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Abstract 
Cytometry technologies are essential tools for immunology research, providing high-throughput          
measurements of the immune cells at the single-cell level. Traditional approaches in interpreting             
and using cytometry measurements include manual or automated gating to identify cell subsets             
from the cytometry data, providing highly intuitive results but may lead to significant information              
loss, in that additional details in measured or correlated cell signals might be missed. In this                
study, we propose and test a deep convolutional neural network for analyzing cytometry data in               
an end-to-end fashion, allowing a direct association between raw cytometry data and the clinical              
outcome of interest. Using nine large CyTOF studies from the open-access ImmPort database,             
we demonstrated that the deep convolutional neural network model can accurately diagnose the             
latent cytomegalovirus (CMV) in healthy individuals, even when using highly heterogeneous           
data from different studies. In addition, we developed a permutation-based method for            
interpreting the deep convolutional neural network model and identified a CD27- CD94+ CD8+ T              
cell population significantly associated with latent CMV infection. Finally, we provide a tutorial             
for creating, training and interpreting the tailored deep learning model for cytometry data using              
Keras and TensorFlow (github.com/hzc363/DeepLearningCyTOF).  
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Main 
Modern cytometry technologies, including flow cytometry and mass cytometry (CyTOF), are           
able to characterize cell mixtures at the single-cell resolution with over 40 markers1.             
Multi-dimensional cytometry data contains rich information that can be used to identify key             
cellular changes induced by diseases or other perturbations, such as viral infections, cancer             
immunotherapies, and vaccinations2–4. In addition, cytometry measurements have been utilized          
for decades to diagnose a variety of conditions, such as leukemia, allergies, and infectious              
diseases5–7.  

The analysis of cytometry data typically starts with identifying cell populations by manual gating              
or by automated clustering using computational methods, including FLOCK, MetaCyto,          
flowSOM, and others8–10. The subsequent analysis then uses summary statistics of the            
identified cell populations, including abundance and mean marker expression levels, to identify            
disease-associated cells or to predict clinical outcomes11,12. This approach is an intuitive way to              
analyze cytometry data and has yielded highly interpretable results. However, the approach has             
several disadvantages. First, in the cell gating step, the original cytometry data is reduced to               
summary statistics of cell subsets, potentially leading to the loss of important information such              
as the correlation between cell markers and the distribution of marker expression within each              
cell subset. Second, the commonly used approach requires all samples to be clustered in the               
same way, making it sensitive to batch effects and the choice of clustering methods. Finally, the                
approach may fail to detect cellular changes that do not lead to distinct cell populations, such as                 
the continuous up-regulation of CTLA-4 in T cells in response to varying degrees of              
stimulation 13.  

Several recent studies have explored alternative approaches to analyze cytometry data,           
bypassing the requirement for cell gating or cell clustering. We previously developed CytoDx,             
which fits the cytometry data using a two-stage linear model 14. Another study developed             
CellCNN to model the cytometry data using convolutional neural networks15. Both of these             
methods utilize the full cytometry data, rather than the summary statistics from cell gating steps,               
therefore are more advantageous for disease diagnosis and identification of disease-associated           
cells14,15. On the other hand, these existing methods still use relatively simple models (linear              
regression and neural networks with a single convolutional layer). Both are only capable of              
combining cell markers linearly at the single-cell level, thus preventing them from capturing             
more complex combinatorial cellular phenotypes in cytometry measurement data. 

The interpretation of the CytoDx and CellCNN models also remained a challenge. The methods              
developed in previous studies can only interpret parts of the models. To identify cell populations               
that are associated with outcomes of interest, both methods leverage the one-to-one            
correspondence between cells and the intermediate output of the model (the output of the              
cell-level model in CytoDx and convolutional layers in CellCNN). New methods are required to              
extract biological insights from the full models.  
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In this study, we developed and tested a framework for modeling cytometry data using a deep                
convolutional neural network (CNN), in which multiple hidden layers are used to model the              
high-dimensional cytometry data. Leveraging multiple large publicly-available CyTOF datasets         
(472 samples from 9 studies) available in ImmPort16–19, we demonstrate that the deep CNN              
model is able to diagnose asymptomatic cytomegalovirus infection with high accuracy, even in             
the presence of strong heterogeneity between datasets. In addition, we developed a            
permutation-based method to interpret the full deep CNN model. We identified a previously             
undescribed CD27- CD94+ CD8+ T cell population that is significantly increased in subjects with              
latent CMV infections, across nine studies. Interestingly, the CD27- CD94+ subset is increased             
in all four compartments (Naïve, effector, effector memory and central memory) of CD8+ T cells,               
suggesting that CMV infection induces the CD94+ CD27- phenotype through a mechanism that             
is distinct from T cell activation and memory. 

 
Results 
 
A deep convolutional neural network for cytometry data 
 
We designed a deep convolutional neural network architecture tailored to the cytometry data.             
The input into the model is the raw cytometry data, which are matrices with rows representing                
cells and columns representing markers. The outputs of the model are sample-level information             
of interest, such as disease diagnosis, drug responsiveness or the presence of a genetic              
deficiency. The internal layers of the deep CNN model include multiple convolutional layers to              
extract cell-level features, a pooling layer to aggregate the cell-level features into sample level              
features, and dense layers to capture the interaction between the sample-level features (Fig. 1).  
 
A key characteristic of cytometry data is that it represents an unordered collection of cells. The                
data representation is similar to the point cloud in computer vision 20. In order to model this type                 
of data in an efficient way, the neural network needs to be invariant to the permutation of rows in                   
the data 21. We achieved this by 1) designing “one-cell” filters in convolutional layers, which              
combines all marker information within the same row, but not across rows. 2) applying either               
max or mean function over all cells in the pooling layer, both of which are invariant to the                  
permutation of data.  
 
In addition to cytometry data, the deep CNN model allows the incorporation of external              
information, such as demographics (age, gender, and race) and results from other experiments.             
Specifically, the output of the pooling layer can be combined with other sample-level information              
to improve model performance and to adjust for control variables (Fig. 1). 
 
 
The deep CNN model accurately predicts asymptomatic CMV infection 
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To test the performance of the deep CNN model, we applied it to nine CyTOF datasets to train                  
it to diagnose asymptomatic cytomegalovirus (CMV) infection. The dataset spans nine human            
immunology studies and contains 596 peripheral blood mononuclear cells (PBMC) samples           
from 313 subjects16–19. We split the nine studies into training, validation, and testing datasets. To               
ensure an unbiased performance evaluation, we selected SDY515 and SDY519 as validation            
and testing datasets, which do not share subjects with other studies (Fig. 2).  
 
We trained and optimized the deep CNN model using training and validation datasets. The final               
model is evaluated using the test dataset. The deep CNN model is able to diagnose the CMV                 
infection with high accuracy (Area Under the Receiver Operating Curve (AUROC) = 0.94, Area              
Under the Precision-Recall Curve (AUPRC) = 0.91). To benchmark the performance of the deep              
CNN model, we trained and tested several existing methods, including CytoDx, CellCNN and             
FlowSOM10,14,15. The 1000-fold Bootstrap analysis shows that the deep CNN model outperforms            
the existing methods (Fig. 3).  
 
We tested the robustness of the model against the choice of training, validation and testing               
dataset. In each iteration, we randomly assigned one study as the validation dataset, one study               
as the testing dataset and the rest studies as the training dataset to train and evaluate the deep                  
CNN model. We repeated the process 10 times and found that the model is able to diagnose                 
CMV accurately in all iterations (AUROC ranges from 0.93 to 0.97, see Table S1).  
 
Previous studies have demonstrated that the CMV prevalence is significantly different between            
age, sex, and race groups22–24. Therefore, augmenting the CyTOF data with demographic data             
can potentially improve the performance of the deep CNN model. We tested the augmented              
model and found that its performance is similar to the non-augmented model, suggesting that              
demographics data does not provide additional information to the model in this particular case              
(Fig. 3 ).  
 
The deep CNN model mitigates batch effects across studies 
 
Visual inspection reveals an obvious heterogeneity between CyTOF data from different studies            
(Fig. 4A ), which is likely due to a combination of technical differences during data acquisition               
and the biological differences between study cohorts. Despite the heterogeneity, the deep CNN             
model is able to accurately diagnose CMV infection in all nine datasets, suggesting that the               
model is able to extract CMV related signals from noises caused by batch effects and other                
non-CMV related differences in the immune system. We measured the cross-study           
heterogeneity using a Kruskal-Wallis test in each layer of the deep CNN model. We found that                
the heterogeneity is gradually mitigated across the layers of the deep CNN model (Fig. 4B-G).               
The heterogeneity is the strongest at the input layer (p-value = 4.7 x 10 -74) but became                
insignificant in the output layer (p-value = 0.16). Notably, the heterogeneity is not only reduced               
among the studies within the training dataset but also mitigated across the training, validation              

5 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.05.934521doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?j9bXBQ
https://www.zotero.org/google-docs/?FDvCRC
https://www.zotero.org/google-docs/?tJwRGM
https://doi.org/10.1101/2020.02.05.934521
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

and test dataset. The results suggest that the deep CNN model is robust and is generalizable                
to data outside the training dataset.  
 
 
 
The deep CNN model identifies novel associations between immune cell subsets and            
CMV infection 
 
Leveraging the one-to-one correspondence between cells and internal nodes in the convolution            
layers, we first use the activation values of the convolution layers to identify cells associated               
with CMV infection. Using the cell definitions from the Human Immunology Project Consortium25,             
we identified 24 well-characterized cell populations from the CyTOF data. For each cell             
population, we quantified the mean activation value in the convolution layers. In the first              
convolution layer, Memory B cells, CD8+ T- Effector Memory (T-EM) cells and CD4+ T- Central               
Memory (T-CM) cells have the highest mean activation value from the three filters, respectively.              
In the second convolution layer, Effector CD8+ T cells, Plasmablasts, and CD8+ T-EM cells              
have the highest mean activation value from the three filters, respectively. The natural killer T               
(NKT) cells are also highly activated in the first filter of the second convolution layer (Fig. 5A).                 
To test if the highly activated cells are associated with CMV infection, we quantified their               
percentage within PBMC from CMV positive and negative subjects from all nine studies. We              
found that two of the three cell populations (Memory B cells and CD4+ T-CM cells) activated by                 
the first convolution layer are associated with CMV infection. The cell subsets activated in the               
second convolutional layers (Effector CD8+ T cells, Plasmablasts, and CD8+ T-EM cells) are all              
significantly associated with CMV infection (Fig. S1).  
 
Next, we inspected beyond the convolutional layers and hope to identify the key immune              
differences by interpreting the full deep CNN model. We developed a permutation-based            
interpretation procedure (Methods), which is inspired by the Local interpretable model-agnostic           
explanations (LIME) approach 26. Briefly, we iteratively up-sampled each cell by copying it to             
replace other randomly chosen cells within the sample. We then applied the deep CNN model               
on both the original data and the permuted data. The difference in the model output (ΔΥ)                
quantifies the impact of each cell on the output of the deep learning model. We then built a                  
decision tree to identify cell subsets that have a high impact on the deep CNN model (Fig. 5B).                  
We choose to use decision tree models because of their high interpretability and the structural               
similarity between decision trees and the hieratical cell gating.  
 
The decision tree identifies a CD8+ CD3+ CD27- CD94+ population that induces the highest              
ΔY(Fig. 5C ). We manually identified the population based on the rules specified by the decision               
tree model (Fig. 5D). We notice that the decision tree bi-sects the markers into positive and                
negative regions in a way that is consistent with manual gating. We previously have developed               
a computational tool named MetaCyto that can identify cell subsets based on their definitions9.              
We used MetaCyto to identify the CD8+ CD3+ CD27- CD94+ population across all 9 studies               
and found that the population is consistently increased in all studies (Fig. 5E, Methods).  
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Because of the redundancy between cell markers, cell populations can often be identified using              
different cell marker combinations. We further inspected the cell subset to see if the CD8+ CD3+                
CD27- CD94+ population corresponds to a previously described cell population. We found that             
the CD8+ CD3+ CD27- CD94+ population does not correspond to any of the four              
well-characterized subsets of CD8+ T cells (Naive, Effector, Central Memory, and Effector            
Memory CD8+ T cells). Rather, all four subsets are present in the CD8+ CD3+ CD27- CD94+                
population (Fig. 5D). Among the four subsets, the Effector and Effector memory cells are              
enriched in CD8+ CD3+ CD27- CD94+ cells compared to the bulk CD8+ T cells population. We                
then quantified the proportion of CD27- CD94+ cell subsets within the Naive, Effector, Central              
Memory, and Effector Memory CD8+ T cells. We found that CD27- CD94+ cells are increased in                
all four T cell compartments (Fig. S4), suggesting that CMV infection induces the CD94+ CD27-               
phenotype through a mechanism that is distinct from T cell activation and memory. 
 
 

Discussion 
 
A key advantage of deep learning has been its ability to jointly optimize the feature extraction                
and classification steps to maximize the prediction accuracy, leading to its success in tasks              
involving unstructured data, such as image recognition and natural language processing 27,28.           
This advantage makes the deep learning model a natural choice for analyzing cytometry data.              
The traditional cell-gating methods can be viewed as a way to extract features from the               
cytometry data. Because the cell gating step is disconnected from the later classification             
process, the cell gating results are often not optimized for identifying cell populations that are               
most associated with the outcome of interest. In the deep CNN model, the back-propagation              
algorithm iteratively updates the convolution layers based on classification accuracy, therefore           
achieving higher sensitivity in detecting cell subsets that are associated with the output of              
interest.  
 
A previous study described a novel method called cellCNN15, which uses a single layer              
convolutional neural network to analyze cytometry data. While this work was innovative, a             
limitation of the cellCNN model is that the single convolutional layer is only able to extract                
cellular features by combining cell markers linearly. We extend the cellCNN model by             
introducing multiple convolution layers and dense layers, allowing the extraction of cellular            
features using complex non-linear combinations of markers. Our results show that the deep             
CNN model is able to identify cell populations that require multi-level hierarchical gatings, such              
as plasmablast, effector memory CD8+ T cells and NKT cells. In addition, the multiple layers of                
the deep CNN model are able to mitigate the batch effects, making the model more               
generalizable across studies.  
 
In order to interpret the convolutional layers, we grouped the cells into previously defined cell               
subsets and quantified the mean activation value in each cell subset. We identified multiple cell               
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subsets associated with CMV infection, including effector CD8+ T cells, Plasmablasts and            
CD8+ effector memory cells. Interestingly, not all the cell subsets identified from the first              
convolution layer are associated with CMV infection. In contrast, all the subsets identified from              
the second convolutional layer are significantly associated with CMV infection. The results            
suggest that the first convolution layer captures intermediate cellular features that do not directly              
correlate with CMV infection but are essential for identifying CMV-associated cell subsets in the              
later convolution layers.  
 
The current study has several limitations. First, our analysis of the CMV datasets is a               
retrospective study. Future studies are needed to prospectively validate the diagnostic model            
and test the causal relationship between immune cells and CMV infection. Second, the deep              
neural network requires a large dataset for training, limiting its use in small scale studies. The                
limitation can be potentially solved by transfer learning 29. Publicly available cytometry data can             
be used to pre-train the network for extracting cellular features from the markers. The last dense                
layers of the pre-trained model can then be trained using task-specific data for predicting the               
outcome of interest. Third, the current CNN model predicts the clinical outcome using cytometry              
data from a single time point. In many cases, the histories of the immune states are important                 
for diagnosis or prediction. For example, the change of the immune system before and after               
vaccination is predictive of the vaccine responses2,30. In future studies, we will combine the CNN               
model with recurrent neural networks (RNN), such as a Long Short Term Memory (LSTM)              
model,  to model the change of the immune system over time.  
 
Latent infection with CMV is asymptomatic and induces limited perturbation of the immune             
system, making it a challenging task to diagnose the latent CMV using CyTOF data of               
peripheral blood samples. Despite the subtlety of changes in the immune system, the deep              
CNN model is able to diagnose the latent CMV infection with high accuracy. The result suggests                
that the deep CNN model can potentially be used to diagnose more severe conditions, including               
autoimmune diseases, cancer, and symptomatic infections. We envision the use of CyTOF and             
deep CNN as a screening tool for diagnosing a wide range of conditions, whose results can be                 
further confirmed by established disease-specific lab tests, such as the serological test for             
diagnosing CMV infection 31.  

 
Methods 
 
Data preparation 
We first queried the ImmPort database to identify samples from healthy individuals with both              
CyTOF and CMV antibody titer data. The query identified 472 samples from nine studies,              
including SDY112, SDY113, SDY305, SDY311, SDY472, SDY472, SDY515, and SDY519 as of            
March 2019 16–19. We downloaded CyTOF data and transformed the raw cytometry signal using             
arcsinh transformation (y = arcsinh(x/5)). To combine CyTOF samples, we included 28 markers             
that are present in data from all nine studies and subsampled 10000 cells from each sample. The                 
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final CyTOF data are organized into a three-dimensional matrix (472 samples x 28 markers x 10000                
cells).  
 
Deep CNN architecture  
The deep CNN model takes cytometry matrices as inputs. For each sample, the matrix profiles               
multiple markers (columns) for single cells (rows). Convolution layers are used after the input layer               
to extract cellular features from the cytometry data. The filter size in the first convolution layer is 1 x                   
m x 1, where m is the number of markers in cytometry data. The filter size used in the subsequent                    
convolutional layers is 1 x 1 x f, where f is the number of filters in the previous convolution layer. The                     
cellular features of the last convolution layer are pooled into sample level features using either max                
or mean pooling. The pooling layer is followed by dense layers, which combine the features               
extracted by the convolutional layers and summarized by the pooling layers. In the output layer, a                
logistic regression combines the output of the last dense layer to predict binary outcomes. For               
continuous outcomes, linear regression is used. For each layer, batch normalization is used for              
regularization and to facilitate model training. We used Rectified Linear Unit (ReLU) as the activation               
function for all internal layers.  
 
Training, optimization, and testing of the deep CNN model 
We used the Adam algorithm, a variant of the gradient descent, to identify the best parameters                
in the neural network32, with binary cross-entropy as the loss function. To prevent overfitting, the               
performance of the model is tested at each epoch using the validation data. The parameters               
that give rise to the best validation result are used in the final model.  
 
The hyperparameters of the deep learning model include the number of convolution layers, the              
number of filters in the convolution layers, the type of pooling layer (max or mean pooling), the                 
number and size of the dense layers and the learning rate. We performed a grid search to                 
optimize hyperparameters using the training and validation datasets. The optimized model for            
diagnosing CMV contains two convolution layers with three filters in each layer, a mean pooling               
layer, and a three-node dense layer. The model is trained with a learning rate of 0.0001, batch                 
size of 60 and total epochs of 500. The performance of the optimized model is tested using the                  
test dataset (SDY519), which has not been used during the training and optimization processes.  
 
Training and optimization of CytoDx, CellCNN, and FlowSOM 
To test the performance of CytoDx, CellCNN and FlowSOM, we used the same training,              
validation and testing datasets that had been applied to the deep CNN model (Fig. 2A). We                
trained two CytoDx models using the CytoDx R package. The first model uses the arcsinh               
transformed cytometry data as input. The second model uses the rank-transformed cytometry            
data and the two-way interactions between each pair of markers. We used the validation              
dataset to evaluate the two models and found the second model to be superior. We               
benchmarked its performance using the test dataset.  
 
We performed a grid search for the CellCNN model (number of filters ranging from 2-10, drop                
out rate ranging from 0.1 to 0.9). Using the validation dataset, we chose an optimal set of                 
hyper-parameters (number of filters equals 5, drop out rate equals 0.2). Adam algorithm is used               
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for training the model with a learning rate of 0.001. The trained model is evaluated using the                 
testing dataset.  
 
Using FlowSOM, we clustered the cells data using a 10-by-10 self-organizing map (SOM) and              
identified 20 meta-clusters from the SOM result. We derived summary statistics of the identified              
cell subsets, including percentage in PBMC and mean fluorescence intensity (MFI) of cell             
markers. We then trained a Random Forest model (number of trees = 100) to predict the latent                 
CMV infection in the subjects using results from FlowSOM as input. The optimized models were               
evaluated using the testing dataset.  
 
Measurement of the heterogeneity between datasets 
We calculated the average marker intensities of each sample as a surrogate to measure              
heterogeneity between studies. For internal layers of the deep CNN model, we calculated the              
average activation value of each sample in each layer. We then use the Kruskal–Wallis test               
(also known as the one-way ANOVA on ranks) to test if the average marker or activation values                 
are significantly different between studies. We used the non-parametric Kruskal-Wallis test           
because the activation values are not normally distributed due to the use of Relu and logistic                
activation functions.  
 
Quantifying activation value in cell populations . We extracted the activation values of the             
internal nodes in each filter of the convolutional layers. Using definitions from the Human              
Immunology Project Consortium, We identified 24 immune cell subsets from the CyTOF data.             
We mapped the activation values to the 24 cell populations and calculated the mean activation               
value for each population. We normalized the mean activation value to the maximum activation              
value in each convolutional layer.  
 
Permutation based interpretation of deep CNN model 
For each cell in cytometry data, we up-sampled the cell by copying it to replace other randomly                 
chosen cells within the sample. We then applied the deep CNN model on both the original data                 
and the permuted data. The difference in the model output (ΔΥ) quantifies the impact of the cell                 
on the output of the deep learning model. We repeated the process until ΔΥ is calculated for all                  
cells in SDY519.  
 
We choose to up-sample the cells, rather than delete the cell, to evaluate its impact. This is                 
because cytometry data contains a large number of cells, deleting a single cell has an extremely                
limited impact on the model output. On the other hand, we can up-sample the cell to replace a                  
significant proportion of cells in the sample, therefore inducing a significant change to the model               
output. We up-sampled every cell to 1% or 5% of the total population and found that the ΔY are                   
highly correlated between the two scenarios, suggesting that the ΔY is robust to the level of                
upsampling (Fig. S2). We chose to up-sample each cell to 5% of the sample in this study.  
 
Decision trees were trained using the CyTOF data as inputs, and ΔY as outputs. The               
DecisionTreeClassifier function in the scikit-learn package is used to construct the decision tree.             
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To determine the depth of the decision tree, we constructed decision trees with maximum depth               
from 2 to 10. We measured the performance of the decision trees using the correlation between                
observed ΔY and fitted ΔY. We used the “elbow” method and determined an optimal depth of 4                 
(Fig. S3 ).  
 
Quantify cell populations using MetaCyto 
To identify the cell subset with the highest ΔY, we inspected the decision tree model and                
identified the hierarchical decision rule that leads to the leaf with the highest mean ΔY               
(CD8>2.4, CD27<1.38, CD3>2.14, CD94>.82). We notice that the decision tree bi-sect the            
markers into positive and negative regions in a way that is consistent with manual gating. We,                
therefore, specified the cell definition to be CD8+ CD27- CD3+ CD94+, which can be used as                
input in our previously developed MetaCyto R package. Using the “searchCluster'' function in             
MetaCyto, we quantified the proportion of CD8+ CD27- CD3+ CD94+ subset across nine             
studies. Using the same procedure, we quantified the proportion of CD27- CD94+ cells within              
Naive, effector, effector memory and central memory CD8+ T cells.  
 
Statistical analysis 
We performed 1000-fold bootstrapping to test if the performances of two machine learning             
models are equal. In each iteration, we sampled from the testing dataset with replacement and               
evaluated the performance of the two models using AUC. We calculated the p-value as the               
percentage of interactions in which a model outperforms the other. We measured the batch              
effect in each layer using the Kruskal–Wallis test. We used a two-way ANOVA model to test the                 
association between a cell subset and CMV infection, in which the proportion of the cell subset                
is regressed on CMV infection and study.  
 
Availability of Data and code  
The CyTOF and anti-CMV antibody titer data are publically available on ImmPort. We provided              
a tutorial demonstrating how to create, train and interpret the deep CNN model             
(https://github.com/hzc363/DeepLearningCyTOF). All the codes used in the study are available          
on GitHub (https://github.com/hzc363/Deep_learning_CyTOF_Code ).  
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Figure Legends: 
 
Figure 1: Schematic diagram showing the structure of the deep CNN model. The model              
takes arcsinh-transformed cytometry data (dimension equals to Num. of cells x Num. of             
Markers) as input, extract cellular features using convolution layers (filter size equals to 1 x               
Num. of Markers) and aggregates cellular features using max or average pooling. The             
aggregated features can be augmented with other non-cytometry data. The dense layers            
combine the augmented data and predict the outcome of interest, which can be either              
continuous or categorical variables. 
  
Figure 2: Overview of the CyTOF datasets. (A) Overlap of subjects between nine studies and               
the split of the studies into training, validation and testing datasets. The dot size represents the                
percentage of overlapping subjects between studies. (B) percentages of CMV positive and CMV             
negative individuals in training, validation, and testing datasets. 
  
Figure 3: The performance of deep CNN and other methods. We used Deep CNN, CytoDx,               
CellCNN and FlowSOM to diagnose latent CMV in the test dataset. (A) The performances of the                
models measured by the Receiver-Operator Characteristics curves. (B) The areas under the            
receiver-operator characteristics curves. The error bars represent the standard deviation. The           
standard deviation and p values are measured by 1000 fold bootstrapping. (C) The             
performances of the models measured by the Precision-Recall Curves. (D) The areas under the              
Precision-Recall Curves. The error bars represent the standard deviation. The standard           
deviation and p values are measured by 1000 fold bootstrapping. *, p value < 0.05; **, p value <                   
0.01. 
  
Figure 4: The deep CNN model mitigates the heterogeneity in cytometry data. (A) A PCA               
plot visualizing the heterogeneity between cytometry data from SDY311 and SDY315. (B-F) Dot             
plots showing the mean values in different layers of the deep CNN model, including input (B),                
first convolutional layer (C), second convolutional layer (D), dense layer (E) and output layer (F).               
Each dot represents a sample in the studies. (G) Bar plot showing the batch effects in different                 
layers in the deep CNN model, measured by the negative logarithm of p-values. p-values              
reported in B-G are from Kruskal–Wallis tests. 
  
Figure 5: The deep CNN model identifies novel associations between immune cell            
subsets and CMV infection. (A) The mean activation value in the convolutional layers in each               
cell population. The activation values are normalized by dividing the activation values by the              
highest value in the filter. (B) The workflow for interpreting the full deep CNN model. (C) A                 
decision tree identifies the cells that lead to the largest changes in model output (ΔY) when                
up-sampled. Each node represents a cell subset. The rules by which the populations split are               
indicated inside the nodes. The values in each node represent the percent of the subset in the                 
total population and the average change of model output (ΔY) when cells are up-sampled. The               
red box highlights the node with the highest mean ΔY. (D) Scatter plots showing the gating of                 
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the CD8+ CD3+ CD27- CD94+ cells and the composition of Naive (T-N), Effector(T-E), Effector              
memory (T-EM) and Central memory (T-CM) compartment in Bulk CD8+ T cells and in CD8+               
CD3+ CD27- CD94+ T cells. (E) the percentage of CD8+ CD3+ CD27- CD94+ cells in CMV+                
and CMV- subjects across nine studies. P values are from two-way ANOVA models, with CMV               
infection and study as two factors. The p values of the CMV infection variable are reported. 
  
Supplementary Figure 1 : Box Plots showing the percentage of six cell populations in CMV+              
and CMV- subjects across nine studies. The cell subsets are selected based on their high               
activation value in convolutional layers (See Fig. 5A ). P values are from two-way ANOVA              
models, with CMV infection and study as two factors. The p values of the CMV infection variable                 
are reported. 
  
Supplementary Figure 2: The change of output from the deep CNN model (ΔY) is measured               
by up-sampling every single cell in the test dataset to 1% or 5% of the total population. The                  
scatter plot shows the correlation between the two sets of  ΔY. 

Supplementary Figure 3: The performance of the decision trees are measured by the             
correlation between the input data (ΔY of the deep CNN model, see Fig. 5B ) and output. The                 
plot shows the relationship between the correlation and the maximum depth of the decision              
trees. 

Supplementary Figure 4: Proportion of CD27- CD94+ subset within CD8+ Naive, Effector,            
Central Memory and Effect Memory T cell compartments. P values are from two-way ANOVA              
models, with CMV infection and study as two factors. The p values of the CMV infection variable                 
are reported. 
  
Supplementary Table 1: The performance of the deep CNN model in 10-interaction            
permutation analysis. In each iteration, we randomly assigned one study as the validation             
dataset, one study as the test dataset and the rest studies as the training dataset to train and                  
evaluate the deep CNN model.  
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Figure 1: Schematic diagram showing the structure of the deep CNN model. The model
takes arcsinh-transformed cytometry data (dimension equals to Num. of cells x Num. of
Markers) as input, extract cellular features using convolution layers (filter size equals to 1
x Num. of Markers) and aggregates cellular features using max or average pooling. The
aggregated features can be augmented with other non-cytometry data. The dense layers
combine the augmented data and predict the outcome of interest, which can be either
continuous or categorical variables.
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Figure 2: Overview of the CyTOF dataset. (A) Overlap of subjects between nine studies and the
split of the studies into training, validation and testing datasets. The dot size represents the
percentage of overlapping subjects between studies. (B) percentages of CMV positive and CMV
negative individuals in training, validation and testing datasets.
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Figure 3: The performance of deep CNN and other methods.We used Deep CNN, CytoDx, CellCNN and
FlowSOM to diagnose latent CMV in the test dataset. (A) The performances of the models measured by the
Receiver-Operator Characteristics curves. (B) The areas under the receiver-operator characteristics curves.
The error bars represent the standard deviation. The standard deviation and p values are measured by 1000
fold bootstrapping. (C) The performances of the models measured by the Precision-Recall Curves. (D) The
areas under the Precision-Recall Curves. The error bars represent the standard deviation. The standard
deviation and p values are measured by 1000 fold bootstrapping. *, p value < 0.05; **, p value < 0.01.
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Figure 4: The deep CNN model mitigates the heterogeneity in cytometry data. (A) A
PCA plot visualizing the batch effect between cytometry data from SDY311 and SDY315.
(B-F) Dot plots showing the mean values in different layers of the deep CNN model,
including input (B), first convolutional layer (C), second convolutional layer (D), pooling
layer (E) and output layer (F). Each dot represents a sample in the studies. (G) Bar plot
showing the batch effects in different layers in the deep CNN model, measured by the
negative logarithm of p-values. p-values reported in B-G are from Kruskal–Wallis tests.
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Figure 5: The deep CNN model identifies novel associations between immune cell subsets and CMV infection. (A)
The mean activation value in the convolutional layers in each cell population. The activation values are normalized by
dividing the activation values by the highest value in the filter. (B) The workflow for interpreting the full deep CNN model.
(C) A decision tree identifies the cells that lead to the largest changes in model output (ΔY) when up-sampled. Each node
represents a cell subset. The rules by which the populations split are indicated inside the nodes. The values in each node
represent the percent of subset in the total population and the average change of model output (ΔY) when cells are up-
sampled. The red box highlights the node with the highest mean ΔY. (D) Scatter plots showing the gating of the CD8+ CD3+
CD27- CD94+ cells and the composition of Naive (T-N), Effector(T-E), Effector memory (T-EM) and Central memory (T-CM)
compartment in Bulk CD8+ T cells and in CD8+ CD3+ CD27- CD94+ T cells. (E) the percentage of CD8+ CD3+ CD27-
CD94+ cells in CMV+ and CMV- subjects across nine studies. P values are from two-way ANOVA models, with CMV
infection and study as two factors. The p values of the CMV infection variable are reported.
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