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Running Title: Methylome-based cell-of-origin modeling identifies immune molecule 49 

dysregulation in CLL   50 
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ABSTRACT 51 

Background: In cancer, normal epigenetic patterns are disturbed and contribute to gene 52 

expression changes, disease onset and progression. The cancer epigenome is composed of the 53 

epigenetic patterns present in the tumor-initiating cell at the time of transformation, and the 54 

tumor-specific epigenetic alterations that are acquired during tumor initiation and progression. 55 

The precise dissection of these two components of the tumor epigenome will facilitate a better 56 

understanding of the biological mechanisms underlying malignant transformation. Chronic 57 

lymphocytic leukemia (CLL) originates from differentiating B cells, which undergo extensive 58 

epigenetic programming. This poses the challenge to precisely determine the epigenomic 59 

ground-state of the cell-of-origin in order to identify CLL-specific epigenetic aberrations.  60 

Methods: We developed a linear regression model, methylome-based cell-of-origin modeling 61 

(Methyl-COOM), to map the cell-of-origin for individual CLL patients based on the continuum of 62 

epigenomic changes during normal B cell differentiation.  63 

Results: Methyl-COOM accurately maps the cell-of-origin of CLL and identifies CLL-specific 64 

aberrant DNA methylation events that are not confounded by physiologic epigenetic B cell 65 

programming. Furthermore, Methyl-COOM unmasks abnormal action of transcription factors, 66 

altered super-enhancer activities, and aberrant transcript expression in CLL. Among the 67 

aberrantly regulated transcripts were many genes that have previously been implicated in T cell 68 

biology. Flow cytometry analysis of these markers confirmed their aberrant expression on 69 

malignant B cells at the protein level.  70 

Conclusions: Methyl-COOM analysis of CLL identified disease-specific aberrant gene 71 

regulation. The aberrantly expressed genes identified in this study might play a role in immune-72 

evasion in CLL and might serve as novel targets for immunotherapy approaches. In summary, 73 
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we propose a novel framework for in silico modeling of reference DNA methylomes and for the 74 

identification of cancer-specific epigenetic changes, a concept that can be broadly applied to 75 

other human malignancies. 76 

 77 
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BACKGROUND 80 

In cancer, normal epigenetic patterns are disturbed and contribute to gene expression changes, 81 

disease onset and progression [1]. This seems to be a universal characteristic of all cancers, 82 

including chronic lymphocytic leukemia (CLL). CLL originates from rapidly differentiating B cells. 83 

Although several mutations creating a pre-leukemic clone, including variants in SF3B1, 84 

NOTCH1 or TP53, have been identified in the hematopoietic stem cell (HSC) compartment of 85 

CLL patients, additional genetic or epigenetic driver events are required for full 86 

transformation[2]. Normal B cells undergo extensive epigenetic programming during 87 

differentiation [3,4]. The epigenetic fingerprint of the B cell that has acquired the transforming hit 88 

is ‘frozen’ and stably propagated in the leukemic cells [4]. This demonstrates that two factors 89 

contribute to the epigenomic landscape of CLL: first, epigenetic patterns that were present in the 90 

tumor-initiating B cell at the time of transformation, and second, CLL-specific epigenetic 91 

alterations that are acquired during leukemia initiation and progression. For the purpose of this 92 

study, we define the cell-of-origin of CLL as the normal B cell differentiation stage with the 93 

highest overlap to the CLL methylome. Consequently, the cell-of-origin of CLL represents the 94 

differentiation stage at which the clonal B cells deviate significantly from the normal 95 

differentiation trajectory and therefore the cell-of-origin defines the first cell that has acquired 96 

sufficient oncogenic hits to initiate leukemic transformation[5]. 97 

Numerous publications have reported extensive epigenetic alterations in CLL resulting in 98 

deregulation of protein coding genes [6–11] or miRNAs [12–19]. In this context, most studies 99 

used the epigenome of CD19+ B cells as controls, but such an approach neglects the epigenetic 100 

programming occurring during B cell differentiation. As a result, the genes found to be 101 

deregulated mainly reflected the changes occurring during normal B cell differentiation rather 102 

than CLL-specific pathogenic events. Refined analyses should aim at discriminating between 103 
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epigenetic changes occurring during normal B cell differentiation and CLL-specific epigenetic 104 

aberrations. Here we outline a novel framework for cancer methylome analysis, termed 105 

methylome-based cell-of-origin modeling (Methyl-COOM). We show how Methyl-COOM can be 106 

applied to epigenomic datasets from CLL patients to identify disease-specific epigenetic events 107 

and demonstrate its power to detect epigenetically deregulated transcripts which encode for 108 

proteins that are involved in immune regulatory processes.  109 

  110 
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METHODS 111 

Flow cytometry analysis 112 

Patients’ samples were obtained from the Department of Internal Medicine III of Ulm University 113 

after approval of the study protocol by the local ethics committee according to the declaration of 114 

Helsinki, and after obtaining informed consent of patients. Patients met standard diagnosis 115 

criteria for CLL. Patients’ characteristics such as age, gender, mutational state and Binet stage 116 

are depicted in Table 1.  117 

Peripheral blood was drawn using Ethylenediaminetetraacetic acid (EDTA)-coated tubes 118 

(Sarstedt, Nümbrecht, Germany). PBMCs were isolated by Ficoll (Biochrom, Berlin, Germany) 119 

density gradient centrifugation. PBMCs were viably frozen and, when needed, thawed and 120 

further processed.  121 

After blockade of Fc-receptors using Human TruStain FcX™ (BioLegend, London, United 122 

Kingdom), 5*106 PBMCs were stained with fluorescently labelled antibodies in phosphate-123 

buffered saline (PBS) with addition Fixable Viability Dye eFluor® (ThermoFisher Scientific, 124 

Dreieich, Germany) for 30 min at 4°C. Cells were fixed using eBioscience™ IC Fixation Buffer 125 

(ThermoFisher Scientific, Dreieich, Germany) for 30 min at room temperature. The antibodies 126 

used are listed in Table 2. If necessary, cells were permeabilized with eBioscience™ 127 

Permeabilization Buffer (ThermoFisher Scientific) and stained intracellularly for 30 min at room 128 

temperature. CTLA-4 was stained as surface as well as intracellular marker. Samples were 129 

stored at 4°C in the dark until acquisition. Data was acquired using a BD LSR Fortessa (BD 130 

Biosciences, Heidelberg, Germany) FACS analyzer. Flow cytometric data was analyzed using 131 

FlowJo X 10.0.7 software (FlowJo, Ashland, OR, USA). Paired Wilcoxon signed-rank test was 132 

used to determine statistical significance of changes between CLL B cells and normal B cells. 133 

 134 

 135 
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Table 1: Characteristics of the CLL patients used for flow cytometric analysis. 136 

# of patients 7 

Age [years] 
57.1 (mean) 

52 (median) 

Sex 
5/7 male 

2/7 female 

Prior therapies 7/7 no prior treatment 

Binet stage 

7/7 A 

0/7 B 

0/7 C 

IGHV status 
6/7 mutated 

1/7 unmutated 

Genetics (FISH) 

1/7 Trisomy 12 

5/7 del(13q) 

1/7 no aberration 

TP53 mutation status 
4/7 WT 

3/7 not tested 

 137 
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Table 2: List of FACS antibodies and reagents. 139 

Reagent Clone Supplier Cat # 
APC anti-human CD5  UCHT2 BioLegend 300612 
eBioscience™ CD152 (CTLA-4) PerCP-eFluor 
710 14D3 Thermo Fisher 

Scientific 
46-1529-

42 

eBioscience™ CD276 (B7-H3) PE-Cyanine7 7-517 Thermo Fisher 
Scientific 

25-2769-
41 

eBioscience™ Fixable Viability Dye eFluor™ 506  Thermo Fisher 
Scientific 

65-0866-
14 

eBioscience™ IC Fixation Buffer  Thermo Fisher 
Scientific 

00-8222-
49 

eBioscience™ Permeabilization Buffer (10X)  Thermo Fisher 
Scientific 

00-8333-
56 

eBioscience™ TIGIT PE-Cyanine7 MBSA4
3 

Thermo Fisher 
Scientific 

25-9500-
42 

Human TruStain FcX™ (Fc Receptor Blocking 
Solution) 

 BioLegend 422302 

PE anti-human CD85k (ILT3, LILRB4) Antibody ZM4.1 BioLegend 333007 
PE/Dazzle™ 594 anti-human CD19 Antibody HIB19 BioLegend 302252 

PerCP/Cyanine5.5 anti-human CD2 RPA-
2.10 BioLegend 300215 

 140 

Analysis of RNA-seq / sncRNA-seq data 141 

Expression data (RNA-Seq) from CLLs were obtained from our previous study [4]. RNA-Seq 142 

data from normal B cells was obtained from International Cancer Genome Consortium (ICGC). 143 

Reads per kilo base per million mapped reads (RPKM) normalized values were used for the 144 

comparison of gene expression levels. sncRNA-seq data from CLLs was obtained from our 145 

previous study [20]. Differential miRNA expression was assessed using normalized counts, 146 

reads per million (RPM). 147 

 148 

Analysis of 450k methylome array data 149 

450K data from B cells was obtained from Oakes et al. [4]. CLL 450k data for the discovery and 150 

validation cohorts were both obtained from previous studies [4,21]. The analysis of 450K data 151 

was performed using RnBeads software [22]. Both datasets (normal B cells and CLLs) were 152 
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processed simultaneously. Briefly, raw 450K data for both CLL and healthy B cell sample sets 153 

were normalized by the BMIQ method [23] without the background subtraction. The probes 154 

overlapping SNPs and the X and Y chromosomes were removed and remaining probes 155 

(n=464,743 CpGs) were considered for the downstream analysis, for the identification of CLL-156 

specific methylation events (Method Section: ‘Identification of disease-specific methylation 157 

events’). 158 

 159 

Inference of the cell-of-origin and identification of disease-specific methylation events 160 

We studied the DNA methylation programming during normal B cell differentiation, using six 161 

discrete B cell subpopulations including naïve to mature B cells: referred to as naïve B cells 162 

(NBCs), germinal center founder cells (GCFs), low- and intermediate-memory B cells (loMBCs, 163 

intMBC), splenic marginal zone B cells (sMGZs), and high maturity memory B cells (hiMBCs). 164 

DNA methylomes from 2-4 donors per normal B cell subpopulation. In addition 34 CLL samples 165 

were analyzed using Illumina 450k Bead Chip arrays.  166 

 167 

Cell-of-origin based methylome analysis, Methyl-COOM 168 

For analysis, we determined the DNA methylation dynamics during normal B cell differentiation 169 

(differentiation axis). Here we assumed that changes in DNA methylation during the cellular 170 

differentiation process are reminiscent of the DNA nucleotide changes over the evolutionary 171 

time. CpG sites showing a statistically significant gain or loss of methylation of more than 20% 172 

during B cell differentiation defined our set of so-called B cell-specific CpGs (n=74,333 CpGs; 173 

student’s t-test). A Manhattan distance matrix was calculated and used to build a methylation-174 

based phylogenetic tree of normal B cell differentiation by applying the minimum evolution 175 

method (fastme.bal function, R package “ape”; Desper and Gascuel, [24]). Each node in the 176 

phylogenetic tree corresponds to a certain differentiation stage reached by the B cell. Using this 177 
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approach, we observed a non-branched differentiation trajectory of normal B cell differentiation. 178 

Therefore, we initially used all B cell-specific CpGs to generate a linear regression model of 179 

DNA methylation programming during normal B cell differentiation. Linear behavior between the 180 

differentiation stage of every B cell subset and the methylation profiles at B cell-specific CpGs 181 

were tested at the single CpG level using F-test. The majority of the B cell-specific CpGs 182 

(79.8%, n=59,326 CpGs) showed linear methylation dynamics across the six B cell 183 

differentiation states. To exclude a potential bias on differentiation stage assignment, we re-184 

created both the phylogeny and the regression model of normal B cell differentiation, this time 185 

using the linearly behaving B cell specific CpGs, only. The final regression model was designed 186 

to infer DNA methylation levels of all CpGs included in our analysis.  187 

Next, we mapped all CLL samples onto the normal B cell differentiation trajectory in order to 188 

infer the closest virtual normal B cell methylome (cell-of-origin) defined as the position of the 189 

closest normal B cell node in the phylogenetic tree. Then, we applied the linear regression 190 

model to infer the DNA methylation levels for each CpG site in the putative cell-of-origin for 191 

every patient, according to the formula: 192 

 193 

M = α + β *d.s.  194 

, where  195 

M denotes the calculated beta methylation value for a CpG site of cell-of-origin,  196 

d.s. denotes the differentiation stage (defined as the distance between the NBC and the cell-of-197 

origin nodes as determined by the phylogenetic analysis),  198 

β denotes the slope of the regression line,  199 

α denotes the vertical (y-axis) intercept. 200 

 201 
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To test our cell-of-origin assignment, we applied a cross-validation model on our phylogenetic 202 

analysis. The patient cohort was repeatedly divided into two subgroups; 70% and 30% (5000 203 

repetitions). To minimize the likelihood of selecting the same sample multiple times, a random 204 

sampling was allowed in the 70%-group, while sample replacement was restricted only to the 205 

30%-group. Using this approach, we observed that our original cell-of-origin is located between 206 

interquartile ranges of the cross-validation assignments, confirming the robustness of the cell-of-207 

origin definition (Supplementary Figure S2 f).  208 

 209 

Identification of CLL-specific DNA methylation  210 

Subsequently, the inferred DNA methylome of the cell-of-origin was used as a reference to 211 

determine aberrantly methylated CpG sites in each sample. Disease-specific CpGs were 212 

defined as sites with significant deviation from the expected methylation levels as compared to 213 

the corresponding cell-of-origin. 214 

 215 

Sites with epigenetic B cell programming 216 

Sites undergoing epigenetic B cell programming (i.e. B cell-specific CpGs) could still show 217 

disease-specific methylation events if their actual methylation status massively deviates from 218 

what would be expected based on the regression model (sites with “epigenetic B cell 219 

programming”). We used a conservative cut-off of more than 20% methylation loss (class A) or 220 

gain (class B) relative to the calculated cell-of-origin methylation value (M value) in at least 75% 221 

of the CLL patients.  222 

 223 

  224 
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Sites without epigenetic B cell programming 225 

Sites with no epigenetic B cell programming (i.e. non-B cell-specific CpGs) were defined to have 226 

CLL-specific aberrant DNA methylation if they displayed either methylation loss (class C) or gain 227 

(class D) of more than 20% relative to the cell-of-origin in at least 75% of the CLL patients.  228 

 229 

Identification of CLL-specific protein-coding genes 230 

To identify CLL-specific protein-coding genes, disease-specific methylation events were 231 

overlapped with promoter regions (-2.5kb, +0.5kb to TSS) of protein-coding genes. Next, 232 

correlation between aberrant DNA methylation and gene expression was determined (Pearson 233 

correlation test, p-value <0.05; correlation coefficient < -0.7). A full list of identified CLL-specific 234 

protein-coding genes is available in Supplementary Table S1. 235 

 236 

Identification of CLL-specific SE-associated genes 237 

To identify CLL-specific Super-enhancer (SE)-associated genes, SE data from DKFZ PRECiSe 238 

consortium was used [28]. All statistically significant, differential super-enhancers being gained 239 

in CLLs (“gained”, p<0.05, FC>0) and consensus super-enhancers shared between normal B 240 

cells and CLLs (“stable”) were used for the analysis. Firstly, SEs were associated with the 241 

closest gene in the vicinity. CLL-specific methylation events were then overlapped with SE 242 

coordinates. Next, correlation between aberrant DNA methylation in SE region and gene 243 

expression of the SE-closest gene (Pearson correlation test, p-value <0.05; correlation 244 

coefficient < -0.7) was used to identify CLL-specific Super-enhancer (SE)-associated genes. A 245 

full list of identified SE-associated genes is available in Supplementary Table S2. 246 

  247 
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Super-enhancer (SE) enrichment analysis 248 

For the super-enhancer enrichment analysis two sets of super-enhancers were used, SE data 249 

from DKFZ PRECiSe consortium [25] and SE data from Ott et al. [26]. From DKFZ PRECiSe 250 

consortium all statistically significant, differential super-enhancers being gained in CLLs 251 

(“gained”, p<0.05, FC>0) and consensus super-enhancers shared between normal B cells and 252 

CLLs (“stable”) were used for the analysis. From Ott et al. paper a unified SE region was 253 

created using reduce function in GenomicRanges package, providing a SE data from individual 254 

CLL patients (n=18). All CpG probes present on the 450k array were used as a background in 255 

the enrichment analysis. 256 

 257 

Identification of micro-RNA promoters 258 

To identify miRNA promoters, the promoter segmentation data from CLLs (DKFZ PRECiSe 259 

consortium; promoter segmentation data is deposited under GSE113336; raw ChIP-seq data 260 

can be found in the European Genome-phenome Archive under the accession number 261 

EGAS00001002518) and normal cell lines (Encyclopedia of DNA Elements – ENCODE; 262 

ENCODE Mar 2012 Freeze, UCSC accession numbers: wgEncodeEH000784, 263 

wgEncodeEH000785, wgEncodeEH000790, wgEncodeEH000789, wgEncodeEH000788, 264 

wgEncodeEH000786, wgEncodeEH000787, wgEncodeEH000791, wgEncodeEH000792) was 265 

used. To define constant promoter segments, the reduce function from the “GenomicRanges” R 266 

package was used to create simplified promoter regions, present in all datasets (CLL and 267 

ENCODE segmentation data). Putative promoters of pri-miRNAs were assigned based on their 268 

distance to the pri-miRNA TSSs. The genomic coordinates of pri-miRNAs/miRNAs were 269 

downloaded from miRBase (version 20; v20). Any promoter located within 100kb upstream of a 270 

pri-miRNA TSS was considered as a putative pri-miRNA promoter. The distance of 100 kb was 271 

chosen based on similar approaches that have been used in the past by Corcoran et al., Fujita 272 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

et al. and Fukao et al. [27–29]. The larger distance of putative promoters to pri-miRNA TSSs is 273 

especially important in case of intergenic miRNAs, which are originating from intronic 274 

sequences and which are considered to be transcribed together with their host gene. 275 

 276 

Identification of CLL-specific micro-RNAs 277 

To identify CLL-specific microRNAs, disease-specific methylation events were overlapped with 278 

potential pri-miRNA promoters. To identify candidate CLL-specific miRNAs, correlation between 279 

aberrant DNA methylation and pri-miRNA expression was determined (Spearman correlation 280 

test, p-value <0.05; abs(correlation coefficient ρ) ≥ 0.35). Since many mature miRNAs are 281 

derived from the same pri-miRNAs, correlations were calculated using pri-miRNA expression 282 

levels determined by sncRNA-seq. A full list of identified CLL-specific microRNAs is available in 283 

Supplementary Table S3. 284 

 285 

Target genes of CLL-specific microRNAs 286 

To link CLL-specific microRNAs with their pathogenetic effects, two databases of experimentally 287 

validated microRNA-target gene interactions were used, TarBase v8.0 and miRTarBase. A full 288 

list of experimentally validated CLL-specific microRNA targets is included in Supplementary 289 

Table S4. To find whether CLL-specific microRNAs are targeting epigenetic regulators, the 290 

comprehensive list of epigenetic regulators was used (Supplementary Table S5). The list of 291 

epigenetic regulators was further used as a query for the list of CLL-specific microRNA targets 292 

defined above. The epigenetic regulators targeted by CLL-specific microRNAs are included in 293 

the Supplementary Table S6. 294 

 295 
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Transcription factor enrichment analysis 297 

Transcription factor motif analysis in disease-specific methylation events was performed using 298 

HOMER software v4.5 [30] using only the results for the ‘known motifs’ analysis. All CpGs 299 

present on the 450k array were used as a background and adjustment for GC- and CpG-content 300 

was used. Furthermore, enrichment of actual binding events of TFs and other DNA-binding 301 

proteins was analyzed using available ChIP-seq data from the tier 1 ENCODE cell line 302 

GM12878 (for a complete list of datasets used for this analysis, please refer to Supplementary 303 

Table S7). The ChIP-seq enrichment analysis was performed using the LOLA tool [31] providing 304 

all CpG probes present on the 450k array as the ‘universe’. Unsupervised hierarchical clustering 305 

and data visualization were performed using R.  306 

  307 
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RESULTS 308 

Modeling of normal B cell differentiation 309 

CLL epigenomes are shaped by two major components. The first component constitutes 310 

signatures that stem from the leukemia-initiating B cell. The second component is formed by 311 

epigenetic alterations acquired during leukemogenesis and progression of the disease. To 312 

discriminate these components, we developed an in silico approach to infer DNA methylation 313 

dynamics during normal B cell differentiation and to model the epigenome of the cell-of-origin, 314 

utilizing previously published Illumina 450k array DNA methylome data from six distinct B cell 315 

subpopulations [4] and from 34 CLL samples [21](Figure 1a). Our approach to this was based 316 

on classical phylogeny analysis (minimum evolution method, Desper and Gascuel [24]), which is 317 

typically used to reconstruct evolutionary processes based on inherent characters. Similarly to 318 

copy number or mutational studies [32,33], phylogeny analysis on DNA methylation has been 319 

used successfully to reconstruct the developmental processes occuring during cell proliferation 320 

and differentiation [4,34]. Therefore, to model B cell differentiation, we inferred the hierarchical 321 

relationship between normal B cell subsets ranging from naïve to memory B cells based on their 322 

DNA methylation patterns. The normal B cell methylomes were used to identify CpG sites that 323 

show dynamic DNA methylation during B cell differentiation (B cell-specific CpGs; see also 324 

Methods). A total of 74,333 B cell-specific CpGs were identified (≥ 20% DNA methylation 325 

change between naïve and differentiated memory B cells, Student’s t-test, p-value<0.05 [4,35]). 326 

Pairwise Manhattan distances based on DNA methylation profiles at B cell-specific CpGs for 327 

normal B cell subsets were used to build a methylation-based phylogenetic tree revealing a non-328 

branched trajectory of B cell differentiation (Supplementary Figure S1a). This suggested that 329 

linear regression might be suitable to model DNA methylation dynamics. The initial linear 330 

regression model of B cell differentiation considered all B cell-specific CpGs. Testing the 331 
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linearity between the differentiation stage of every normal B cell subset and the methylation 332 

profiles at B cell-specific CpGs, revealed that the vast majority of the differentiation-specific 333 

CpGs (79.8%, n=59,326 CpGs) showed linear behavior across all B cell differentiation states (F-334 

test, p-value <0.05; Supplementary Figure S1b-g, Supplementary Table S8). To exclude a 335 

potential bias on the model from the non-linear CpG sites, we re-generated both the phylogeny 336 

and the regression model of normal B cell differentiation using only the linearly behaving B cell-337 

specific CpGs.  338 

Identification of disease-specific DNA methylation patterns in CLL 339 

This B cell differentiation model was applied to a CLL patient cohort (n= 34) in order to 340 

determine the closest virtual normal B cell methylome (i.e. cell-of-origin or B cell differentiation 341 

stage) for each CLL case (Figure 1b). As expected, our model confirmed that good-prognosis 342 

IGHV mutated CLL originates from more mature B cells, as opposed to IGHV unmutated CLL, 343 

which develops from more immature B cells (Supplementary Figure S2a-e). Next, we tested 344 

the stability of cell-of-origin assignment using a cross-validation model (5000 repetitions; for 345 

details see Methods section). Using this approach, we observed that the predicted cell-of-origin 346 

is located between interquartile ranges of the cross-validation assignments, confirming the 347 

robustness of the cell-of-origin definition (Supplementary Figure S2f). The linear regression 348 

model was then used to infer DNA methylation levels for all 464,743 CpG sites in the predicted 349 

cell-of-origin of every patient. These inferred cell-of-origin methylomes were subsequently used 350 

as controls to identify aberrant (i.e. CLL-specific) DNA methylation patterns for each sample 351 

individually (see Figure 1a for a schematic overview of Methyl-COOM). CLL-specific aberrant 352 

DNA methylation was defined as CpG sites with >20% deviation from the expected DNA 353 

methylation level of the cell-of-origin, and which were aberrantly methylated in at least 75% of 354 

patients. This analysis revealed two categories of CLL-specific DNA methylation events; 1) 355 
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aberrant DNA methylation occurring at sites undergoing epigenetic programming during B cell 356 

differentiation (‘Sites with epigenetic B cell programming’) and 2) aberrant DNA methylation 357 

occurring at CpG sites that normally do not change during B cell differentiation (‘Sites with no 358 

epigenetic B cell programming’) (see Figure 1c). The first category was further subdivided into 359 

class A, showing a loss, and class B, showing a gain of DNA methylation relative to the 360 

differentiation stage achieved. The second group of CpG sites without DNA methylation 361 

programming during normal B cell differentiation was subdivided into class C and class D 362 

displaying hypo- and hypermethylation, respectively (Figure 1c). Overall, only 2.2% of all CpG-363 

sites (10,335 CpGs) represented on the 450k array were affected by disease-specific 364 

methylation programming, the majority of which were ‘sites with epigenetic B cell programming’ 365 

(class A & B, 5,940 CpG sites; Figure 1c, Supplementary Table S9). The majority of CLL-366 

specific DNA methylation events were characterized by hypomethylation (9,995 hypomethylated 367 

CLL-specific CpGs; class A: 5,757 CpGs, class C: 4,238 CpGs), while only a small proportion of 368 

CpGs were hypermethylated as compared to their inferred cell-of-origin (340 hypermethylated 369 

CLL-specific CpGs; class B: 183 CpGs, class D: 157 CpGs) (Figure 1c, Supplementary 370 

Figure S2g, h).  371 

 372 

CLL-specific aberrant DNA methylation patterns are independent of the differentiation 373 

stage achieved 374 

CLL-specific DNA methylation changes were quantified for each CpG site in each sample as 375 

compared to the cell-of-origin and inspected by unsupervised hierarchical clustering. For all 376 

classes, consistent patterns of either loss or gain in methylation relative to the cell-of-origin were 377 

observed, irrespective of the differentiation stage achieved (Figure 2a, Supplementary Figure 378 

S2i). Hypomethylation at class A sites resulted from an exaggerated loss of DNA methylation at 379 

sites which show loss of methylation during normal B cell differentiation (Figure 2b, c, 380 
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Supplementary Figure S2i; class A, hypomethylation). Aberrant hypermethylation observed at 381 

class B sites results from exaggeration of hypermethylation normally occurring during B cell 382 

differentiation, and from failed hypomethylation during normal B cell programming (Figure 2b, c, 383 

Supplementary Figure S2i; class B, hypermethylation). Class C and class D sites do not 384 

undergo any significant DNA methylation programming during normal B cell differentiation, 385 

highlighting the potential importance of these sites for CLL pathogenesis (Figure 2a-c 386 

Supplementary Figure S2i; class C, class D). Overall, the observed CLL-specific aberrant 387 

methylation patterns are largely independent of the differentiation stage achieved by the CLL 388 

cell-of-origin. 389 

 390 

CLL-specific DNA methylation affects super-enhancers 391 

To test for functional implications of CLL-specific DNA methylation events, we tested their 392 

enrichment in ENCODE ChromHMM genome segments in the GM12878 lymphoblastoid cell 393 

line. Aberrantly methylated CpG sites from classes A, B & C were enriched for enhancer 394 

elements (Figure 3a). A recent systematic assessment of transcription factor dependencies in 395 

CLL has implicated super-enhancer (SE) based transcription factor (TF) rewiring in CLL 396 

pathogenesis [26,36]. In line with this, enrichment of CLL-specific CpGs was detected in SE 397 

regions identified in a recently published CLL data set from Ott et al. (Supplementary Figure 398 

S3a) [26]. Using another SE data set from Rippe and colleagues [25,37] enabled us to 399 

distinguish between SEs that are either present in normal B cells (“stable”) or that have been 400 

acquired de novo in CLL (“gained”). Enrichment of de novo SEs was found in class A and class 401 

C sites (Figure 3b). De novo SEs overlapping with CLL-specific CpG sites harbor many known 402 

genes with relevance in CLL biology (e.g. CD5, CLLU1, IRF2; Supplementary Figure S3b, 403 

Supplementary Table S2).  404 

 405 
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CLL-specific DNA methylation differences result from aberrant transcription factor 406 

programming  407 

Recent SE perturbation studies implicated rewiring of TF regulatory circuitries in CLL 408 

pathogenesis [26]. These findings motivated us to ask whether CLL-specific DNA methylation 409 

patterns would be indicative of aberrant TF programming. To address this hypothesis, we used 410 

ATAC-seq to test whether CLL-specific DNA methylation patterns were reflected at the level of 411 

chromatin accessibility. Indeed, we found that CLL-specific hypo- and hypermethylation events 412 

were associated with inverse changes in chromatin accessibility in CLL as compared to normal 413 

B cells (Figure 3c). These concomitant changes in DNA methylation and chromatin accessibility 414 

indicated that CLL-specific DNA methylation patterns reflect global epigenomic changes and 415 

further demonstrated that disease-specific DNA methylation changes identify functionally 416 

relevant cis-regulatory sequences in CLL. In line with this, transcription factor (TF) binding sites 417 

enriched in class A (e.g. IKZF1, BATF, NFAT, EGR1/2) and in class C sequences (e.g. NFAT, 418 

EGR1/2, E2A) were predominantly associated with B cell biology, e.g. BATF controling the 419 

expression of activation-induced cytidine deaminase (AID) and of IH-CH germline transcripts or 420 

E2A controlling B cell lineage commitment. This suggested involvement of altered TF binding 421 

patterns in CLL pathogenesis: class A CpG sites are characterized by stronger than normal TF 422 

binding and class C sites are likely de novo bound by B cell specific TFs (Figure 3d, e). Class B 423 

sites were enriched in motifs for EBF, NKX6-1 and PAX5, but overall the motif enrichment as 424 

well as the associated changes in chromatin accessibility were only moderate (Figure 3c-e). 425 

Binding of proteins related to genome architecture (CTCF, RAD21, SMC3) was overrepresented 426 

in class D sites (Figure 3d, e). Aberrant DNA methylation patterns at TF binding sites in CLL 427 

might be associated with disturbed TF expression levels. TF expression analysis revealed 428 

transcriptional deregulation of MAFB, JUN, KLF14, KLF4, IRF2 and EBF1, none of which 429 

showed major changes in their promoter DNA methylation status (Supplementary Figure S4a, 430 
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b). Among the deregulated TFs, EBF1 showed the strongest and most consistent transcriptional 431 

deregulation with almost complete loss of expression in CLL samples (log2-FC: -7.98 [CLL - 432 

hiMBC]; Supplementary Figure S4a). The EBF1 downregulation potentially explains the 433 

observed CLL-specific hypermethylation at class B sites, as EBF1 has been shown to possess 434 

pioneering activity [38]. Similarly, upregulation of KLF4, JUN and IRF2 (Supplementary Figure 435 

S4a) could explain hypomethylation programming observed at class A and C CpG sites as all of 436 

these TFs have been reported to possess pioneering activity [39–41]. 437 

 438 

Class D hypermethylation is associated with reduced CTCF binding and potentially 439 

deregulates expression of neighboring genes 440 

The enrichment of CTCF binding sites and motifs as well as the enrichment of ChromHMM 441 

insulator regions (Figure 3a, d, e) led us to investigate the effects of aberrant CTCF binding in 442 

CLL in more detail. We found that class D sites had lower CTCF occupancy and reduced 443 

chromatin accessibility in CLL samples as compared to normal B cells (Figure 3f) while 444 

globally, these patterns were identical (Supplementary Figure S5a, b). The differences in 445 

CTCF binding were associated with changes in gene expression of neighboring genes (Figure 446 

3g). This further highlights the importance of aberrant CTCF binding at class D CpGs and might 447 

point towards a novel pathogenetic mechanism in CLL. Unfortunately, the low absolute number 448 

of class D sites does not allow a comprehensive analysis of associated gene expression 449 

changes and further studies involving whole-genome bisulfite sequencing will be required to 450 

systematically address this observation.  451 

 452 

Identification of epigenetically deregulated transcripts in CLL 453 

The promoter DNA methylation status is widely used as a marker for gene regulation and 454 

significant correlation of promoter DNA methylation with gene expression has been 455 
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demonstrated before [12,42–44]. Previous studies in CLL identified many epigenetic events 456 

potentially deregulating the expression of protein-coding genes and miRNAs. However, all of the 457 

work published so far used CD19+ B cells as controls to call aberrant DNA methylation 458 

[6,9,11,45–53]. To stress the importance of using appropriate controls to delineate disease-459 

specific DNA methylation events, we compared our cell-of-origin model to the classical 460 

approach using bulk CD19+ B cells as a reference. We correlated DNA methylation levels of all 461 

aberrant promoter CpGs with gene-expression. The classical approach resulted in a ~1.5-fold 462 

overcalling of epigenetically deregulated protein-coding genes (Supplementary Figure S6a). 463 

For miRNAs this difference was even more pronounced (about 5- to 7-fold; Supplementary 464 

Figure S6b). Interestingly, previously identified differentially methylated promoters of TCL1, 465 

HOXA4, TWIST2 or DAPK1 did not pass the stringent filtering criteria of our correlation analysis. 466 

This suggested that applying Methyl-COOM results in the identification of a more relevant set of 467 

epigenetically deregulated candidate genes.  468 

Using the cell-of-origin model, corrleation between promoter DNA methylation and miRNA 469 

expression levels identified 8 CLL-specific miRNAs (Figure 4a, b). Seven out of these miRNAs 470 

have been demonstrated to regulate epigenetic key players, and, even more importantly, they 471 

regulate genes that have been shown to be recurrently mutated in CLL, namely ARID1A, 472 

ASXL1, CHD2, SETD1A, SETD2 and KMT2D. Reasoning that miRNA binding to their target 473 

genes results in gene expression changes, we compared expression levels between miRNAs 474 

and their target genes in CLL and normal B cells. Indeed, concordant with the pattern of miRNA 475 

promoter hypomethylation and subsequent upregulation of miRNA transcript levels, we found 476 

that known target genes of CLL-specific miRNAs were significantly downregulated in CLL as 477 

compared to normal B cells while non-target genes were unaffected (Figure 4c).  478 

 479 
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A similar correlation analysis on protein-coding genes revealed statistically significant 480 

correlations between DNA methylation and gene expression for 491 (class A), 20 (class B), 390 481 

(class C), and 20 (class D) genes. The majority of correlations observed were negative (i.e. a 482 

decrease in DNA methylation was associated with an increase in gene expression and vice 483 

versa; Supplementary Figure S6c), and, as expected, the negative correlation with gene 484 

expression was most unambiguous for hypermethylation events (59% class A, 95% class B, 485 

70% class C, 85% class D; Figure 5a, Supplementary Figure S6d). A detailed analysis of the 486 

top correlating genes (Pearson correlation test, p-value <0.05; correlation coefficient < -0.7) 487 

encompassing 102 transcripts demonstrated a tight link between CLL-specific aberrant DNA 488 

methylation and the expression levels of the corresponding genes (Figure 5b; Supplementary 489 

Figure S6a). Normal B cell differentiation-related epigenetic and transcriptional changes were 490 

exaggerated in class A and B whereas the changes detected in class C and D were observed 491 

exclusively in CLL. Aberrantly methylated CpGs of class A and C converged in promoters of 492 

12/102 transcripts (TIGIT, SH3D21, LAX1, LILRB4, CD5, NOD2, POLR3GL, IGFBP4, ZAP70, 493 

KSR2, XXYLT1−AS2, and LAG3), highlighting the potential functional relevance of the 494 

associated genes in CLL pathogenesis. In order to validate our findings, we applied Methyl-495 

COOM to 107 CLL samples that have been published previously by Oakes and colleagues 496 

(Supplementary Figure S7a; [4]). This analysis identified 11,059 CLL-specific CpGs, of which 497 

8,440 (76%) overlapped with the 10,339 CpGs identified in our discovery cohort 498 

(Supplementary Figure S7b). Furthermore, CLL-specific CpGs identified in our validation 499 

cohort recapitulated 92/102 (90%) of the top correlating candidate genes found in the discovery 500 

cohort (Supplementary Figure S7c. 501 

 502 
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Epigenetically deregulated transcripts are enriched for T cell-related and immune-504 

modulating genes  505 

 Some of the top correlating genes have already been implicated to play a role in CLL biology, 506 

e.g. ZAP70, CD5, LCK, LAG3 or CLLU1 (Supplementary Figure S8a, b), while for others their 507 

role in CLL pathogenesis is currently unknown. To gain insights into the potential functional role 508 

of these epigenetically deregulated genes, we performed enrichment analysis of known 509 

biological functions, interactions, or pathways. MSigDB and GO analysis revealed strong 510 

enrichment of gene sets related to immune response, immune system processes, hematopoietic 511 

stem cells, CLL, and NOTCH signaling (Supplementary Figure S8a, b). Ingenunity Pathway 512 

Analysis (IPA) and Metascape analysis resulted in enrichment of T-lymphocyte-related 513 

processes (Metascape: ‘Reguation of T cell activation’ , ‘Reguation of T cell receptor signaling 514 

pathway’,  ‘T cell costimulation’, ‘T cell differentiation’; IPA: ‘Cell Proliferation of T Lymphocytes’, 515 

‘T cell homeostasis’, ‘Proliferation of lymphocytes’ (Supplementary Figure S8a). These 516 

findings are in line with recent reports demonstrating that CD8+ T cells from patients with 517 

chronic lymphocytic leukemia exhibit features of T cell exhaustion, i.e. lower proliferative and 518 

cytotoxic capacity and increased expression of inhibitory receptors (e.g. CTLA-4, TIGIT, Lag3, 519 

PD-1), suggesting both CLL and T cell specific changes leading to decreased ability to eliminate 520 

malignant cells [54–57].  521 

 522 

Epigenetically deregulated transcripts show aberrant protein expression in CLL 523 

Cancer cells express immune regulatory molecules that might represent potential targets for 524 

novel immunotherapies. These proteins modulate the activity of tumor-infiltrating immune cells 525 

and mediate immune-escape of tumor cells. Among the epigenetically deregulated genes we 526 

identified several with immune regulatory function. Therefore, we aimed to determine whether 527 

these are also aberrantly expressed at the protein level in CLL cells. We selected 5 candidates 528 
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from the list of top correlated genes which are known to be involved in lymphocyte/T-lymphocyte 529 

related processes (TIGIT, CTLA-4, CD276, LILRB4, and CD2; Figure 6a). Flow cytometry was 530 

utilized for the differential analysis of protein expression in malignant (CD19+CD5+) and normal 531 

(CD19+CD5-) B cells of 7 CLL patients’ blood samples (gating strategy in Supplementary 532 

Figure S9a). We found that CTLA-4, TIGIT, LILRB4 and CD276 showed statistically significant 533 

increased expression in malignant B cells as compared to normal B cells (CTLA-4, p-val=0.047; 534 

TIGIT, p-val=0.016; CD276, p-val=0.016; LILRB4, p-val=0.016 [Wilcoxon paired signed-rank 535 

test]), while CD2 surface expression was not detectable neither in normal nor CLL B cells 536 

(Figure 6b; Supplementary Figure S9b). Despite the fact that the functional relevance of some 537 

of these aberrantly expressed proteins (TIGIT, CD276 or LILRB4) still remains to be elucidated 538 

in the context of CLL, our observation is of particular interest for the development of new 539 

therapeutic strategies in CLL. Options to interfere with the signaling of these receptors are 540 

currently investigated as potential novel therapeutic strategies in several cancer entities. 541 

 542 

DISCUSSION 543 

Applying Methyl-COOM analysis to CLL cells, we identified a number of microRNAs and 544 

protein-coding genes that are epigenetically deregulated and validated the CLL-specific 545 

epigentic deregulation for the vast majority of target genes in an independent patient cohort. 546 

These epigentically deregulated transcripts are likely involved in the pathogenesis or 547 

maintenance of CLL and are functionally enriched for immune system- and lymphocyte-related 548 

processes. The expression levels of these transcripts are very low in normal B cells, which is in 549 

stark contrast to the strong overexpression observed in CLL cells. These epigenetically 550 

deregulated transcripts are further expressed and detectable on the surface of malignant B 551 

cells. CLL patients are known to progressively develop an immunosuppressive state including 552 

dysfunctional T cells [57] and our data suggest that CLL cells contribute to the 553 
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immunosuppressive microenvironment as well as T cell exhaustion by expressing immune 554 

regulatory molecules. Immune dysregulation is known to worsen over the course of the disease, 555 

e.g. effector T cells are increased in early-stage disease and show progressive accumulation 556 

and exhaustion in the late-stage [57,58]. This, together with the fact that CLL frequently affects 557 

older patients with co-morbidities, makes CLL an ideal candidate for the development of 558 

effective immunotherapies. CD276, TIGIT and LILRB4 would be of particular interest, since to 559 

our knowledge they were not yet considered as immunotherapeutic targets in CLL. TIGIT is a 560 

recently identified inhibitory receptor expressed on T cells and natural killer (NK) cells. In T cells, 561 

TIGIT expression inhibits cell proliferation, cytokine production, and T cell receptor signaling 562 

[59]. In tumors, TIGIT is involved in mediating a T cell exhaustion phenotype, which is 563 

manifested by poor effector function of T cells and, consequently, decreased ability to eliminate 564 

tumor cells. In non-Hodgkin B cell lymphomas, PD1- and TIGIT-expressing intratumoral T cells 565 

were shown to mark dysfunctional or exhausted effector T cells [60]. CLL patients with an 566 

advanced disease stage display elevated numbers of TIGIT+ CD4+ T cells compared to low risk 567 

patients [61]. In preclinical models of colorectal and breast carcinoma, TIGIT blockade was 568 

shown to reverse the exhaustion phenotype of cytotoxic T cells and to inhibit tumor growth [62]. 569 

Another immune inhibitory receptor, LILRB4, was reported as tumor-associated antigen that is 570 

highly expressed on monocytic AML cells [63,64]. It was also reported as a selective marker of 571 

neoplastic B cells and HSCs from CLL patients [65]. LILRB4 targeting, either by antibodies or by 572 

CAR-T cells, impeded AML development [55,56]. CD276 overexpression, on the other hand, 573 

was linked to anti-apoptosis in colorectal cancer through activation of Jak2-STAT3 signaling 574 

pathway, and as a result, increased expression of anti-apoptotic protein Bcl-2 [66]. High CD276 575 

expression levels were already linked to poor prognosis in CLL, prostate and pancreatic cancer 576 

[67–70]. Altogether, TIGIT, LILRB4 and CD276 represent attractive therapeutic targets for 577 

treatment of CLL. 578 
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The present study demonstrates that Methyl-COOM delineates cancer-specific DNA methylation 579 

patterns and identifies deregulated pathways involved in the pathogenesis or maintenance of 580 

CLL. Our work serves as a proof-of-concept that tracing the cell-of-origin by comparison to 581 

normal differentiation trajectories is of great conceptual importance in cancer epigenetics. 582 

Identifying the cell-of-origin is not only crucial for the precise analysis of epigenetic data, but it is 583 

also important for clinical translation. The cell-of-origin impacts on tumor biology, affects chemo- 584 

and radiosensitivity and influences disease outcome. For instance, studies in a murine model of 585 

MLL-rearranged AML have shown that the cell-of-origin can influence the phenotype and the 586 

aggressiveness of the resulting leukemia [71]. Likewise, glioma subtypes vary in their response 587 

to therapy and share molecular signatures with different normal neural lineages, suggesting a 588 

difference in their cellular origin [72–76]. So far, the identification of a cancer’s cellular origin is 589 

based on genetic lineage-tracing experiments in mice, like the ones from Blanpain and 590 

colleagues demonstrating the presence of distinct cells-of-origin for two types of skin cancer 591 

[77]. In colorectal cancer the cell-of-origin has been studied intensively, pointing towards three 592 

potential cell types as founder cells: intestinal stem cells [78–82], transit amplifying cells [78,83], 593 

and differentiated villus cells [83]. In most instances, however, the precise cell-of-origin, in which 594 

transformation occurs, remains undefined.  595 

Methyl-COOM can, in principle, be applicable to any type of DNA methylation data as a source 596 

of epigenetic information. In contrast to previous reports in CLL and other malignancies, 597 

epigenetic pathomechanisms were investigated using an approach that systematically avoids 598 

confounding factors introduced by epigenome dynamics occurring in the context of physiological 599 

differentiation processes. It has been demonstrated that similar concepts apply to other 600 

lymphatic neoplasms, e.g. T-ALL, DLBCL or MCL [84–87]. However, for other tumors, including 601 

myeloid malignancies, the knowledge on the cell-of-origin is still scarce. Therefore, beyond the 602 
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field of CLL research this study could serve as a template for the analysis of epigenomic data in 603 

other cancer entities.     604 

 605 

CONCLUSIONS 606 

Our work describes a new analytical framework, Methyl-COOM, to delineate cancer-specific 607 

DNA methylation patterns, a concept that should, in principle, be applicable to all tumor entities. 608 

Using Methyl-COOM, we interrogated DNA methylomes of CLL samples in the context of 609 

normal B cell differentiation. This enabled us to unmask abnormal transcription factor and super 610 

enhancer activities, as well as to identify aberrant transcript expression in CLL. Furthermore, we 611 

were able to demonstrate that epigenetically deregulated transcripts are enriched in immune 612 

regulatory molecules which are also expressed at the protein level in CLL cells, suggesting that 613 

CLL cells contribute to immunosuppression and T cell exhaustion by upregulation of immune 614 

regulatory molecules. This finding might serve as a starting point for the development of novel 615 

therapeutic strategies to overcome immune evasion of CLL cells. 616 

  617 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

DECLARATIONS 618 

Ethics approval and consent to participate 619 

The study was conducted in accordance with the declaration of Helsinki and was approved by 620 

the Ethics Committee Heidelberg (University of Heidelberg, Germany; S-206/2011; S-356/2013) 621 

and by the Ethics Committee Ulm (Ulm University; 130/2002). Samples were taken after 622 

patients gave their written informed consent. 623 

 624 

Availability of data and materials 625 

The datasets used and analysed in the current study were published previously as indicated in 626 

Table 3. The Methyl-COOM framework is accessible via GitHub 627 

(https://github.com/justannwska/Methyl-COOM)[88].  628 

 629 

Table 3: List of datasets used in the manuscript. 630 

Dataset Source 

Illumina 450 data, normal B cells Oakes et al. [4] 

Illumina 450 data, CLLs 
discovery cohort 

Dietrich et al. [21] 

Illumina 450 data, CLLs 
validation cohort 

Oakes et al. [4] 

RNAseq, CLLs Dietrich et al. [21] 

RNAseq, normal B cells International Cancer Genome Consortium (ICGC); 
EGAD00001000258 

sncRNAseq, CLL Blume et al. [20] 

ENCODE TF ChIP-seq 
GM12878 

ENCODE project [89] 

ATAC-seq, normal B cells and 
CLLs 

DKFZ PRECiSE consortium [25] 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

ChIP-seq, normal B cells and 
CLLs 

DKFZ PRECiSE consortium [25]; 
EGAS00001002518 

Promoter segmentation data CLL DKFZ PRECiSE consortium [25]; GSE113336 

ChromHMM GM12878 data ENCODE ENCSR212BHV [89] 

 631 

URLs 632 

Bioconductor http://bioconductor.org/ [90] 633 

Human genome (hg19, GRCh37) http://genome.ucsc.edu/downloads.html  634 

LOLA https://bioconductor.org/packages/release/bioc/html/LOLA.html  [31] 635 

ENCODE https://www.encodeproject.org/  [89] 636 

HOMER http://homer.ucsd.edu/homer/  [30] 637 

miRTarBase: http://mirtarbase.mbc.nctu.edu.tw/php/index.php  [91] 638 

TarBase v8.0 http://carolina.imis.athena-639 

innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex [92] 640 

microRNA.org http://www.microrna.org [93] 641 

miRBase v.18.0 http://www.mirbase.org [94] 642 

 643 

Competing interests 644 

The authors declare that they have no competing interests. 645 

 646 

  647 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Funding 648 

This work was supported in part by the PRECISE consortium with funds from the German 649 

Federal Ministry of Education and Reserach (031L0076A), and the Helmholtz Foundation (CP, 650 

KR, DM, MartS). Further support came from the German Cancer AID (DKH 70113869  to PL, 651 

CP). JW was supported by the Helmholtz International Graduate School for Cancer Research in 652 

Heidelberg. The funding bodies had no role in the design of the study, nor in the collection, 653 

analysis, and interpretation of data, nor in writing the manuscript. 654 

 655 

Author contributions 656 

J.A.W, C.P. and D.B.L. developed the research concept, designed the analysis workflow and 657 

experiments, and collected and interpreted the data. J.A.W., R.T., N.I., T.H., Y.A. and P.L. 658 

analyzed data. J.A.W. performed experiments. K.R., J.M., L.K., D.M., T.Z., Marc.S., R.K., S.S., 659 

J.B. and C.C.O. provided clinical samples or data. P.M.R. and Mart.S. performed flow cytometry 660 

experiments and analyzed data. J.A.W, C.P. and D.B.L. prepared the figures and wrote the 661 

manuscript. C.P. and D.B.L. jointly supervised the project. All authors contributed to the writing 662 

of the manuscript and approved the final version. 663 

 664 

Acknowledgments 665 

We would like to thank Thomas Höfer, Stefan Fröhling, Annika Baude, and Simin Öz for helpful 666 

discussions.  667 

 668 

Corresponding authors 669 

Correspondence to Christoph Plass (c.plass@dkfz.de) or to Daniel B. Lipka (d.lipka@dkfz.de) 670 

 671 

  672 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

REFERENCES 673 

1. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational 674 
implications. Nat Rev Cancer. 2011;11:726–34.  675 

2. Damm F, Mylonas E, Cosson A, Yoshida K, Della Valle V, Mouly E, et al. Acquired initiating mutations in 676 
early hematopoietic cells of CLL patients. Cancer Discov. 2014;4:1088–101.  677 

3. Kulis M, Merkel A, Heath S, Queiros AC, Schuyler RP, Castellano G, et al. Whole-genome fingerprint of 678 
the DNA methylome during human B cell differentiation. Nat Genet. 2015;47:746–56.  679 

4. Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, et al. DNA methylation dynamics 680 
during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. 681 
Nat Genet. 2016;48:253–64.  682 

5. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.  683 

6. Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, et al. Downregulation of death-684 
associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129:879–90.  685 

7. Raval A, Byrd JC, Plass C. Epigenetics in chronic lymphocytic leukemia. Semin Oncol. 2006;33:157–66.  686 

8. Claus R, Lucas DM, Ruppert AS, Williams KE, Weng D, Patterson K, et al. Validation of ZAP-70 687 
methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood. 688 
2014;124:42–8.  689 

9. Claus R, Lucas DM, Stilgenbauer S, Ruppert AS, Yu L, Zucknick M, et al. Quantitative DNA methylation 690 
analysis identifies a single CpG dinucleotide important for ZAP-70 expression and predictive of prognosis 691 
in chronic lymphocytic leukemia. J Clin Oncol. 2012;30:2483–91.  692 

10. Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, et al. Epigenetic profiling in chronic 693 
lymphocytic leukemia reveals novel methylation targets. Cancer Res. 2004;64:2424–33.  694 

11. Corcoran M, Parker A, Orchard J, Davis Z, Wirtz M, Schmitz OJ, et al. ZAP-70 methylation status is 695 
associated with ZAP-70 expression status in chronic lymphocytic leukemia. Haematologica. 696 
2005;90:1078–88.  697 

12. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, et al. Extensive promoter DNA 698 
hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic 699 
lymphocytic leukemia. Cancer Res. 2012;72:3775–85.  700 

13. Pallasch CP, Patz M, Park YJ, Hagist S, Eggle D, Claus R, et al. miRNA deregulation by epigenetic 701 
silencing disrupts suppression of the oncogene PLAG1 in chronic lymphocytic leukemia. Blood. 702 
2009;114:3255–64.  703 

14. Wang LQ, Kwong YL, Kho CS, Wong KF, Wong KY, Ferracin M, et al. Epigenetic inactivation of miR-9 704 
family microRNAs in chronic lymphocytic leukemia--implications on constitutive activation of NFkappaB 705 
pathway. Mol Cancer. 2013;12:173.  706 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

15. Wong KY, Yim RL, Kwong YL, Leung CY, Hui PK, Cheung F, et al. Epigenetic inactivation of the MIR129-707 
2 in hematological malignancies. J Hematol Oncol. 2013;6:16.  708 

16. Wang LQ, Kwong YL, Wong KF, Kho CS, Jin DY, Tse E, et al. Epigenetic inactivation of mir-34b/c in 709 
addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J Transl Med. 2014;12:52.  710 

17. Deneberg S, Kanduri M, Ali D, Bengtzen S, Karimi M, Qu Y, et al. microRNA-34b/c on chromosome 711 
11q23 is aberrantly methylated in chronic lymphocytic leukemia. Epigenetics. 2014;9:910–7.  712 

18. Baer C, Oakes CC, Ruppert AS, Claus R, Kim-Wanner SZ, Mertens D, et al. Epigenetic silencing of miR-713 
708 enhances NF-kappaB signaling in chronic lymphocytic leukemia. Int J Cancer. 2015;137:1352–61.  714 

19. Wang LQ, Wong KY, Rosen A, Chim CS. Epigenetic silencing of tumor suppressor miR-3151 715 
contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and 716 
PIK3R2/AKT signaling pathways. Oncotarget. 2015;6:44422–36.  717 

20. Blume CJ, Hotz-Wagenblatt A, Hullein J, Sellner L, Jethwa A, Stolz T, et al. p53-dependent non-coding 718 
RNA networks in chronic lymphocytic leukemia. Leukemia. 2015;29:2015–23.  719 

21. Dietrich S, Oles M, Lu J, Sellner L, Anders S, Velten B, et al. Drug-perturbation-based stratification of 720 
blood cancer. J Clin Invest. 2018;128:427–45.  721 

22. Assenov Y, Muller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA 722 
methylation data with RnBeads. Nat Methods. 2014;11:1138–40.  723 

23. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture 724 
quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA 725 
methylation data. Bioinformatics. 2013;29:189–96.  726 

24. Desper R, Gascuel O. Fast and accurate phylogeny reconstruction algorithms based on the minimum-727 
evolution principle. J Comput Biol. 2002;9:687–705.  728 

25. DKFZ PRECiSE consortium. DKFZ PRECiSE consortium data resources. 2018.  729 

26. Ott CJ, Federation AJ, Schwartz LS, Kasar S, Klitgaard JL, Lenci R, et al. Enhancer Architecture and 730 
Essential Core Regulatory Circuitry of Chronic Lymphocytic Leukemia. Cancer Cell. 2018;34:982-995.e7.  731 

27. Fujita S, Iba H. Putative promoter regions of miRNA genes involved in evolutionarily conserved 732 
regulatory systems among vertebrates. Bioinformatics. 2008;24:303–8.  733 

28. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of mammalian 734 
microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One. 735 
2009;4:e5279.  736 

29. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, et al. An evolutionarily conserved mechanism 737 
for microRNA-223 expression revealed by microRNA gene profiling. Cell. 2007;129:617–31.  738 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

30. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple Combinations of Lineage-739 
Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell 740 
Identities. Molecular Cell. 2010;38:576–89.  741 

31. Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R 742 
and Bioconductor. Bioinformatics. 2016;32:587–9.  743 

32. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by 744 
single-cell sequencing. Nature. 2011;472:90.  745 

33. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing reveals single-746 
nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148:886–95.  747 

34. Brocks D, Assenov Y, Minner S, Bogatyrova O, Simon R, Koop C, et al. Intratumor DNA methylation 748 
heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep. 2014;8:798–806.  749 

35. Lipka DB, Witte T, Toth R, Yang J, Wiesenfarth M, Nollke P, et al. RAS-pathway mutation patterns 750 
define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun. 2017;8:2126.  751 

36. Lipka DB, Lutsik P, Plass C. From Basic Knowledge to Effective Therapies. Cancer Cell. 2018;34:871–3.  752 

37. Mallm J-P, Iskar M, Ishaque N, Klett LC, Kugler SJ, Muino JM, et al. Linking aberrant chromatin 753 
features in chronic lymphocytic leukemia to transcription factor networks. Molecular Systems Biology. 754 
2019;15:e8339.  755 

38. Boller S, Ramamoorthy S, Akbas D, Nechanitzky R, Burger L, Murr R, et al. Pioneering Activity of the 756 
C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming. Immunity. 757 
2016;44:527–41.  758 

39. Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, et al. Transcription factor AP1 759 
potentiates chromatin accessibility and glucocorticoid receptor binding. Molecular cell. 2011;43:145–55.  760 

40. Ren G, Cui K, Zhang Z, Zhao K. Division of labor between IRF1 and IRF2 in regulating different stages 761 
of transcriptional activation in cellular antiviral activities. Cell Biosci. 2015;5:17.  762 

41. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. Pioneer transcription factors 763 
target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 2015;161:555–68.  764 

42. Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, et al. DNA methylation dynamics during in vivo 765 
differentiation of blood and skin stem cells. Mol Cell. 2012;47:633–47.  766 

43. Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q, et al. Identification of 767 
regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and 768 
DNA methylome analysis. Cell Stem Cell. 2014;15:507–22.  769 

44. Lipka DB, Wang Q, Cabezas-Wallscheid N, Klimmeck D, Weichenhan D, Herrmann C, et al. 770 
Identification of DNA methylation changes at cis -regulatory elements during early steps of HSC 771 
differentiation using tagmentation-based whole genome bisulfite sequencing. Cell Cycle. 2014;13:3476–772 
87.  773 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

45. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic 774 
leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A. 2002;99:6955–60.  775 

46. Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S, Young DC, et al. TWIST2 demonstrates 776 
differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic 777 
lymphocytic leukemia. J Clin Oncol. 2005;23:3877–85.  778 

47. Yuille MR, Condie A, Stone EM, Wilsher J, Bradshaw PS, Brooks L, et al. TCL1 is activated by 779 
chromosomal rearrangement or by hypomethylation. Genes Chromosomes Cancer. 2001;30:336–41.  780 

48. Cahill N, Rosenquist R. Uncovering the DNA methylome in chronic lymphocytic leukemia. 781 
Epigenetics. 2013;8:138–48.  782 

49. Melki JR, Vincent PC, Brown RD, Clark SJ. Hypermethylation of E-cadherin in leukemia. Blood. 783 
2000;95:3208–13.  784 

50. Bechter OE, Eisterer W, Dlaska M, Kuhr T, Thaler J. CpG island methylation of the hTERT promoter is 785 
associated with lower telomerase activity in B-cell lymphocytic leukemia. Exp Hematol. 2002;30:26–33.  786 

51. Chantepie SP, Vaur D, Grunau C, Salaun V, Briand M, Parienti JJ, et al. ZAP-70 intron1 DNA 787 
methylation status: determination by pyrosequencing in B chronic lymphocytic leukemia. Leuk Res. 788 
2010;34:800–8.  789 

52. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, et al. ZAP-70 expression 790 
identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior 791 
clinical outcome, and distinct gene expression profile. Blood. 2003;101:4944–51.  792 

53. Strathdee G, Sim A, Parker A, Oscier D, Brown R. Promoter hypermethylation silences expression of 793 
the HoxA4 gene and correlates with IgVh mutational status in CLL. Leukemia. 2006;20:1326–9.  794 

54. Zenz T. Exhausting T cells in CLL. Blood. 2013;121:1485–6.  795 

55. Hanna BS, Roessner PM, Scheffold A, Jebaraj BMC, Demerdash Y, Ozturk S, et al. PI3Kdelta inhibition 796 
modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. 797 
Leukemia. 2019;33:1427–38.  798 

56. Lewinsky H, Barak AF, Huber V, Kramer MP, Radomir L, Sever L, et al. CD84 regulates PD-1/PD-L1 799 
expression and function in chronic lymphocytic leukemia. J Clin Invest. 2018;128:5465–78.  800 

57. Hanna BS, Roessner PM, Yazdanparast H, Colomer D, Campo E, Kugler S, et al. Control of chronic 801 
lymphocytic leukemia development by clonally-expanded CD8(+) T-cells that undergo functional 802 
exhaustion in secondary lymphoid tissues. Leukemia. 2019;33:625–37.  803 

58. Forconi F, Moss P. Perturbation of the normal immune system in patients with CLL. Blood. 804 
2015;126:573–81.  805 

59. Joller N, Kuchroo VK. Tim-3, Lag-3, and TIGIT. Curr Top Microbiol Immunol. 2017;410:127–56.  806 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

60. Josefsson SE, Beiske K, Blaker YN, Forsund MS, Holte H, Ostenstad B, et al. TIGIT and PD-1 Mark 807 
Intratumoral T Cells with Reduced Effector Function in B-cell Non-Hodgkin Lymphoma. Cancer Immunol 808 
Res. 2019;7:355–62.  809 

61. Catakovic K, Gassner FJ, Ratswohl C, Zaborsky N, Rebhandl S, Schubert M, et al. TIGIT expressing 810 
CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. 811 
Oncoimmunology. 2017;7:e1371399.  812 

62. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT 813 
regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26:923–37.  814 

63. Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell 815 
suppression and tumour infiltration. Nature. 2018;562:605–9.  816 

64. John S, Chen H, Deng M, Gui X, Wu G, Chen W, et al. A Novel Anti-LILRB4 CAR-T Cell for the 817 
Treatment of Monocytic AML. Mol Ther. 2018;26:2487–95.  818 

65. Zurli V, Wimmer G, Cattaneo F, Candi V, Cencini E, Gozzetti A, et al. Ectopic ILT3 controls BCR-819 
dependent activation of Akt in B-cell chronic lymphocytic leukemia. Blood. 2017;130:2006–17.  820 

66. Zhang T, Jiang B, Zou ST, Liu F, Hua D. Overexpression of B7-H3 augments anti-apoptosis of 821 
colorectal cancer cells by Jak2-STAT3. World J Gastroenterol. 2015;21:1804–13.  822 

67. Ramsay AG, Clear AJ, Fatah R, Gribben JG. Multiple inhibitory ligands induce impaired T-cell 823 
immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: 824 
establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120:1412–21.  825 

68. Inamura K, Takazawa Y, Inoue Y, Yokouchi Y, Kobayashi M, Saiura A, et al. Tumor B7-H3 (CD276) 826 
Expression and Survival in Pancreatic Cancer. J Clin Med. 2018;7.  827 

69. Roth TJ, Sheinin Y, Lohse CM, Kuntz SM, Frigola X, Inman BA, et al. B7-H3 ligand expression by 828 
prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 829 
2007;67:7893–900.  830 

70. Wang L, Kang FB, Shan BE. B7-H3-mediated tumor immunology: Friend or foe? Int J Cancer. 831 
2014;134:2764–71.  832 

71. Krivtsov AV, Figueroa ME, Sinha AU, Stubbs MC, Feng Z, Valk PJ, et al. Cell of origin determines 833 
clinically relevant subtypes of MLL-rearranged AML. Leukemia. 2013;27:852–60.  834 

72. Alcantara Llaguno S, Chen J, Kwon C-H, Jackson EL, Li Y, Burns DK, et al. Malignant Astrocytomas 835 
Originate from Neural Stem/Progenitor Cells in a Somatic Tumor Suppressor Mouse Model. Cancer Cell. 836 
2009;15:45–56.  837 

73. Lai A, Kharbanda S, Pope WB, Tran A, Solis OE, Peale F, et al. Evidence for sequenced molecular 838 
evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol. 2011;29:4482–90.  839 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

74. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis 840 
identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, 841 
EGFR, and NF1. Cancer Cell. 2010;17:98–110.  842 

75. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based 843 
classification of central nervous system tumours. Nature. 2018;555:469–74.  844 

76. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. Hotspot mutations 845 
in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 846 
2012;22:425–37.  847 

77. Blanpain C. Tracing the cellular origin of cancer. Nat Cell Biol. 2013;15:126–34.  848 

78. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem 849 
cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.  850 

79. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal 851 
stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–7.  852 

80. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40:915–853 
20.  854 

81. Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH, et al. Long-lived intestinal 855 
tuft cells serve as colon cancer-initiating cells. J Clin Invest. 2014;124:1283–95.  856 

82. Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, et al. The pan-ErbB negative regulator 857 
Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell. 2012;149:146–58.  858 

83. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, et al. Intestinal 859 
tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 860 
2013;152:25–38.  861 

84. Queiros AC, Beekman R, Vilarrasa-Blasi R, Duran-Ferrer M, Clot G, Merkel A, et al. Decoding the DNA 862 
Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. Cancer Cell. 2016;30:806–863 
21.  864 

85. Shaknovich R, Geng H, Johnson NA, Tsikitas L, Cerchietti L, Greally JM, et al. DNA methylation 865 
signatures define molecular subtypes of diffuse large B-cell lymphoma. Blood. 2010;116:e81–9.  866 

86. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric 867 
and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.  868 

87. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H, et al. HOXA genes are 869 
included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 870 
2005;106:274–86.  871 

88. Wierzbisnka JA. Methyl-COOM Framework [Internet]. Available from: 872 
https://github.com/justannwska/Methyl-COOM 873 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

89. ENCODE project ChIP-seq data matrix. ENCODE project ChIP-seq data.  874 

90. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-875 
throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–21.  876 

91. Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, et al. miRTarBase: a database curates 877 
experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39:D163-169.  878 

92. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, et al. 879 
DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. 880 
Nucleic Acids Research. 2018;46:D239–45.  881 

93. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and 882 
expression. Nucleic Acids Res. 2008;36:D149-153.  883 

94. Griffiths-Jones S. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids 884 
Research. 2006;34:D140–4.  885 

 886 

  887 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


MGZ

hiM
BCNBC

GCF
loMBC
intMBC

CLL1

COO1

hypermethylation

Δ
M
et
hy
la
tio
nvs.

COO CLL-speci�c

COO1

COO2

B cellsDNA Methylation!
Δ
M
et
hy
la
tio
n

Δ
M
et
hy
la
tio
n

CLL2

COO2
vs.

a

Figure 1

Methyl-COOM

�

�

class A "."#$ class B %.2#$ class C 1.%&$ class D %.%'$

(ynamic
sta)le

1*$
&'$

�y�a�i� �ta�le

�ll C���

�ite� �ith e�ige�eti� � �ell �r�gra��i�g

�la�� �
hyper
n+1&,

�la�� C
hypo
n+'2,&

�la�� �
hyper
n+1#"

�ite� �ith�ut e�ige�eti� � �ell �r�gra��i�g

�la�� �
hypo
n+#"#"

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933937doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933937
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

Figure Legends 888 

 889 

Figure 1. Identification of CLL-specific DNA methylation events using Methyl-COOM.  890 

a) Schematic outline of the Methyl-COOM pipeline used for the identification of CLL-specific 891 

DNA methylation events. Methylome data of six distinct B cell subpopulations, representing 892 

different stages of B cell differentiation were used to infer normal B cell differentiation. A linear 893 

regression model was applied to model DNA methylation dynamics during normal B cell 894 

differentiation (‘DNA methylation: B cells’). DNA methylomes of 34 primary CLL samples were 895 

used to identify the closest virtual normal B cell (cell-of-origin; COO) based on phylogeny 896 

analysis. The linear regression model was then used to infer the DNA methylome of the COO 897 

(‘DNA methylation: COO’). Next, the DNA methylome of each CLL was compared to the DNA 898 

methylome of its COO. CLL-specific aberrant DNA methylation was defined as a significant 899 

deviation from the inferred COO methylome (‘DNA methylation: CLL-specific’).  900 

b) Identification of the cell-of-origin in CLL samples using phylogenetic analysis. A phylogenetic 901 

tree was generated using a set of linear CpG sites that show dynamic DNA methylation 902 

changes during normal B cell differentiation (linear B cell-specific CpGs, 59,326 CpGs). 903 

Pairwise Manhattan distances were calculated between DNA methylation profiles of normal B 904 

cells and CLL samples at B cell-specific CpGs and were subsequently used to assign the 905 

closest normal (virtual) B cell methylome (location of the node on the phylogenetic tree = 906 

differentiation stage of the cell-of-origin) to each CLL case. NBCs - naïve B cells; GCFs – 907 

germinal center founder B cells; loMBCs – early non class-switched memory B cells; intMBCs – 908 

non class-switched memory B cells; sMGZs – splenic marginal zone B cells; hiMBCs – class-909 

switched memory B cells (mature B cells). CLL samples are depicted in orange color. Normal B 910 

cells are represented in green. 911 
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c) Summary of CLL-specific DNA methylation events. Top: pie chart displays the frequency of 912 

CpGs that are either dynamic (green) or stable (grey) during normal B cell differentiation. 913 

Middle: pie charts depict the frequency of CLL-specific DNA methylation events as fractions of 914 

the dynamic (class A and B; left), and stable (class C and D; right) sites. Bottom: schematic 915 

depicting the classification of CLL-specific DNA methylation events. We identified two groups: 916 

‘sites with epigenetic B cell programming’ and ‘sites without epigenetic B cell programming’. 917 

‘Sites with epigenetic B cell programming’ undergo DNA methylation programming during 918 

normal B cell differentiation, encompassing hypomethylation (class A) and hypermethylation 919 

events (class B) relative to the DNA methylome of the COO. ‘Sites without epigenetic B cell 920 

programming’ are defined as CpG sites without significant DNA methylation changes during 921 

normal B cell differentiation and are classified as either hypo- or hypermethylation (class C and 922 

D, respectively). Numbers of CLL-specific DNA methylation events (CLL-specific CpGs) 923 

resolved by class are indicated at the bottom.  924 
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Figure 2. Programming of disease-specific DNA methylation patterns in CLL. 927 

a) Heatmap depicting DNA methylation changes (ΔMethylation [%]) at CLL-specific CpG sites 928 

relative to the samples’ COO. Unsupervised hierarchical clustering of CLL-specific CpGs, class 929 

A and B sites (left), class C and D sites (right). The direction of DNA methylation change (Dir 930 

[%]) is indicated as blue and red bars for hypo- and hypermethylation, respectively, and the 931 

numbers of CpG sites plotted are indicated next to the bars. Differentiation stages (DS) are 932 

denoted as a color gradient (white-orange), where CLL samples with immature COO are 933 

represented in white and samples with a more mature COO in orange. DS refers to % normal 934 

differentiation programming achieved (relative to hiMBCs). 935 

b) Density plots summarizing the distribution of absolute DNA methylation levels for all CLL-936 

specific CpG sites stratified by class (classes A - D). CLL patients (CLL): orange, naïve B cells 937 

(NBC): light green, class-switched memory B cells (hiMBC): dark green. 938 

c) Box plots and ribbon plots displaying the average DNA methylation change for each class of 939 

CLL-specific alterations across normal B cells and CLLs. Left (normal): average DNA 940 

methylation change (ΔMeth) of CLL-specific CpGs during normal B cell differentiation from 941 

naïve B cells (NBCs) to class-switched memory B cells (hiMBCs) plotted for all classes (classes 942 

A [n=5757 CpG sites], B [n=183 CpG sites], C [n=4238 CpG sites], and D [n=157 CpG sites]). 943 

Right (CLL): ΔMeth for CLL-specific CpGs in CLL. ΔMeth [%] is represented as the mean DNA 944 

methylation change relative to the expected DNA methylation level of the COO. Standard 945 

deviation is depicted as grey shaded ribbons. DS refers to % normal differentiation 946 

programming achieved (relative to hiMBCs).  947 
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Figure 3. CLL-specific DNA methylation differences result from aberrant transcription 950 

factor programming. 951 

a) Enrichment of chromatin states in sequences representing CLL-specific DNA methylation. 952 

Chromatin states were defined using the 15-state ChromHMM model from immortalized B cells 953 

[88] for CLL-specific methylation sites of the classes A - D. The enrichment in category 954 

‘Repetitive/CNV’ represents the averaged enrichment value of ChromHMM states called 955 

‘Repetitive/CNV’. Log2 fold change (log2 FC) was calculated using all 450k probes as a 956 

background. 957 

b) Enrichment of super-enhancers (SE) in sequences representing CLL-specific DNA 958 

methylation. SE were defined as either being gained in CLLs (gained) or consensus between 959 

CLLs and B cells (stable). Fold change (FC) was calculated using all 450k probes as a 960 

background. 961 

c) ATAC-seq read density (normalized read counts *10-3) at CLL-specific CpG sites (±1kb) for 962 

categories of classes A, B, C and D. CLL samples (n=18) are represented in orange, normal 963 

CD19+ B cells (n=3) in green. 964 

d) Transcription factor enrichment analysis using ENCODE ChIP-seq peaks from the B-cell 965 

lymphoblastoid cell line, GM12878. Displayed are –log10(p-values) resulting from Fisher’s exact 966 

test with false discovery rate correction. 967 

e) Transcription factor motif enrichment analysis using HOMER. The top 10 most enriched TF 968 

motifs for each class are displayed. The colors represent –log10(p-values) derived from a 969 

cumulative binomial distribution function as implemented in HOMER.  970 

f) ATAC-seq & ChIP-seq read density (normalized read counts *10-3) and DNA methylation 971 

profiles at class D CpGs co-locating with CTCF motifs (23 CpGs) (±1kb). CLL samples (n=7 972 
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CTCF ChIP-seq, n=18 ATAC-seq) are represented in orange, normal CD19+ B cells (n=4 CTCF 973 

ChIP-seq, n=3 ATAC-seq) in green. 974 

g) Locus plots of exemplary genes associated with CTCF/classD events. Locus plots include 975 

data from CTCF ChIP-seq on normal B cells (red) and CLL (blue); ATAC-seq on normal B cells 976 

(green) and CLL (purple); RNA-seq on NBC (light green), hiMBC (dark green) and CLL 977 

(orange). The class D CpGs are annotated in red.  978 
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Figure 4. microRNAs associated with CLL-specific DNA methylation.  981 

a) Candidate CLL-specific microRNAs deregulated by class A events in their promoter regions. 982 

Epigenetic programming during normal B cell differentiation is represented as a green line. 983 

Average DNA methylation values are represented as dots; normal B cell subpopulations (green 984 

dots); CLL samples (white-orange dots). The y-axis represents DNA methylation levels (%), 985 

while the x-axis depicts the differentiation stage of normal B cell subpopulations and of CLL 986 

samples relative to hiMBCs (DS).  987 

b) Candidate CLL-specific microRNAs deregulated by class C events in their promoter regions. 988 

Epigenetic programming during normal B cell differentiation is represented as a green line. 989 

Average DNA methylation values are represented as dots; normal B cell subpopulations (green 990 

dots); CLL samples (white-orange dots). The y-axis represents DNA methylation levels (%), 991 

while the x-axis depicts the differentiation stage of normal B cell subpopulations and of CLL 992 

samples relative to hiMBCs (DS).  993 

c) CLL-specific microRNAs target epigenetic regulators. Left panel: schematic outline of 994 

microRNA-target gene prediction. Two databases of experimentally validated targets of 995 

microRNAs, TarBase v8.0 and miRTarBase, were used to define a set of CLL-specific 996 

microRNA targets. Right panel: normalized gene expression levels (rlog normalized) of 997 

epigenetic regulators being targeted by CLL-specific microRNAs as well as gene expression 998 

levels of non-target genes (negative controls; HPRT1 and MRPS12) are shown. Recurrently 999 

mutated epigenetic regulators in CLL are presented in bold. Statistical significance of 1000 

expression change between normal B cells (NBCs, hiMBCs) and CLLs was tested using 1001 

Wilcoxon rank sum test (p-values: ARDB1=0.002; ATRNL1=0.0013; CASZ1= 0.000014; 1002 

GTF3C4=0.000014; PHF20=0.000014; CHEK1= 0.000025; BUB1= 0.007; ARID1A=0.000014; 1003 
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CHD2=0.00003; ASXL1=0.00005; SETD2=0.00002; SETD1A=0.000014; KMT2D= 0.00007; 1004 

HPRT1=0.43, MRPS12=0.45). 1005 
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Figure 5
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Figure 5. Protein-coding genes associated with CLL-specific aberrant DNA methylation. 1008 

a) Waterfall plots summarizing the correlation coefficients [r] between DNA methylation in the 1009 

promoters and gene expression profiles of protein-coding genes for each class of CLL-specific 1010 

alterations (classes A - D). The direction of DNA methylation change is indicated in blue and red 1011 

for hypo- and hypermethylation, respectively.  1012 

b) CLL-specific epigenetically deregulated transcripts. Left panel: heatmap depicting absolute 1013 

DNA methylation levels [%] at CLL-specific CpG sites (classes A - D) in the promoter regions of 1014 

protein-coding genes. Samples were sorted according to the differentiation stage. Differentiation 1015 

stages are denoted as color gradients, CLLs (white - orange), normal B cells (light - dark green). 1016 

Middle panel: heatmap depicting normalized gene expression levels (rlog normalization) of 1017 

protein-coding genes in B cells (light - dark green) and CLLs (white - orange). Transcripts 1018 

enriched for more than one class of CLL-specific events in their promoter regions are marked 1019 

with asterisks. Right panel: barplots summarizing correlation coefficients [r] from Pearson 1020 

correlation analysis between DNA methylation at CLL-specific CpGs in the promoter region and 1021 

protein-coding gene expression levels. The direction of DNA methylation change is indicated in 1022 

blue and red for hypo- and hypermethylation, respectively.  1023 
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Figure 6. Flow cytometry analysis of T cell-/lymphocyte-specific markers on normal and 1026 

malignant B cells from CLL patients. 1027 

a) Summary scheme representing functional implications of CLL-specific candidate genes 1028 

selected for flow cytometric analysis.  1029 

b) Flow cytometric analysis of expression of CTLA-4, TIGIT, CD276, LILRB4, and CD2 on 1030 

peripheral blood B cells of CLL patients. The expression was determined for non-malignant B 1031 

cells (‘Normal’; CD19+ CD5- B cells, represented in green) and neoplastic B cells (‘CLL’, CD19+ 1032 

CD5+ B cells, represented in orange) detected in the same samples. ‘Co’, no antibody staining 1033 

control; ‘Ab’, staining with the antibody of interest as indicated.  1034 

c) Normalized median fluorescence intensities (target MFI - MFI of negative control [Co]; nMFI).  1035 

d) Δ normalized median fluorescence intensities between CLL cells and normal B cells (ΔnMFI 1036 

(CLL-normal)) for each patient tested.  1037 
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