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14 

Abstract 15 

According to standard models of synaptic plasticity, correlated activity between 16 

connected neurons drives changes in synaptic strengths to store associative 17 

memories. Here we tested this hypothesis in vivo by manipulating the activity of 18 

hippocampal place cells and measuring the resulting changes in spatial selectivity. 19 

We found that the spatial tuning of place cells was rapidly reshaped via 20 

bidirectional synaptic plasticity. To account for the magnitude and direction of 21 

plasticity, we evaluated two models – a standard model that depended on 22 

synchronous pre- and post-synaptic activity, and an alternative model that 23 
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depended instead on whether active synaptic inputs had previously been 1 

potentiated. While both models accounted equally well for the data, they predicted 2 

opposite outcomes of a perturbation experiment, which ruled out the standard 3 

correlation-dependent model. Finally, network modeling suggested that this form 4 

of bidirectional synaptic plasticity enables population activity, rather than pairwise 5 

neuronal correlations, to drive plasticity in response to changes in the 6 

environment. 7 

 8 

Main Text 9 

Activity-dependent changes in synaptic strength can flexibly alter the selectivity of 10 

neuronal firing for particular features of the environment, providing a cellular substrate for 11 

learning and memory. Various forms of Hebbian synaptic plasticity have been considered 12 

for decades to be the main or even only synaptic plasticity mechanisms present within 13 

most brain regions of a number of species. The core feature of such plasticity 14 

mechanisms is that they are autonomously driven by the repeated presence of correlated 15 

presynaptic and postsynaptic activity that leads to either increases or decreases in 16 

synaptic strength depending on the exact temporal coincidence (1-4). 17 

The hippocampus plays an important role in many forms of learning and memory, 18 

and the spatial firing rates of hippocampal place cells have been shown to change with 19 

alterations in environmental context or the locations of salient features, like reward (5-20 

11). Furthermore in CA1 neurons, place cell activity can emerge in a single trial following 21 

a dendritic calcium spike (also called a plateau potential) (12-14). The form of synaptic 22 

plasticity responsible for this rapid change in selectivity, termed behavioral timescale 23 
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synaptic plasticity (BTSP), modifies synaptic inputs active within a multi-second time 1 

window around the plateau potential. That BTSP strengthens many synaptic inputs whose 2 

activation did not cause or even coincide with postsynaptic activity suggests that it might 3 

be a fundamentally different form of plasticity than classical correlation-driven Hebbian 4 

plasticity (1-3). Such a plasticity rule could enable representation learning in cortical brain 5 

regions like the hippocampus to be guided by delayed behavioral outcomes, rather than 6 

by short timescale associations of neuronal input and output. However, it was not clear 7 

from previous experiments if short timescale correlations would modulate changes in 8 

synaptic strength induced by BTSP, which may reveal similarities with other correlative 9 

forms of plasticity.  10 

In the current study, we sought to directly determine the dependence of BTSP on 11 

the correlation of presynaptic activity and postsynaptic depolarization in individual place 12 

cells. Intracellular voltage recordings from CA1 place cells were established in head-fixed 13 

mice trained to run for a water reward on a circular treadmill decorated with visual and 14 

tactile cues to distinguish spatial positions (187 cm in length). We began by examining 15 

how the induction of BTSP changes the membrane potential (Vm) dynamics in neurons 16 

already exhibiting location specific firing (i.e. place cells). To do so we injected brief step 17 

currents (300 ms duration) through the intracellular electrode for a small number of 18 

consecutive laps (5-8 laps; Fig. 1, A to C) to evoke plateau potentials at a second location 19 

along the track some distance from the initial place field (labeled “Induction 2” in Fig. 1, A 20 

to H). We observed that the plasticity induced by experimentally-evoked dendritic 21 

plateaus both increased Vm ramp amplitude near the plateau induction position, and also 22 

decreased ramp amplitude at the peak location of the original place field (Fig. 1, B and 23 
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Fig 1. 

Fig. 1. Dendritic calcium spikes translocate hippocampal place fields via 

bidirectional synaptic plasticity. (A) Spatial firing of a CA1 pyramidal cell recorded 

intracellularly from a mouse running laps on a circular treadmill. Dendritic plateau 

potentials evoked by intracellular current injection first induce a place field at ~120 cm 
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(Induction 1), then induce a second place field at ~10 cm and suppress the first 

(Induction 2). (B) Black: intracellular Vm traces from individual laps in (A); blue: example 

low-pass filtered Vm ramp superimposed on unfiltered trace, and duplicated with 

expanded scale (inset). (C) Animal position vs. time during laps in which place fields 

were induced by evoked plateaus (locations marked with colored circles). t refers to the 

inter-event intervals between traversals of the initial place field peak location and 

evoked plateaus. (D) Spatially binned subthreshold Vm ramp depolarizations averaged 

across laps after plasticity induction. Colored dashes mark the average locations of 

evoked plateaus. (E) For each position, induced changes in Vm ramp amplitude are 

plotted against the time interval between plateau onset and traversal of that position 

during plasticity induction laps. (F – H) Same as (C – E) for a different example cell in 

which the amplitude of the original place field was not reduced following the second 

plasticity induction. (I) For all recorded neurons with a pre-existing place field in which 

plasticity was induced at a second location (n=13), changes in ramp amplitude are 

compared to initial ramp amplitude for each spatial bin (1.87 cm). Induced changes in 

ramp amplitude are negatively correlated with initial ramp amplitude. Explained variance 

(R2) and statistical significance (p < 0.05) reflect Pearson’s correlation and a 2-tailed 

null hypothesis test. (J) For the same neurons as in (I), changes in ramp amplitude are 

compared to time to plateau onset. Trace color indicates initial ramp amplitude before 

plasticity induction. (K) Two-dimensional Gaussian regression and interpolation of data 

from all recorded plasticity inductions (20 inductions from 13 cells) was used to estimate 

the plasticity rule that relates initial ramp amplitude and time to plateau onset to induced 

changes in ramp amplitude (trace color). 
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D). The time course of the Vm changes showed that decreases in ramp amplitude 1 

occurred at positions in space that were traversed multiple seconds before or after 2 

induced plateaus (Fig. 1, E and J). Furthermore, the exact magnitude of decreases in Vm 3 

ramp amplitude was greatest at spatial positions where initial ramp amplitude was largest 4 

(Fig. 1I). Interestingly, in a subset of recordings the ramp amplitude at the original place 5 

field location was not reduced (Fig. 1G). Inspection of the animals’ run trajectories during 6 

such instances revealed that long pauses in running just before the plateau induction 7 

position on multiple laps “protected” the original place field from depression by excluding 8 

the underlying location-selective inputs from the plasticity time window (Fig. 1, F to H). 9 

When both initial ramp amplitude and relative input timing are considered, it is apparent 10 

that the preferred conditions for large synaptic depression are that spatial inputs 1) have 11 

already been strengthened by previous plasticity, resulting in elevated postsynaptic 12 

depolarization at the time of presynaptic spikes, and 2) are activated within a time window 13 

~2 – 4 seconds away from a plateau (Fig. 1J, trace color indicates initial ramp amplitude; 14 

Fig 1K; two-dimensional interpolation from data, trace color indicates change in ramp 15 

amplitude, see Materials and Methods). In summary, BTSP can either strengthen or 16 

weaken synapses in a small number of trials, providing a bidirectional learning 17 

mechanism capable of both rapid memory storage and erasure. 18 

 The above analysis revealed a relationship between initial Vm ramp amplitude 19 

and bidirectional changes in Vm depolarization induced by BTSP (Fig. 1, I to K), though 20 

it was inverted compared to most common formulations of correlative plasticity in which 21 

small depolarizations induce synaptic depression and large depolarizations induce 22 

synaptic potentiation (3, 15-17). We next sought to investigate this possible causal 23 
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relationship between postsynaptic depolarization and plasticity induced by BTSP. First, 1 

we formulated a set of mathematical models of the underlying synaptic learning rule to 2 

generate testable hypotheses and to predict changes in synaptic strength given the 3 

following quantities: presynaptic spike times, postsynaptic depolarization, postsynaptic 4 

plateaus, and the strengths of each synaptic input before each plateau. 5 

We compared two classes of plasticity models - a standard model dependent on 6 

coincident presynaptic spiking and postsynaptic depolarization (correlative), and an 7 

alternative model dependent instead on the timing of presynaptic spikes and the 8 

strengths of each synaptic input at the time of activation (non-correlative) (see Materials 9 

and Methods for details). To account for the long time course of BTSP, both models 10 

required temporal filters of synaptic activity to generate slow biochemical intermediate 11 

signals marking synapses as eligible for either synaptic potentiation or depression (local 12 

synaptic eligibility; Fig. 2, A to C; fig. S1, C and D; fig. S2, C and D) (1, 3, 15, 16, 18). 13 

Biologically, these traces could correspond to the enzymatic activity of calcium-14 

dependent kinases and phosphatases, and post-translational modification and synaptic 15 

localization of proteins that regulate synaptic function (18-23). While in the voltage-16 

dependent model, the amplitudes of these eligibility signals were modulated by the 17 

value of postsynaptic depolarization at the time of presynaptic activation (Fig. 2A and 18 

fig. S1, A, C and D), in the weight-dependent model (Fig. 2C and fig. S2, C and D), 19 

eligibility for plasticity depended only on presynaptic firing rate. Both models also 20 

required a temporal filter of the plateau potential to generate a second intermediate 21 

signal that extended in time long enough to interact with synaptic activity occurring up to 22 

seconds after a plateau potential (global dendritic instructive signal; Fig. 2, A to C; fig. 23 
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Fig 2. 

Fig. 2. Two alternative models of bidirectional synaptic plasticity account for 

measured changes in Vm. (A) Diagram depicts a “voltage-dependent” model of 

bidirectional BTSP. Three factors influence changes in synaptic strength at each input: 

1) presynaptic firing rate and timing, 2) postsynaptic Vm depolarization at the time of 

presynaptic spiking, and 3) postsynaptic plateau timing and duration. The product 

(degree of correlation) of presynaptic firing rate and postsynaptic depolarization 

determines the amplitude of long duration “synaptic eligibility signals” that mark each 

synapse as eligible for later synaptic potentiation or depression. Synaptic eligibility 

signals, following an additional nonlinear transformation, are later converted into 

changes in synaptic strength when in the presence of a second required “instructive 

signal” generated downstream of postsynaptic plateaus. (B) Example traces depict the 

signals described in (A) for a single presynaptic input onto a neuron that exhibited a pre-
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existing place field before plateau induction. Shown is a single lap on the circular 

treadmill for a trial in which a plateau was evoked by intracellular current injection. Top: 

while presynaptic firing at this input (red) does not overlap in time at all with the 

postsynaptic plateau (black), it does coincide with the spatially-tuned depolarization 

underlying the cell’s initial place field (grey). Middle: this generates long duration 

eligibility signals (blue: potentiation eligibility; red: depression eligibility) that overlap in 

time with the delayed instructive signal (black) (shading marks area of signal overlap). 

Bottom: at this input a large rate of synaptic depression and a small rate of synaptic 

potentiation result in a net decrease in synaptic strength. (C) Diagram depicts an 

alternative “weight-dependent” model of bidirectional BTSP. Three factors influence 

changes in synaptic strength at each input: 1) presynaptic firing rate and timing, 2) 

postsynaptic plateau timing and duration, and 3) the current synaptic weight of each 

input before each evoked plateau. In this model, synaptic eligibility signals depend only 

on presynaptic firing. Like in (A), a plateau-related instructive signal is required to 

convert synaptic eligibility signals into changes in synaptic weight. However, in this 

model, the current weight of each input influences the magnitude and direction of 

synaptic plasticity such that weak synapses favor potentiation, and strong synapses 

favor depression. (D) The voltage-dependent model was optimized to generate 

predicted ramp depolarizations for each neuron in the experimental dataset (20 

inductions from 13 neurons). Changes in ramp amplitude are compared to time to 

plateau onset, with color indicating initial ramp amplitude (compare to Fig. 1J). (E) 

Estimate of plasticity rule obtained by regression and interpolation of model simulation 

data (compare to Fig. 1K). (F – G) Same as (D – E) for the weight-dependent model. 
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S1, C and D; fig. S2, C and D). This plateau-related “instructive signal” was broadcast 1 

globally to all synapses, and was required for plasticity. Changes in synaptic weight in 2 

the models occurred only during periods of temporal overlap between localized eligibility 3 

signals and the global instructive signal (Fig. 2B; fig. S1, C and D; fig. S2, C and D). 4 

Model parameters (fig. S3, A to K and fig. S4, A to K, see Materials and Methods) 5 

were optimized by minimizing the difference between measured and predicted Vm ramp 6 

depolarizations. Both model variants generated predictions in good agreement with 7 

experimental data (fig. S3, L to O; fig. S4, L to O; and fig. S5), which underscores the 8 

importance of the components common to both models – long timescale intermediate 9 

signals downstream of synaptic activation that are transformed into bidirectional changes 10 

in synaptic weight by dendritic plateau potentials. However, the two models made 11 

qualitatively different predictions about the causal role of the activation state of the 12 

postsynaptic neuron in controlling the magnitude and direction of plasticity. While in the 13 

voltage-dependent model, correlation between presynaptic activity and postsynaptic 14 

depolarization influences the sign of plasticity, in the alternative model, the sign of 15 

plasticity is independent of postsynaptic voltage, and is modulated instead by current 16 

synaptic weight such that weak synapses tend to potentiate and strong synapses tend to 17 

depress (3, 24-29). 18 

We next sought to distinguish between the two model classes with an in vivo 19 

perturbation experiment where neuronal Vm was experimentally depolarized by 20 

intracellular current injection during plasticity induction trials. In otherwise silent CA1 21 

neurons exhibiting no spatial tuning or spiking during treadmill running, we injected 22 

current through the intracellular recording pipette to depolarize the neuron at steady-state 23 

10
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by ~10 mV, which often exceeded threshold for spiking (Fig. 3A; see fig. S6, A to C for 1 

simulation results supporting significant dendritic depolarization during this manipulation). 2 

Then, for 4 – 5 consecutive laps, plateau potentials were experimentally induced by an 3 

additional large, brief step current (~ 300 ms) at a fixed location along the track. In all 4 

neurons tested, this procedure resulted in the emergence of a large place field near the 5 

plateau induction site, as evidenced by spiking and a large amplitude Vm ramp 6 

depolarization (Fig. 3, A and C). Consistent with previous control experiments converting 7 

silent cells to place cells without Vm depolarization (Fig. 3B) (13), we observed only 8 

increases, and no decreases in ramp amplitude at spatial positions surrounding the 9 

plateau location (Fig. 3C and fig. S6D). This absence of synaptic depression is 10 

inconsistent with the prediction of the standard voltage-dependent model (Fig. 3D), but 11 

instead favors the alternative model, which predicted that only previously potentiated 12 

inputs would be eligible for synaptic depression, independent of postsynaptic voltage.  13 

These results strongly indicate that bidirectional BTSP is fundamentally different 14 

from other previously characterized forms of associative synaptic plasticity that depend 15 

on three factors – presynaptic spiking, postsynaptic voltage, and a delayed reinforcement 16 

signal (1, 18, 30, 31). A particular advantage of a voltage-independent plasticity rule (Fig. 17 

2C and fig. S2) is that changes in strength at each synapse are determined independently 18 

by signals generated locally, whereas plasticity rules that depend on the global activation 19 

state of the postsynaptic neuron may not allow independent credit to be assigned to the 20 

subset of synapses that contributed to a desired outcome (32). 21 

 We next aimed to explore how this form of plasticity could impact memory storage 22 

at the network level. During goal-directed navigation, hippocampal neurons have been 23 

11
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Fig 3. 

Fig. 3. Bidirectional BTSP is insensitive to postsynaptic depolarization. (A) 

Intracellular Vm traces from individual laps in which plasticity was induced by 

experimentally-evoked plateau potentials in an otherwise silent CA1 cell. During 

plasticity induction laps, the neuron was experimentally depolarized by ~10 mV at 

steady-state with an intracellular current injection. On the background of this elevated 

depolarization at every spatial position, step current injections (300 ms) evoked plateau 

potentials at the same spatial position for five consecutive laps and induced a place 

field. (B – C) Place field ramp depolarizations induced by experimentally-evoked 
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plateaus (individual cells in grey). Similar to control neurons that were converted from 

silent cells to place cells without steady-state depolarization (n=25, average in black) 

(B), neurons that underwent plasticity induction during steady-state depolarization (n=5, 

average in purple) (C) exhibited only synaptic potentiation, and no synaptic depression, 

at all spatial positions. (D) The data regression and interpolation in Fig. 1K was used to 

predict the changes in ramp amplitude that would result if BTSP was either dependent 

on (red) or independent of (blue) postsynaptic voltage. 
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shown to preferentially acquire new place fields near behaviorally-relevant locations, and 1 

to translocate existing place fields towards those locations (8-10, 33). Based on previous 2 

evidence that plateau probability in CA1 is facilitated by long-range feedback inputs onto 3 

distal CA1 dendrites from entorhinal cortex (12, 34, 35), and diminished by dendrite-4 

targeting inhibition (35-39), we constructed a network model of the CA1 microcircuit 5 

where the probability of plateau initiation and thus BTSP induction was regulated by 6 

feedback inhibition and an instructive input from entorhinal cortex (Fig. 4, A and B) (10, 7 

40-44).  8 

We simulated a virtual animal running at a constant velocity on a circular treadmill 9 

for three separate phases of exploration (Fig. 4C). The first phase (ten laps) simulated 10 

exploration of a novel environment. The next phase (ten laps) simulated a goal-directed 11 

search for a target placed at a single fixed location (90 cm). Finally, the stability of 12 

acquired spatial representations were assessed by five additional laps with the goal 13 

removed (Fig. 4C). At each time step (10 ms), instantaneous plateau probabilities were 14 

computed for each cell (Fig. 4B), determining which neurons would initiate a dendritic 15 

plateau and undergo plasticity, following the experimentally validated bidirectional 16 

synaptic learning rule from Fig. 2C.  17 

During the first few laps of simulated exploration, CA1 pyramidal neurons rapidly 18 

acquired place fields that, as a population, uniformly tiled the track (Fig. 4; C, D, and F). 19 

As neurons increased their activity over time, feedback inhibition increased proportionally 20 

and prevented further plasticity (Fig. 4, A to C). During laps with a goal presented at a 21 

fixed location, an additional population of silent neurons acquired place fields nearby the 22 

goal location (Fig. 4, E and F), while a separate population shifted their place field 23 

14
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Fig. 4. 

Fig. 4. Bidirectional BTSP enables rapid adaptation of population representations 

in a network model. (A) Diagram depicts components of a hippocampal network 

model. A population of CA1 pyramidal neurons receives spatially tuned excitatory input 

from a population of CA3 place cells and an instructive input from entorhinal cortex (EC) 

that signals the presence of a behavioral goal. The output of CA1 pyramidal neurons 

recruits feedback inhibition from a population of interneurons. (B) The probability that 

model CA1 neurons emit plateau potentials and induce bidirectional plasticity is 
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negatively modulated by feedback inhibition. As the total number of active CA1 neurons 

increases (labeled “normalized population activity”), feedback inhibition increases, and 

plateau probability decreases until a target level of population activity is reached, after 

which no further plasticity can be induced (black). An instructive input signaling the 

presence of a goal increases plateau probability, resulting in a higher target level of 

population activity inside the goal region (red). (C) Each row depicts the summed 

activity of the population of model CA1 pyramidal neurons across spatial positions 

during a lap of simulated running. Laps 1-10 reflect exploration of a previously 

unexplored circular track. During laps 11-20, a goal is added to the environment at a 

fixed location (90 cm). During laps 21-25, the goal is removed for additional exploration 

of the now familiar environment. (D – E) Activity of individual model CA1 pyramidal 

neurons during simulated exploration as described in (C). (D) The activity of neurons 

are sorted by the peak location of their spatial activity following 10 laps of novel 

exploration. A fraction of the population remains inactive and untuned. (E) The activity of 

neurons after 10 laps of goal-directed search are first sorted by their original peak 

locations (left), and then re-sorted by their peak locations following exposure to the fixed 

goal (right). An increased fraction of neurons express place fields near the goal position. 

(F) Histogram depicts neurons recruited to express new place fields in each spatial bin 

(epochs: novel explore, blue; fixed goal, red; familiar explore, grey). (G) Histogram 

depicts absolute distance of translocated place fields. (H) Histogram depicts relative 

distance of translocated place fields to the goal location.
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positions towards the goal (Fig. 4; E, G, and H). Overall this resulted in an increased 1 

proportion of place cells with place fields nearby the goal position (Fig. 4E). Simulated 2 

place cell activity remained stable in the final phase of exploration of the now familiar 3 

environment (Fig. 4, C and F to H). These network modeling results recapitulate 4 

experimentally observed statistics of CA1 place cell translocation during goal-directed 5 

behavior (9). 6 

This model provides a proof of principle that bidirectional BTSP can enable 7 

populations of place cells to rapidly adapt their spatial representations to changes in the 8 

environment without any compromise to spatial selectivity. An important feature of this 9 

model is that plasticity is regulated by the global activity of populations of neurons, rather 10 

than by pairwise correlations between single neurons and their inputs. This allows the 11 

network to rapidly acquire population-level representations of previously unencountered 12 

stimuli, as well as to modify outdated representations to better reflect changes to 13 

behaviorally relevant stimuli like goal location. Interestingly, bidirectional BTSP is 14 

asymmetric, tending to potentiate inputs more strongly when they are active before a 15 

plateau rather than during or after a plateau. In the network model, this caused the 16 

population representation of the goal to actually peak before the goal location itself (see 17 

also (6)), producing a predictive memory representation that could potentially be used by 18 

an animal to recall the path leading to the goal (45). 19 

 In summary, we found that dendritic plateaus could induce both potentiation and 20 

depression of subsets of synaptic inputs, resulting in translocation of a cell’s place field 21 

towards the position where the plateaus were evoked. Quantitative inference of the 22 

underlying learning rule from the experimental data revealed that the direction and 23 
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magnitude of changes in synaptic strength depended on the current strength of each input 1 

at the time of a plateau, but not the degree of correlation between presynaptic and 2 

postsynaptic activity. In addition, bidirectional BTSP exhibited saturability (fig. S7) and 3 

state-dependence, two important features for stability of learned neuronal representations 4 

(3, 17, 27, 46, 47). 5 

Together our experimental and modeling results establish bidirectional BTSP as a 6 

non-correlative mechanism for rapid and reversible learning. Rather than acting to 7 

autonomously reinforce pre-existing short timescale correlations between pre- and post-8 

synaptic activity like standard Hebbian learning, bidirectional BTSP is capable of 9 

completely reshaping pairwise neuronal correlations in response to instructive input 10 

signals that promote dendritic plateau potentials. While it could be argued that BTSP is 11 

still a correlative form of plasticity due to its requirement that presynaptic spikes occur 12 

within a time window surrounding a plateau, this long timescale correlation is not between 13 

presynaptic spiking and the activation or output state of the postsynaptic neuron, but 14 

rather between presynaptic spiking and activation of a separate instructive input pathway 15 

that drives the postsynaptic plateau (12, 34, 35). Furthermore, since this long timescale 16 

coincidence between two inputs is only permissive for BTSP, but does not determine the 17 

sign of the plasticity, it cannot be classified as correlative in the same sense as classical 18 

Hebbian or even anti-Hebbian forms of plasticity. As suggested by our network model, if 19 

plateau potentials are generated by mismatch between a target instructive input and the 20 

output of the local circuit, as reflected by dendritically-targeted feedback inhibition, 21 

bidirectional BTSP can implement objective-based learning (48, 49). In addition to 22 

providing insight into the fundamental mechanisms of spatial memory formation in the 23 
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hippocampus, these findings suggest new directions for general theories of biological 1 

learning and the development of artificial learning systems (44, 50).  2 

 3 

Materials and Methods 4 

In vivo intracellular electrophysiology 5 

All experimental methods were approved by the Janelia Institutional Animal Care and 6 

Use Committee (Protocol 12-84 & 15-126). All experimental procedures in this study, 7 

including animal surgeries, behavioral training, treadmill and rig configuration, and 8 

intracellular recordings, were performed identically to a previous detailed report (13) in 9 

an overlapping set of experiments, and are briefly summarized here. 10 

In vivo experiments were performed in 6-12 week-old mice of either sex. 11 

Craniotomies above the dorsal hippocampus for simultaneous whole-cell patch clamp 12 

and local field potential (LFP) recordings, as well as affixation of head bar implants were 13 

performed under deep anesthesia. Following a week of recovery, animals were 14 

prepared for behavioral training with water restriction, handling by the experimenter, and 15 

addition of running wheels to their home cages. Mice were trained to run on the cue-16 

enriched linear treadmill for a dilute sucrose reward delivered through a licking port 17 

once per lap (~187 cm). A MATLAB GUI interfaced with a custom microprocessor-18 

controlled system for behavioral tracking and control. Position-dependent reward 19 

delivery and intracellular current injection were triggered by photoelectric sensors, and 20 

animal run velocity was measured by an encoder attached to one of the wheel axles. In 21 

a subset of experiments (Fig. 3), in addition to position-dependent step current to evoke 22 

plateau potentials, steady-state current was injected to depolarize neurons beyond 23 
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threshold for axosomatic action potentials during plasticity induction laps. While steady-1 

state depolarization of the soma is expected to attenuate along the path to distal 2 

dendrites (51), the pairing of back-propagating action potentials with synaptic inputs has 3 

been shown to significantly amplify dendritic depolarization by inactivating A-type 4 

potassium channels and activating voltage-gated sodium channels and NMDA-type 5 

glutamate receptors (52-55). Simulations of a biophysically-detailed CA1 place cell 6 

model with realistic morphology and distributions of dendritic ion channels (39) suggest 7 

that steady-state somatic depolarization of a silent CA1 pyramidal cell in vivo results in 8 

levels of distal dendritic depolarization comparable to place cells at the peak of their 9 

place field (fig. S6, A to C). 10 

To establish whole-cell recordings from CA1 pyramidal neurons, an extracellular 11 

LFP electrode was lowered into the dorsal hippocampus using a micromanipulator until 12 

prominent theta-modulated spiking and increased ripple amplitude was detected. Then 13 

a glass intracellular recording pipette was lowered to the same depth while applying 14 

positive pressure. The intracellular solution contained (in mM): 134 K-Gluconate, 6 KCl, 15 

10 HEPES, 4 NaCl, 0.3 MgGTP, 4 MgATP, 14 Tris-phosphocreatine, and in some 16 

recordings, 0.2% biocytin. Current-clamp recordings of intracellular membrane potential 17 

(Vm) were amplified and digitized at 20 kHz, without correction for liquid junction 18 

potential.  19 

 20 

Place field analysis 21 

To analyze subthreshold Vm ramps, action potentials were first removed from raw Vm 22 

traces and linearly interpolated, then the resulting traces were low-pass filtered (<3 Hz). 23 

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.04.934182doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.934182
http://creativecommons.org/licenses/by/4.0/


For each of 100 equally sized spatial bins (1.87 cm), Vm ramp amplitudes were 1 

averaged across periods of 5-10 minutes of running laps on the treadmill. The spatially-2 

binned ramp traces were then smoothed with a Savitzky-Golay filter with wrap-around. 3 

Ramp amplitude was quantified as the difference between the peak and the baseline 4 

(average of the 10% most hyperpolarized bins). For cells with a second place field 5 

induced, the same baseline Vm value determined from the period before the second 6 

induction was also used to quantify ramp amplitude after the second induction. Ramp 7 

width was quantified as the peak-normalized area under the curve. Plateau duration 8 

was estimated as the duration of intracellular step current injections, or as the full width 9 

at half maximum Vm in the case of spontaneous naturally-occurring plateaus. For each 10 

spatial bin, the elapsed time between traversal of that position and onset of a plateau 11 

was variable across induction laps, depending on lap-by-lap differences in run velocity 12 

(e.g. Fig. 1, C and F). To analyze the relationship between this time interval and 13 

changes in ramp amplitude, time relative to plateau onset (Fig. 1, E, H, J and K) was 14 

conservatively estimated as the minimum time delay across all induction laps. Since not 15 

all possible pairs of initial ramp amplitude and time delay relative to plateau onset were 16 

sampled in the experimental dataset, expected changes in ramp amplitude (Fig. 1K; Fig. 17 

2; E and G; Fig. 3D; fig. S5; and fig. S8) were predicted from the sampled experimental 18 

or model data points by a two-dimensional Gaussian process regression and 19 

interpolation procedure using a rational quadratic covariance function, implemented in 20 

the open-source python package sklearn (56, 57). 21 

 22 

 23 
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Computational modeling 1 

Two classes of mathematical models of the synaptic learning rule underlying 2 

bidirectional BTSP were built and optimized to predict the spatially tuned Vm ramp 3 

depolarizations of experimentally recorded CA1 place cells. All code (python) necessary 4 

to reproduce the modeling results is open-source and publicly available (58, 59). The 5 

following components and notation were shared across all model variants. CA1 place 6 

cell ramp depolarization DV as a function of position x was modeled as a weighted sum 7 

of the spatial firing rates of a population of 200 CA3 place cell inputs with place fields 8 

spaced uniformly across a 187 cm circular track, with a background level of 9 

depolarization Vb subtracted. This background is equivalent to the level of activation that 10 

would be produced if all inputs had a uniform weight of 1. 11 

(1) ∆𝑉𝑉(𝑥𝑥) = 𝛼𝛼 ∙ ∑ 𝑊𝑊+ ∙+ 𝑅𝑅+(𝑥𝑥) − 𝑉𝑉. 12 

The firing rate Ri of CA3 place cell i with place field peak location yi was modeled as a 13 

Gaussian function of position x, accounting for wraparound of the circular track with 14 

length ℓ: 15 

(2) 𝑑𝑑+(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧−ℓ + (𝑥𝑥 − 𝑦𝑦+), 𝑥𝑥 − 𝑦𝑦+ ≥

ℓ
9

𝑥𝑥 − 𝑦𝑦+, − ℓ
9
< 𝑥𝑥 − 𝑦𝑦+ <

ℓ
9

ℓ + (𝑥𝑥 − 𝑦𝑦+), 𝑥𝑥 − 𝑦𝑦+ ≤ − ℓ
9

 16 

(3) 𝑅𝑅+(𝑥𝑥) = 𝑒𝑒=(
>?(@)
A )B 17 

The place field widths of CA3 inputs, controlled by s, were set to have a full floor width 18 

(3 ∙ √2 ∙ 𝜎𝜎) of 90 cm (half-width of ~34 cm) throughout the study (60), though models 19 

tuned with alternative values of input field widths generated quantitatively similar 20 

predictions (fig. S8). Initial synaptic weights in silent cells before the first place field 21 
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induction were assumed to have a value of 1. Initial synaptic weights before the second 1 

place field induction in neurons already expressing a place field were estimated from 2 

the recorded ramp depolarization by least squares approximation. The scaling factor a 3 

was calibrated such that if the synaptic weights of CA3 place cell inputs varied between 4 

1 and 2.5 as a Gaussian function of their place field locations, the postsynaptic CA1 cell 5 

would express a Vm ramp with 90 cm width and 6 mV amplitude, consistent with 6 

previous measurements of place field properties and the degree of synaptic potentiation 7 

by BTSP (13). 8 

For each experimental recording, the position of an animal as a function of time 9 

during a plasticity induction lap j determined the firing rates of model CA3 inputs as a 10 

function of time Rj,i(t) = Rj,i(xj(t)) (Fig. 2B, fig. S1B, and fig. S2B). In accordance with 11 

experimental data (12, 39), the firing rates of model place cell inputs decreased to zero 12 

during periods when the animal stopped running. Postsynaptic dendritic plateau 13 

potentials during each induction lap were modeled as binary functions of time Pj(t). To 14 

generate long duration plasticity eligibility signals 𝐿𝐿HI,+(𝑡𝑡) specific to each synaptic input i 15 

and instructive plasticity signals 𝑃𝑃HI(𝑡𝑡) shared by all synapses, input firing rates and 16 

plateaus were convolved with causal temporal filters with exponential rise and decay 17 

(Fig. 2; fig. S1, C and D; fig. S2, C and D), denoted by a raised tilde. 18 

Wj,i corresponds to the synaptic weight of each input i prior to each plasticity 19 

induction lap j. Changes in synaptic weight ∆𝑊𝑊I,+ were calculated once per lap by 20 

integrating a net rate of change of synaptic weight LMN,?(O)
LO

 (defined separately for each 21 

model below) over the duration of lap j. For all models, additional nonlinear gain 22 

functions q± transformed synaptic eligibility signals 𝐿𝐿HI,+,±(𝑡𝑡)	and contributed to the rate of 23 
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change LMN,?(O)
LO

. These scaled and rectified sigmoidal functions 𝑞𝑞(𝐿𝐿H) were parameterized 1 

and expressed as follows: 2 

(4) 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔WXYZ[ =
9

\]+^_`ab=\]+^cd
 3 

(5) 𝑞𝑞ef𝐿𝐿Hg = h

hi[(jka?lmno_`∙fp
qjka?lcdg)

 4 

(6) 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Wr]X[ =
h

se(h)=se(t)
 5 

(7) 𝑞𝑞f𝐿𝐿Hg = u
0, 𝑞𝑞ef𝐿𝐿Hg ≤ 𝑞𝑞e(0)

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔Wr]X[ ∙ (𝑞𝑞ef𝐿𝐿Hg − 𝑞𝑞e(0)), 𝑞𝑞e(0) < 𝑞𝑞ef𝐿𝐿Hg < 𝑞𝑞e(1)
1, 𝑞𝑞ef𝐿𝐿Hg ≥ 𝑞𝑞e(1)

 6 

 7 

Voltage-dependent model: 8 

The voltage-dependent model (Fig. 2A, fig. S1, and fig. S3) contained the following 11 9 

free parameters:  10 

1) signaleligibility trise, 2) signaleligibility tdecay, 3) signalinstructive trise, 4) signalinstructive tdecay,  11 

5) DVmax, 6) k+, 7) k-, 8) gainth,+, 9) gainpeak,+, 10) gainth,-, 11) gainpeak,-. 12 

In this model, distinct eligibility signals for synaptic potentiation and synaptic depression 13 

were oppositely sensitive to postsynaptic voltage. The instantaneous postsynaptic 14 

depolarization amplitude DVj(t) during plasticity induction lap j, including the large brief 15 

depolarization produced by the dendritic plateau potential, was normalized to a 16 

saturating amplitude DVmax and rectified:  17 

(8) ∆𝑉𝑉xI(𝑡𝑡) = u

0 ∆𝑉𝑉I(𝑡𝑡) ≤ 0
∆yN(O)

∆yza@
, 0 < ∆𝑉𝑉I(𝑡𝑡) < ∆𝑉𝑉{]|

1 ∆𝑉𝑉I(𝑡𝑡) ≥ ∆𝑉𝑉{]|

  18 

∆𝑉𝑉xI(𝑡𝑡) influenced synaptic eligibility signals according to: 19 
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(9) 𝐿𝐿HI,+,i(𝑡𝑡) = }1 −	∆𝑉𝑉xI(𝑡𝑡)~ ∙ 𝑅𝑅I,+(𝑡𝑡);  filtered by signaleligibility trise and tdecay 1 

(10) 𝐿𝐿HI,+,=(𝑡𝑡) = 	∆𝑉𝑉xI(𝑡𝑡) ∙ 𝑅𝑅I,+(𝑡𝑡);  filtered by signaleligibility trise and tdecay 2 

The sigmoidal gain functions q+(𝐿𝐿HI,+,i(𝑡𝑡),	gainth,+, gainpeak,+) and  3 

q-(𝐿𝐿HI,+,=(𝑡𝑡),	gainth,-, gainpeak,-), as well as the plateau-related instructive signal 𝑃𝑃HI(𝑡𝑡) 4 

contributed to the net rate of change LMN,?(O)
LO

 according to: 5 

(11) LMN,?(O)
LO

= 	𝑘𝑘i ∙ 𝑞𝑞i(𝐿𝐿HI,+,i(𝑡𝑡)) ∙ 𝑃𝑃HI(𝑡𝑡) − 𝑘𝑘= ∙ 𝑞𝑞=(𝐿𝐿HI,+,=(𝑡𝑡)) ∙ 𝑃𝑃HI(𝑡𝑡)  6 

where k+ and k- are scalar learning rate constants. Synaptic weights were bounded such 7 

that 𝑊𝑊I,+ ≥ 0. 8 

 9 

Weight-dependent model: 10 

The weight-dependent model (Fig. 2C, fig. S2, and fig. S4) contained the following 11 11 

free parameters:  12 

1) signaleligibility trise, 2) signaleligibility tdecay, 3) signalinstructive trise, 4) signalinstructive tdecay,  13 

5) DWmax, 6) k+, 7) k-, 8) gainth,+, 9) gainpeak,+, 10) gainth,-, 11) gainpeak,-. 14 

This model was formulated with the aim of obtaining a first order dependence of 15 

changes in synaptic weights on the current value of synaptic weight just before each 16 

plasticity-inducing plateau potential. We chose a two-state non-stationary kinetic model 17 

of the form shown in fig. S2A as a concrete example of a model that satisfies this 18 

dependency. Independent and finite synaptic resources at each synapse could occupy 19 

either an inactive or an active state, and the synaptic weight of each input Wj,i, was 20 

defined as proportional to the occupancy of the active state. Since the occupancy of 21 

each state in a kinetic model constrains the flow of finite resources between states, the 22 
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net change in synaptic weight at each input LMN,?(O)
LO

 naturally depended on the current 1 

value of synaptic weight Wj,i. This occupancy could be equivalently interpreted as a 2 

proportion of synapses that have been potentiated among a subpopulation of inputs 3 

with shared place field locations and binary weights. Synaptic weights were constrained 4 

such that 5 

(12) 𝑊𝑊I,+ = 𝑤𝑤I,+ ∙ 𝑊𝑊{]| 6 

where 0 ≤ 𝑤𝑤I,+ ≤ 1, and 𝑊𝑊{]| depends on a parameter ∆𝑊𝑊{]| that specifies a maximum 7 

change in weight above a baseline of 1:  8 

(13) 𝑊𝑊{]| = 1 + ∆𝑊𝑊{]| 9 

In the absence of any voltage sensitivity of synaptic eligibility signals, both eligibility for 10 

potentiation and eligibility for depression depended only on a presynaptic firing rate and 11 

were therefore equivalent in the formulation of this model variant (fig. S3, C and D): 12 

(14) 𝐿𝐿HI,+,i(𝑡𝑡) = 𝐿𝐿HI,+,=(𝑡𝑡) = 𝐿𝐿HI,+(𝑡𝑡) = 𝑅𝑅I,+(𝑡𝑡);  filtered by signaleligibility trise and tdecay 13 

Sigmoidal gain functions q+(𝐿𝐿HI,+(𝑡𝑡),	gainth,+, gainpeak,+) and q-(𝐿𝐿HI,+(𝑡𝑡),	gainth,-, gainpeak,-), as 14 

well as the plateau-related instructive signal 𝑃𝑃HI(𝑡𝑡) and the current normalized synaptic 15 

weight wj,i contributed to the net rate of change LMN,?(O)
LO

 according to: 16 

(15) LMN,?(O)
LO

=
𝑊𝑊{]| ∙ (1 − 𝑤𝑤I,+) ∙ 	𝑘𝑘i ∙ 𝑞𝑞i(𝐿𝐿HI,+(𝑡𝑡)) ∙ 𝑃𝑃HI(𝑡𝑡) −

𝑊𝑊{]| ∙ 𝑤𝑤I,+ ∙ 𝑘𝑘= ∙ 𝑞𝑞=(𝐿𝐿HI,+(𝑡𝑡)) ∙ 𝑃𝑃HI(𝑡𝑡)
 17 

where k+ and k- are scalar learning rate constants. 18 

For both of the above model variants, the values of the bounded free parameters 19 

were automatically explored using a population-based version of the simulated 20 

annealing algorithm (59) to minimize an objective error function based on the difference 21 

between target and predicted ramp waveforms for each cell in the experimental dataset. 22 
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Additional model variants with either fewer (7) or more (13) free parameters were also 1 

tested (fig. S5). In the simpler model variants, the nonlinear gain functions q± were not 2 

applied to the eligibility signals and the change in synaptic weights instead depended 3 

linearly on the amplitude of the synaptic eligibility signals 𝐿𝐿HI,+,±(𝑡𝑡). These models were 4 

unable to account for the depression component of bidirectional BTSP (fig. S5). In the 5 

more complex model variants, eligibility signals for potentiation 𝐿𝐿HI,+,i(𝑡𝑡) and depression 6 

𝐿𝐿HI,+,=(𝑡𝑡) were filtered with distinct time constants  7 

(signaleligibility,+ trise, signaleligibility,+ tdecay, signaleligibility,- trise, signaleligibility,- tdecay). The 8 

additional complexity of these model variants did not result in improved predictions 9 

relative to the original set of models (fig. S5). 10 

 11 

Goal-directed spatial learning model: 12 

To investigate the implications of bidirectional BTSP for reward learning by a population 13 

of CA1 place cells (Fig. 4), we constructed a network model comprised of 1000 CA1 14 

pyramidal cells each receiving input from a population of 200 CA3 place cells with place 15 

fields spaced at regular intervals spanning the 187 cm circular track. Lap running was 16 

simulated at a constant run velocity of 30 cm/s. The synaptic weights at inputs from 17 

model CA3 place cells to model CA1 cells were controlled by the weight-dependent 18 

model of bidirectional BTSP described above. For this purpose, the 11 free parameters 19 

of that model were tuned to match synthetic data under the following constraints: 1) 5 20 

consecutive induction laps with one 300 ms duration plateau per lap at a fixed location 21 

resulted in a place field ramp depolarization that peaked 10 cm before the location of 22 

plateau onset, had an asymmetric shape (80 cm rise, 40 cm decay), and had a peak 23 
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amplitude of 8 mV; 2) 5 subsequent plasticity induction at a location 90 cm away from 1 

the initial peak for 5 consecutive laps resulted in a 5 mV decrease in ramp amplitude at 2 

the initial peak location, and an 8 mV peak ramp amplitude at the new translocated 3 

peak position. 4 

 Before simulated exploration, all synaptic weights were initialized to a value of 1, 5 

which resulted in zero ramp depolarization in all model CA1 cells. Under these baseline 6 

conditions, each model CA1 neuron k had a probability pk(t) = pbasal = 0.0075 of emitting 7 

a single dendritic plateau potential in 1 second of running. During each 10 ms time step, 8 

this instantaneous probability pk(t) was used to weight biased coin flips to determine 9 

which cells would emit a plateau. If a cell emitted a plateau, it persisted for a fixed 10 

duration of 300 ms, and was followed by a 500 ms refractory period during which pk(t) 11 

was transiently set to zero. 12 

After the first lap, CA1 neurons that had emitted at least one plateau and had 13 

induced synaptic potentiation produced nonzero ramp depolarizations (Fig. 4C). The 14 

output firing rates Rk(t) of each CA1 neuron k were considered to be proportional to their 15 

ramp depolarizations Vk(t). The activity Rinh(t) of a single inhibitory feedback element 16 

was set to be a normalized sum of the activity of the entire population of CA1 pyramidal 17 

neurons: 18 

(16) 𝑅𝑅+^Å(𝑡𝑡) = 𝛽𝛽 ∙ ∑ 𝑅𝑅É(𝑡𝑡)É  19 

where the normalization constant b was chosen such that the activity of the inhibitory 20 

feedback neuron would be 1 if every CA1 pyramidal neuron expressed a single place 21 

field and as a population their place field peak locations uniformly tiled the track. Then, 22 
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the probability that any CA1 neuron k would emit a plateau pk(t) was negatively 1 

regulated by the total population activity via the inhibitory feedback term Rinh(t): 2 

(17) 𝑝𝑝É(𝑡𝑡) = Ö
𝑓𝑓(𝑅𝑅+^Å(𝑡𝑡), 𝛾𝛾𝑏𝑏𝑔𝑔𝑏𝑏𝑔𝑔𝑏𝑏, 𝑝𝑝.]W]X), 𝑅𝑅+^Å(𝑡𝑡) < 𝛾𝛾𝑏𝑏𝑔𝑔𝑏𝑏𝑔𝑔𝑏𝑏

0, 𝑅𝑅+^Å(𝑡𝑡) ≥ 𝛾𝛾𝑏𝑏𝑔𝑔𝑏𝑏𝑔𝑔𝑏𝑏
  3 

where gbasal defined a target normalized population activity (set to 0.3) and f is a 4 

descending sigmoid (Fig. 4B). 5 

 In some laps, a specific location was assigned as the target of a goal-directed 6 

search. To mimic the activation of an instructive input from entorhinal cortex signaling 7 

the presence of the goal, for a period of 500 ms starting at the goal location, the 8 

probability that a CA1 neuron would emit a plateau potential 𝑝𝑝É(𝑡𝑡) was transiently 9 

increased. Within the goal region, the relationship between 𝑝𝑝É(𝑡𝑡) and 𝑅𝑅+^Å(𝑡𝑡) was 10 

instead: 11 

(18) 𝑝𝑝É(𝑡𝑡) = Ö
𝑓𝑓(𝑅𝑅+^Å(𝑡𝑡), 𝛾𝛾𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏, 𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏), 𝑅𝑅+^Å(𝑡𝑡) < 𝛾𝛾𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏

0, 𝑅𝑅+^Å(𝑡𝑡) ≥ 𝛾𝛾𝑔𝑔𝑔𝑔𝑔𝑔𝑏𝑏
 12 

where pgoal is an elevated peak plateau probability of 0.03 per second, ggoal is an 13 

elevated target normalized population activity (set to 0.5) and f is a descending sigmoid 14 

(Fig. 4B). 15 
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Fig S1. 

Fig. S1. Voltage-dependent model: example simulation results. (A) Voltage-

sensitivity of synaptic eligibility signals for potentiation and depression. (B) Model 

presynaptic firing rates and postsynaptic Vm during simulation of one lap of treadmill 
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running during plasticity induction. The timing of a dendritic plateau potential is indicated 

with a black dash. Example traces depict two presynaptic inputs, one that potentiates 

(left, blue) and one that depresses (right, red). (C) Temporal filters with exponential rise 

and decay (synaptic eligibility signal filter, grey; dendritic instructive signal filter, black). 

(D) Presynaptic input firing rates (B) were convolved with the eligibility signal filter (C) 

and multiplied by a voltage modulation factor (A) to generate long duration synaptic 

eligibility signal traces for potentiation (solid blue and red lines) and depression (dashed 

blue and red lines) (potentiating input example from (B), left; depressing input example 

from (B), right). The dendritic plateau potential was convolved with the instructive signal 

filter (C) to generate a long duration dendritic instructive signal (black). Periods of 

temporal overlap of eligibility and instructive signals that drive plasticity are shaded. (E) 

Sigmoidal gain functions sensitive to the amplitude of synaptic eligibility signals regulate 

the rates of synaptic potentiation (blue) and depression (red). (F) Net rates of change in 

synaptic weight (potentiating input example from (B) and (D), blue, left; depressing input 

example from (B) and (D), red, right). (G) Spatially-binned Vm ramp depolarization 

predicted by the model (before Induction 2, grey; after Induction 2; black). (H) Weighted 

contributions of individual presynaptic inputs to the postsynaptic ramp (before Induction 

2, left; after Induction 2, right). The potentiating (blue) and depressing (red) input 

examples shown in (B), (D) and (F) are highlighted in color.  
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Fig. S2. 

Fig. S2. Weight-dependent model: example simulation results. (A) State diagram 

for two-state kinetic model describing the flow of finite synaptic resources. (B – H) Same 

as fig. S1, B to H for simulation of the weight-dependent model of bidirectional BTSP. 

(D) Same as fig. S1D, except only a single synaptic eligibility signal is shown (red and 
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blue lines). In the weight-dependent model, postsynaptic voltage does not modulate the 

amplitude of synaptic eligibility traces, so eligibility for potentiation and depression are 

both marked by a single trace generated by convolving presynaptic firing rates (B) with 

the synaptic eligibility signal filter (C). 
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Fig S3. 

Fig. S3. Voltage-dependent model: model parameter distributions and comparison 

of model predictions to experimental data. (A – K) The free parameters of the 

voltage-dependent model of bidirectional BTSP were optimized for each cell in the 

experimental dataset. Shown here are the distributions of parameter values across 

cells. (L – O) Model predictions and experimental data are compared for features 

measured from spatially binned Vm ramp depolarizations. In 7/13 neurons with a second 

place field induced (Induction 2, red), the first place field was also experimentally-
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induced (Induction 1, blue), so the model was fit to predict both place field inductions 

with the same set of parameters. Explained variance (R2) and statistical significance (p 

< 0.05) reflect Pearson’s correlation and 2-tailed null hypothesis tests. (L) Peak ramp 

amplitude. (M) Ramp width. (N) Shift of ramp peak location relative to mean location of 

plateau onset. (O) Minimum ramp amplitude across spatial bins. 
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Fig. S4. 

Fig. S4. Weight-dependent model: model parameter distributions and comparison 

of model predictions to experimental data. (A – O) Same as fig. S3, A to O for 

parameters and predictions of the weight-dependent model of bidirectional BTSP. 
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Fig. S5. 

Fig. S5. Evaluation of additional model variants. (A – G) Additional model variants of 

varying complexity were also evaluated for their capability to predict experimentally 

measured bidirectional changes in Vm ramp amplitude by BTSP. The plasticity rule was 

estimated by two-dimensional interpolation from model data (see Materials and 

Methods). (A – C) Model predictions from variants of the voltage-dependent model with 

7 (A), 11 (B), or 13 (C) free parameters (see Materials and Methods). (D) Plasticity rule 

estimated from the experimental data. (E – G) Model predictions from variants of the 

weight-dependent model with 7 (E), 11 (F), or 13 (G) free parameters (see Materials and 

Methods). (H) Residual error of ramp depolarizations predicted by each model is 

averaged across spatial bins and cells. 
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Fig. S6. 

Fig. S6. Postsynaptic voltage perturbation experiment: simulation of dendritic 

depolarization and quantification of experimental data. (A – C) Simulation of a 
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biophysically-detailed CA1 pyramidal cell model with realistic morphology and dendritic 

ion channel distributions (39) to estimate the effect of steady-state somatic 

depolarization on distal dendritic Vm. Three conditions are compared: a silent cell with 

uniform input weights (black), a silent cell with ~10 mV of steady-state depolarization 

induced by somatic current injection (purple), and a place cell receiving potentiated 

inputs at the peak of its place field (blue). Under conditions of somatic current injection, 

a combination of attenuated propagating depolarization and back-propagating action 

potentials amplifies local synaptic input by activating dendritic voltage-gated ion 

channels, resulting in a level of dendritic depolarization comparable to the place field 

condition. (A) Simulated Vm traces recorded from soma (left), distal apical oblique 

dendrite (center), and a distal apical dendritic spine (right). (B) Mean low-pass filtered 

Vm at simulated dendritic recording sites at varying distances from the soma. (C) Same 

as (B) for simulated recordings from dendritic spines. (D – F) Quantification of 

experimental ramp depolarizations induced by BTSP under conditions of somatic 

depolarization (Fig. 3). (D) Peak ramp amplitude (p < 0.015). (E) Ramp width (p > 

0.143). (F) Shift of ramp peak location relative to mean location of plateau onset (p > 

0.255). p-values reflect two-sided Mann-Whitney U tests. 
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Fig. S7. 

Fig. S7. Evidence for saturability of synaptic potentiation by BTSP. Peak Vm ramp 

amplitudes are not correlated with the total accumulated duration of plateau potentials 

across laps during plasticity induction, indicating a saturating nonlinearity. Shown are 

data from both silent cells in which de novo place fields were induced (light grey, n=25), 

and place cells in which a second plasticity induction translocated a pre-existing place 

field (dark grey, n=13). Explained variance (R2) and statistical significance (p < 0.05) 

reflect Pearson’s correlation and a 2-tailed null hypothesis test. 

0 500 1000 1500 2000 2500
Total accumulated

plateau duration (ms)

0

5

10

15

P
ea

k 
ra

m
p

am
pl

itu
de

 (m
V

)

R  = 0.012; p > 0.510 
2

After Induction 1
After Induction 2

45

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.04.934182doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.934182
http://creativecommons.org/licenses/by/4.0/


Fig. S8. 
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Fig. S8. Evaluation of bidirectional BTSP models with alternative CA3 input place 

field widths. (A – D) Additional model variants with alternative values of place field 

width for presynaptic CA3 place cell inputs were also evaluated for their capability to 

predict experimentally measured bidirectional changes in Vm ramp amplitude by BTSP. 

Plasticity rules were estimated by two-dimensional interpolation from model data (see 

Materials and Methods). (A – C) Model predictions from variants of the weight-

dependent model with 75 cm (A), 90 cm (B), or 105 cm (C) CA3 input place field widths. 

(D) Residual error of ramp depolarizations predicted by each model is averaged across 

spatial bins and cells.
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