Abstract
Wuhan Novel Coronavirus (2019-nCoV) outbreak has become global pandemic which has raised the concern of scientific community to deign and discover a definitive cure against this deadly virus which has caused deaths of numerous infected people upon infection and spreading. To date, there is no antiviral therapy or vaccine is available which can effectively combat the infection caused by this virus. This study was conducted to design possible epitope-based subunit vaccines against the 2019-nCoV using the approaches of reverse vaccinology and immunoinformatics. Upon continual computational experimentation three possible vaccine constructs were designed and one vaccine construct was selected as the best vaccine based on molecular docking study which is supposed to effectively act against the Wuhan Novel Coronavirus. Later, molecular dynamics simulation and in silico codon adaptation experiments were carried out in order to check biological stability and find effective mass production strategy of the selected vaccine. Hopefully, this study will contribute to uphold the present efforts of the researches to secure a definitive treatment against this nasty virus.