (detrending) to have
zero mean and unit norm; (ii) Splitting of time series
into shorter intervals through a sliding window (in
the case of p53, a window of length 24 hours is used,
since this is the approximate length of a cell cycle);
(iii) Computation of the pitch score in each 24 hour
interval; and (iv) Summary of all pitch scores in a
distribution.

Note that the DAPS algorithm assigns a distribution of
periodicity scores to a time series, instead of a single
value (which would be obtained by computing the pitch
score of the entire times series only). The detrending
with sliding windows is advantageous if the time series
changes its periodicity behavior over time–a phenomenon
encountered in biological times series, such as p53 (see the
experimental results reported in e.g., Geva-Zatorsky et al.
(2006); Loewer et al. (2013); Reyes et al. (2018)).

Furthermore, by summarizing the periodicity scores over
different sliding windows in a pitch score distribution, we
analyze the local behavior and sidestep global synchro-
nization problems that result from an unknown internal
biological time of each cell. In particular, we cannot com-
pare two measurements of p53 directly to one another,
since the time at the first sample of a time series A is not
the same as the time at the first sample of another time
series B, because cell A might just have divided, but cell
B is shortly before a division. To control for this globally,
one would have to synchronize the cells with respect to
the cell cycle (which is done in some experiments in e.g.,
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Fig. 3. An ROC curve (right) is computed to indicate
how much two distributions of periodicity scores for
different numbers of divisions (left) overlap. These dis-
tributions are different, but not perfectly separated, so
their ROC curve is in between the diagonal line and
the upper left corner. Consequently, the area under
the ROC curve (AUROC) is between 0.5 and 1.

Reyes et al. (2018) or Loewer et al. (2010)), but this is a
moot point with our procedure.

2.4 Comparison to Sw1PerS

To empirically validate DAPS, we compare it to a state-
of-the-art algorithm for quantifying periodicity known as
Sliding Window 1-Persistence Scoring (Sw1PerS) (Perea
and Harer (2015)), variants of which have been used to
detect genes regulating circadian rhythms (Perea et al.
(2015)), turning and chatter in mechanical systems (Kha-
sawneh and Munch (2014, 2016)), and wheezing in au-
dio Emrani et al. (2014), for instance. As with DAPS,
Sw1PerS starts off with a sliding window embedding,
followed by point-centering and sphere normalization for
detrending, but it uses techniques from topological data
analysis (Edelsbrunner and Harer (2010)) to measure the
“circularity” of resulting windows in RM . A perfect sine
wave with an M matching its period will give rise to a
perfect circle in the sliding window embedding, which will
receive a score of 1. Signals with imperfect repetitions
will receive lower scores, with the lowest possible score
being 0. As with DAPS, we use a sliding window of length
M = 11. For technical reasons related to “birth time” of
the sliding window loop (see Perea and Harer (2015)), we
also upsample the sliding window point cloud so that there
are 5× as many windows (see spline interpolation steps in
Perea and Harer (2015) for more details). As we show in
Section 3, Sw1PerS allows us to draw similar conclusions
to DAPS, but it is considerably more computationally
intensive.

2.5 AUROC

To statistically test our hypothesis that periodicity is
higher for fewer cell divisions, we use a tool from signal
processing known as the Receiver Operating Characteristic
(ROC) curve (Brown and Davis (2006)). This provides a
quantitative way of comparing two distributions. Given a
distribution of block periodicity scores for all cells with
n1 divisions and all cells with n2 > n1 divisions, one could
create a simple classifier by choosing a threshold x at which
all blocks with periodicity scores above x are classified as
having n1 divisions, and all blocks with scores below x
are classified as having n2 divisions. Let p be the “true
positive” proportion of blocks with n1 divisions which

have scores above x and which are consequently correctly
classified, and let f be the “false positive” proportion of
blocks with n2 divisions but scores greater than x, which
are incorrectly classified as having n1 divisions with this
classifier. For x = 0, f = 0.0 and t = 0.0, and for
x = 1, f = 1.0 and t = 1.0. The ROC curve is the set
of all (f, t) pairs in between (0, 0) and (1, 1) that can
be obtained by varying x. For the ideal case in which
two distributions can be perfectly separated, there will
be an x for which f = 0.0 and t = 1.0, but most pairs
of distributions will overlap slightly. Conversely, if two
distributions are exactly the same, then f = t for all x,
which is a diagonal line. If we consider the area under the
ROC curve, referred to as the “AUROC,” it is 1.0 in the
former case and 0.5 in the latter case. Hence, an ROC
curve further above the diagonal with an area closer to
1.0 indicates that the distributions are better separated,
and an ROC curve closer to the diagonal indicates that
they are more overlapping. Figure 3 shows an example
of two distributions and their corresponding ROC curve.
Translating our hypothesis into this framework, we expect
higher AUROC values between distributions of blocks with
a larger disparity between the number of divisions, and we
test this hypothesis in Section 3.1.

3. RESULTS AND DISCUSSION

3.1 Localized periodicity scoring via DAPS is a good
descriptor of periodicity in p53 signals

In this section, we demonstrate the capability of DAPS for
summarizing the overall periodicity behavior of p53 time
series. We further indicate the advantage of describing
periodicity scores by a distribution, rather than by a single
value (through pitch detection on the entire series).

For this purpose, we compare the pitch score distributions
of two p53 time series from Reyes et al. (2018) using
DAPS. At the time of the experiment, both cells were
unstressed, that is, they had not been exposed to radiation.
The experiment ran for a total of 5 days, with p53
measurements taken every 30 minutes. Note that in the
case of cell division, the p53 time series were obtained by
following one of the daughter cells (picked at random). The
first cell, which did not divide during the 5 day experiment,
shows mostly regular pulsing behavior in p53; see Figure 4
(top plot); the second cell, which divided 5 times during
the 5 day experiment, shows mostly spontaneous pulsing
behavior; see Figure 5 (top plot).

Applying the steps of DAPS outlined in Section 2.3, we
first detrend the two time series (center plots of Figure 4
and Figure 5, respectively). We then consider sliding
windows of length 24 h, which is the mean duration of
a cell cycle, and compute the pitch score in every 24 hour
interval. This step is schematically shown in Figure 6 for
the first cell (non-divider). In the final step, we summarize
all periodicity scores in a distribution. Figure 7 shows the
distribution of the first cell (non-divider) in blue, and of
the second cell (divided 5 times) in orange. It is obvious
that the blue distribution has a stronger tendency towards
higher periodicity scores — a fact that is expected by
comparing the two original p53 time series (top plots of
Figures 4 and 5).
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Fig. 4. (Top plot) A p53 signal measured over 5 days
(measurements every 30 minutes) of a cell that did
not divide. This signal is an example of mostly regular
pulsing behavior. (Center plot) The detrended version
of the original signal. (Bottom plot) ACF of the
detrended signal. The pitch is indicated by a blue dot
and the associated pitch score is 0.496.

Fig. 5. (Top plot) A p53 signal measured over 5 days
(measurements every 30 minutes) of a cell which
divided 5 times (division events marked with orange
dots). This signal is an example of mostly spontaneous
pulsing behavior. (Center plot) The detrended version
of the original signal. (Bottom plot) ACF of the
detrended signal. The pitch is indicated by a blue dot
and the associated pitch score is 0.157.

We further computed the pitch score of the entire time
series (the respective ACFs are shown in the bottom plots
of Figures 4 and 5; the pitch is indicated by a blue dot).
The first cell (non-divider) is assigned an overall pitch
score of 0.496, while the second cell (divided 5 times)
is assigned an overall pitch score of 0.157. While these
pitch scores provide a distinction between the two signals,
indicating that the first signal is indeed more periodic than
the second one, the summary obtained via pitch score
distributions is much more informative with respect to
local periodicity changes in the time series.

Fig. 6. For a time series, we extract all contiguous chunks of
time spanning 24 hours, which we refer to as “blocks”
(shown in orange) and we provide a score individually
to each block. This allows us to form a distribution of
periodicity scores localized to different regions of the
time series (Figure 7).

Fig. 7. Pitch score distributions of the p53 time series
of Figure 4 (blue distribution) and of the p53 time
series in Figure 5 (orange distribution). The blue
distribution (0 division p53 time series) has a stronger
tendency towards higher periodicity scores than the
orange distribution (5 division p53 time series).

3.2 p53 pulsing behavior under basal conditions correlates
with the number of cell divisions

In this section, we establish a correlation between p53
periodicity of cells under basal conditions and number
of cell division events. In particular, we show that high
periodicity scoring of p53 is correlated to low number of
cell divisions, and vice versa.

Through this correlation, we demonstrate that the high
variability in the basal dynamics of p53 reported in the
experiments of Loewer et al. (2010); Reyes et al. (2018)
comes from the variability in number of cell divisions: If a
cell population exhibits diverse dividing behavior, then it
will also show variable pulsing in the p53 signal.

To link p53 periodicity to number cell division events, we
analyze the p53 signals of unstressed cells from Reyes et al.
(2018) (0 Gy data set). This data set consists of 384 cells,
which had been traced over 5 days, with measurements
taken every 30 minutes. In the case of cell division, the p53
time series were obtained by following one of the daughter
cells (picked at random).
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We apply DAPS (as outlined in Section 2.3) to all 384 p53
time series to obtain the respective pitch score distribu-
tions. To give a visual impression of how periodicity scor-
ing is correlated to number of cell divisions, we consider six
groups (one for each division type: 0 to 5 divisions), and
summarize the periodicity scores of all 24 h sliding window
blocks of all cells that belong to a specific division group
in a distribution; see Figure 8 (top left). This figure shows
that the periodicity distribution of non-dividing cells (blue
distribution) has the highest tendency towards 1 (most
periodic), whereas the distribution of cells which divided
4 or 5 times during the experiment (purple and brown
distribution) are closest to 0 (least periodic). While there
is an overlap between all of the distributions, a continuous
shift from low to high periodicity is clearly visible as the
number of divisions decreases.

We show the capability of p53 periodicity to distinguish
between the different division groups with AUROC scores
(see Section 2.5). Figure 8 (top right) shows the AUROC
scores between different division groups as a heat map
(light color means high AUROC score, dark color means
low AUROC score). We further superimpose the exact
AUROC score for each division pair.

Figure 8 (top right) shows that the best distinction be-
tween two groups based on p53 periodicity is achieved
when the difference of number of cell divisions is maximal:
non-dividing cells can be almost perfectly separated from
cells that divided 4 or 5 times (AUROC ∼ 0.9). A contin-
uous increase of separability performance as the difference
in number of cell divisions increases is also clearly visible,
for example, the first column, which shows how well the
group of non-dividers can be distinguished from all the
other groups, goes from 0.62 (AUROC with 1-dividers) to
0.9 (AUROC with 5-dividers). A similar behavior can be
observed with respect to the other division groups (other
columns).

Note that all division groups can be separated by p53
periodicity, as AUROC is always greater than 0.5. Never-
theless, 4− and 5−dividers are almost identical from this
point of view (AUROC= 0.55), a fact which is also visible
in the distribution plot (Figure 8 top left).

We further analyzed the same data set of p53 signals
with the state-of-the-art algorithm for periodicity scoring
Sw1PerS (see Section 2.4). We obtained the same correla-
tion between p53 periodicity scoring (now computed via
Sw1PerS instead of DAPS) and number of cell division
events; see Figure 8 (bottom row). While the AUROC
scores achieved by Sw1PerS are a little better than the
ones achieved by DAPS, computationally, Sw1PerS is con-
siderably more expensive.

We note that there is a crucial difference between the data
set we analyzed compared to the data set analyzed in
Loewer et al. (2010). Namely, the cells in Loewer et al.
(2010) are traced over 1 day to a maximum of 2 days,
while the cells of Reyes et al. (2018) are traced over 5 days.
The mean duration of a cell cycle is 24 hours; therefore the
maximal amount of cell divisions encountered in the study
of Loewer et al. (2010) is 2, while in our analysis we observe
up to 5 divisions. Due to the 5 day experiment, a higher
variation in number of cell divisions is achieved, which is

Fig. 8. (Top and bottom left): Summary of p53 periodicity
scores (computed via DAPS resp. Sw1PerS) of all 24 h
sliding window blocks of all cells that belong to a spe-
cific division group in a distribution. We encounter six
division groups in the data set: 0 to 5 divisions. (Top
and bottom right): AUROC scores summarize how
well p53 periodicity scores (computed via DAPS resp.
Sw1PerS) can distinuguish between different division
groups. Exact AUROC scores are superimposed in the
heat map for each division pair. Heat map color code:
Light color means high AUROC, dark color means low
AUROC. We observe that a higher disparity between
number of divisions leads to a higher AUROC score,
which matches our hypothesis.

an essential ingredient for establishing a correlation with
periodicity scoring of the p53 signal.

4. CONCLUSION

In this paper we introduce an algorithm to score the local
periodicity of time series, called Detrended Autocorrela-
tion Periodicity Scoring (DAPS). This algorithm uses pitch
detection on sliding windows of the full time series to
describe the overall periodicity by local pitch scores. We
apply DAPS to analyze the long-term (5 days) periodic
behavior of the important tumor suppressor p53 in single
cells under basal conditions. Via DAPS we are able to
establish a correlation between the periodicity scoring of
a p53 signal and the number of cell division events. In
particular, we show that high p53 periodicity implies low
number of cell divisions and vice versa. Similar results can
be achieved by applying the state-of-the-art periodicity
scoring algorithm Sw1PerS, which is computationally more
expensive than DAPS. Through the correlation between
p53 periodicity and the number of cell divisions, we are
able to explain the experimentally observed high variabil-
ity of p53 periodicity in unstressed cell populations by the
simple observation that the number of cell division events
is variable across a cell population.

In future work, we will consider a similar analysis for cells
treated at various level of radiation.
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