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1 Abstract

2 Tyrosine is mainly degraded in the liver by a series of enzymatic reactions. Abnormal expression 

3 of the tyrosine catabolic enzyme tyrosine aminotransferase (TAT) has been reported in patients 

4 with hepatocellular carcinoma (HCC). Despite this, aberration in tyrosine metabolism has not been 

5 investigated in cancer development. In this work, we conduct comprehensive cross-platform study 

6 to obtain foundation for discoveries of potential therapeutics and preventative biomarkers of HCC. 

7 We explore data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), 

8 Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan Meier plotter 

9 (KM plotter) and performed integrated analyses to evaluate the clinical significance and prognostic 

10 values of the tyrosine catabolic genes in HCC. We find that five tyrosine catabolic enzymes are 

11 downregulated in HCC compared to normal liver at mRNA and protein level. Moreover, low 

12 expression of these enzymes correlates with poorer survival in patients with HCC. Notably, we 

13 identify pathways and upstream regulators that might involve in tyrosine catabolic reprogramming 

14 and further drive HCC development.   In total, our results underscore tyrosine metabolism 

15 alteration in HCC and lay foundation for incorporating these pathway components in therapeutics 

16 and preventative strategies.

17

18 Introduction

19 Hepatocellular carcinoma (HCC) remains the most common cancer in the word, especially in Asia 

20 and Africa, and the third leading cause of cancer-related death worldwide1. It is believed that the 

21 pathogenesis of HCC is a long-term process that involves constant metabolic reprogramming. 

22 Previous efforts to investigate metabolic programming of HCC have largely focused on  aerobic 
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1 glycolysis, commonly referred to as the Warburg effect, which supports tumor growth in part by 

2 accumulating glycolytic intermediates for anabolic biosynthesis2,3. For instance, HCC tumors 

3 express high levels of the hexokinase isoform 2 (HK2), which converts glucose to  glucose-6-

4 phosphate, and its expression is associated with the pathological stage of the tumor4,5. HK2 

5 silencing acted synergistically with sorafenib to inhibit HCC tumor growth in mice5. Besides 

6 glucose, HCC has been reported to alter its lipid and lipoprotein catabolic and anabolic pathways 

7 and increased HCC risks have been observed in patients with obesity6, diabetes7, and hepatic 

8 steatosis8. Recent studies defined a functional association among lipogenesis, multifunctional 

9 enzyme fatty acid synthase (FASN), sterol regulatory element-binding protein-1 (SREBP-1), a 

10 transcription factor regulating FASN expression, and HCC9,10. 

11 Recently there are increasing evidences suggesting that cancer cells have increased levels of 

12 oxidative stress and ROS production compared to normal cells11. Thus, redox homeostasis is finely 

13 tuned in cancer cells with a role in the control of cell signaling and metabolism12. For instance, 

14 ROS-mediated inhibition of PKM2 allows cancer cells to sustain antioxidant responses by 

15 diverting glucose flux into the pentose phosphate pathway and increasing the production of 

16 reducing equivalents for ROS detoxification12. Oxidative damage is considered as a key pathway 

17 in HCC progression and increases patient vulnerability for HCC recurrence13. As previously 

18 reported, accumulation of a m-tyrosine  may disrupt cellular homeostasis and contribute to disease 

19 pathogenesis and the elimination of this isomer can be an effective defense against oxidative 

20 stress14.

21 Tyrosine, like other amino acids, is the building block for proteins as well as an alternative energy 

22 source for cellular functions. Liver is the major organ where tyrosine degradation takes place to 

23 produce intermediates or precursors for gluconeogenesis and ketogenesis. The degradation of 
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1 tyrosine is catalyzed through a series of five enzymatic reactions. Disturbed tyrosine metabolism 

2 has been implicated in several types of  disease such as Huntington’s disease15 and esophageal 

3 cancer16,17. Previously reported. patients with hereditary tyrosinemia are more likely to develop 

4 HCC18,19.  In patients with HCC, an upregulation of serum tyrosine has been recorded20,21, 

5 suggesting a deregulated tyrosine metabolism in HCC. However, to date, there is a lack of 

6 systematic study to profile the state of tyrosine catabolic enzymes and molecular impacts of 

7 alteration in tyrosine catabolism in HCC development.

8 As previously reported, the frequent deletion of 16q22 and aberrant methylation led to the 

9 downregulation of the first tyrosine catabolic enzyme TAT (tyrosine aminotransferase)22. 

10 Functional analyses showed that TAT harbored proapoptotic effect and that TAT suppression 

11 could promote liver tumorigenesis22. Glutathione S-transferases (GSTs) are a family of phase II 

12 isoenzymes that detoxify toxicant to lower toxic23 and its dysfunction has been found to be closely 

13 related with response to chemotherapy24-26. GSTZ1 belongs to the zeta class of GSTs and is the 

14 fourth enzyme in tyrosine metabolism. Patients carrying GSTZ1 variants had an increased risk of 

15 bladder cancer when exposed to trihalomethanes27. Furthermore, a computational-based 

16 investigation suggested GSTZ1 might act as a protective factor in ovarian cancer28.

17 In this study, we aim to systematically investigate the expression and prognostic value of tyrosine 

18 catabolism enzymes (TAT, HPD, HGD, GSTZ1 and FAH) in HCC by integrating large-scale 

19 datasets. We further detect enriched pathways associated with overexpression of a tyrosine 

20 catabolic enzyme in HCC cells. Our comprehensive, gene-centric analysis shed light on the 

21 genomic changes, clinical relevance, upstream regulators and possible impact of tyrosine catabolic 

22 genes on HCC development.
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1 Results

2 A cross-platform, pan-cancer analysis of tyrosine catabolic enzyme expression

3 We first set out to investigate the expression profiles of tyrosine catabolic genes in cancer 

4 transcriptomes (Figure 1A). Here, we used the Oncomine online database29 to perform pan-cancer 

5 transcriptome analysis on its available data sets. The top mRNA differences between cancer 

6 samples and normal samples were analyzed by default selective criteria. Figure 1B showed that 

7 there was a total of 390, 428, 431, 457 and 448 Oncomine data sets involving the genes, TAT, 

8 HPD, HGD, GSTZ1 and FAH, respectively. Remarkably, in most data sets, a large proportion of 

9 patients demonstrated downregulation of these genes in the tumorous parts compared to those of 

10 normal samples. Specifically, in HCC, all of the gene sets show downregulation of the investigated 

11 tyrosine catabolic enzyme-encoding genes (Figure 1B, highlighted in red box). Furthermore, the 

12 Gene expression heat map from GEPIA pan-cancer transcriptome analysis30 showed markedly 

13 downregulation of TAT, HPD and GSTZ1 in HCC (Figure 1C). Additionally, in cervical squamous 

14 cell carcinoma, all of the tyrosine catabolic genes were visibly downregulated in tumors compared 

15 to normal tissue adjacent to the tumor. Through this initial observation, we found evidences to 

16 support that tyrosine catabolic genes expression were downregulated in many cancers, including 

17 HCC. 

18

19 Tyrosine catabolic genes are downregulated in HCC

20 Next, to further investigate the role of tyrosine catabolic enzymes, we performed analysis of a 

21 publicly available dataset (The Cancer Genome Atlas31 [TCGA], Liver Cancer [LIHC]) including 

22 gene expression in 369 HCC tissues vs 160 normal liver tissues. Here, the data demonstrated that 

23 TAT, HPD and GTSZ1 were decreased in HCC tissues compared to normal liver (Figure 2A). 
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1 However, the gene expression of HGD and FAH were virtually unchanged in HCC samples 

2 compare to normal liver samples. 

3 To gain supporting evidence on the downregulation of tyrosine catabolic genes in HCC, the 

4 GSE89377 (Data Citation 1) dataset was employed to assess the expression of these genes in 

5 normal liver samples, early HCC and HCC from stage 1 to 3. Interestingly, we found that in early 

6 HCC, the expression of tyrosine catabolic genes was insignificantly changed compared to normal 

7 liver. However, the transcripts of TAT, HPD, HGD, GSTZ1 and FAH significantly reduced in the 

8 HCC stage 2 and stage 3 compared to normal liver (Figure 2B).  

9 Overall, our combined analysis on TCGA data and an independent GSE dataset showed that 

10 tyrosine catabolic genes were downregulated in late stage HCC compared to normal liver.

11

12 Prognostic value of tyrosine catabolic genes in patients with HCC

13 Subsequently, we sought to determine the clinical relevance of TAT, HPD, HGD, GSTZ1 and FAH 

14 expression in term of prognosis in HCC patients since these genes were highly enriched in liver 

15 tissues (Supplementary Figure S1). Kaplan–Meier analysis was employed to compare between the 

16 subgroups with high and low gene expression (using the median, 25% or 75% quartile values of 

17 gene expression as cut-off points) in TCGA-LIHC cohort of 364 liver cancer patients. The overall 

18 survival was significantly associated with TAT, HGD and GSTZ1 expression in HCC samples 

19 (p = 0.0067, p = 0.0039 and p = 0.036, respectively) (Figure 3). Similarly, lower expression of 

20 TAT, HGD and GSTZ1 could also translate to a worse disease-free survival in HCC patients 

21 (p = 0.011, p = 0.0038 and p = 0.036, respectively) (Supplementary Figure S2). 
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1 To further validate the potential application of tyrosine catabolic genes in the clinic, we extracted 

2 the characterized IHC images from the Human Protein Atlas. HCC tumor tissue staining of 

3 tyrosine catabolic enzymes showed significant decrease in positive staining compared with normal 

4 liver tissue. Specifically, HPD staining decreased by 2.26-fold ± 2.10 (p = 0.0388), HGD decreased 

5 by 1.67-fold ±0.87 (p = 0.0423) and GSTZ1 decreased by 2.27-fold ±1.09 (p = 0.0007) in HCC 

6 tumor compared to normal liver tissue (Figure 4). 

7 These findings highlighted that the expression of tyrosine catabolic enzyme-encoding genes 

8 correlated with worse overall survival and disease-free survival in HCC and that TAT, HGD and 

9 GSTZ1 had potential prognostic value in patients with HCC.

10

11 Gene expression profiling of GSTZ1 expressing HCC cell line

12 Following the previous analyses, we noted that the fourth rate-limiting enzyme, GSTZ1 

13 (Glutathione S-transferase Zeta 1) had significant downregulation and prognosis. We therefore 

14 sought to study the molecular pathway alterations associated with this gene. Here, we explored the 

15 publicly available data set GSE117822 (Data Citation 2) where GSTZ1 is overexpressed in Huh7 

16 HCC cell line by adenoviral transfection. R software32 with the DESeq233 package was applied to 

17 screen DEGs from the gene expression dataset GSE between control vectors and overexpressed 

18 GSTZ1. A total of 3163 DEGs (p <0.05) were identified from this dataset, 1742 upregulated genes 

19 and 1421 downregulated genes. 

20 To investigate changes in molecular pathways associated with GSTZ1 overexpression, we use 

21 GSEA to rank the DEGs against the C2 canonical pathway gene set34. We were able to profile 

22 positively and negatively enriched pathways in GSTZ1 overexpressed Huh7 (Supplementary 

23 Figure S3). For better visualization of related gene sets and identification of important pathway 
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1 families, we presented the pathways using Enrichment Map35 in Cytoscape36 (Figure 5). As 

2 expected, we observed a positive enrichment for multiple metabolism related pathways including 

3 Metabolism of Lipids, Metabolism of Proteins and Metabolism of Amino Acids. Noticeably, 

4 increased GSTZ1 expression led to heightened Oxidative Phosphorylation and Respiratory 

5 Electron Transport. On the other hand, genes involved in glycolysis, such as HK2, PDK2 were 

6 downregulated (1.88-fold and 2.05-fold, respectively) in cell expressing GSTZ1 compared with 

7 vector control. Most importantly, overexpression of GSTZ1 in HCC cell led to the downregulation 

8 in several pathways in cancer gene sets (Kegg Small Cell Lung Cancer and Kegg Chronic Myeloid 

9 Leukemia). Together, these data highlighted the changes in molecular pathways that correspond 

10 to GSTZ1 expression and critically, provided insights on how overexpression of GSTZ1 might 

11 negate HCC development.

12

13 Mutation profiles of tyrosine catabolic genes in HCC

14 We extended our studies to investigate on underlying mechanism of how tyrosine catabolic genes 

15 were downregulated in HCC. First, we explored mutation profiles of tyrosine catabolic genes in 

16 353 HCC patients by exploring TCGA data using cBioPortal37. We found that each individual gene 

17 was mutated in less than 1.1% of patients with HCC (Supplementary Figure S4). In all genes, there 

18 were 8/21 missense mutations that harbor deleterious effect (Table 1). However, when 

19 incorporating mutation type with mRNA expression profile, we did not observe a correlation 

20 where amplification led to increased expression or vice versa (Supplementary Figure S5). Second, 

21 we explored copy number status of tyrosine catabolic genes using data from GISTIC analysis38 

22 (TCGA Copy Number Portal). We found that even though the genes were located near the peak 

23 region of deletion, none of them were in focal (Table 2). Except for HPD (Q value = 0.019), the 
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1 rest of the genes were less likely to suffer copy number alterations (Table 2). Taken together, we 

2 found that several base substitution mutation scenarios can lead to the deletion of tyrosine catabolic 

3 genes but these is not a strong association between mutation status and mRNA expression.

4

5 MicroRNAs regulate the expression of tyrosine catabolic genes

6 Next, we sought out to explore microRNAs as possible negative regulators of TAT, HPD, HGD, 

7 GSTZ1 and FAH. Using Target Scan database39, we found there were two microRNAs that targeted 

8 TAT, HPD, GSTZ1 and FAH (Figure 6A), which were miR-539 and miR-661. There were no 

9 common microRNAs that target all tyrosine catabolic genes. First, investigation of 370 HCC 

10 samples and 50 normal samples (TCGA-LIHC) showed that miR-539 increased by 2.84-fold in 

11 HCC samples compared to normal liver (p = 0.05). Second, pan-cancer co-expression analysis for 

12 miRNA-target interaction in HCC using starBase40 showed that miR-539 level negatively 

13 correlated with TAT, HPD, GSTZ1 and FAH expression (r = -0.221, r = -0.193, r = -0.123, r = -

14 0.166) (Supplementary Figure S6). More importantly, our Kaplan-Meier analysis by KM-plotter41 

15 of TCGA-LIHC data set showed that high miR-539 expression led to worse overall survival in in 

16 HCC patients (Figure 6B). 

17 Additionally, Kaplan-Meier analysis on CapitalBio miRNA Array liver dataset42 also showed that 

18 miR-661 expression positively correlated with worse overall survival (Figure 6C). Overall, these 

19 findings suggested that in HCC, the downregulation of tyrosine catabolic genes can be due to 

20 microRNA regulation. We found that miR-539 and miR-661 can potentially suppress TAT, HPD, 

21 GSTZ1 and FAH expression and that expression of miR-539 and miR-661 can provide prognostic 

22 insights for patients with HCC.

23
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1 Discussion

2 We explored publicly available gene expression data sets and database to investigate the roles of 

3 genes in the tyrosine degradation pathway in the development of HCC. Our results indicated that 

4 all tyrosine catabolic genes decreased in HCC compared to normal liver tissues. Furthermore, we 

5 found that these genes gradually decreased from normal liver through early HCC to late HCC. We 

6 demonstrated that the fourth rate-limiting enzyme, GSTZ1 expression significantly reduced, either 

7 in protein or mRNA level, in HCC (Figure 2A, Figure 4). Even though the tyrosine catabolic gene 

8 expression remained unchanged at early stage HCC, they were significantly down-regulated in late 

9 stage HCC (Figure 2B). We also found that TAT, HGD and GSTZ1 expression levels positively 

10 correlated with overall survival and disease-free survival of HCC (Figure 3, Supplementary Figure 

11 S2). Previously shown, TAT, the first rate-limiting enzymes in the pathways, was downregulated 

12 in HCC, possibly due to the frequent deletion of 16q22,45. Another study found that aberrant DNA 

13 hypermethylation on chromosome 16 has been described as an early event in HCC 

14 tumorigenesis46. Functional in vitro validations showed that TAT induced apoptosis and that TAT 

15 possessed tumor-suppressive functions22. 

16 GSTZ1, which is expressed in both hepatic cytosol and mitochondria, has shown to be oxidative 

17 stress-related28. High levels of GSTZ1 expression conferred resistance to the effect of anti-cancer 

18 therapy of dichloroacetate in hepatocellular carcinoma cell lines by an independent mechanism to 

19 tyrosine metabolism47,48. We decided to further study the roles of GSTZ1 in HCC development by 

20 exploring a public dataset where GSTZ1 were overexpressed in HCC cell line Huh7. We found 

21 that with the expression of GSTZ1, there was positive enrichment of Biological Oxidations (Figure 

22 5, Supplementary Figure S2). Generally, cell generates ATP through oxidative phosphorylation 

23 and produces ROS as a byproduct. Cancer cells have a higher tolerance for ROS and it is known 
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1 that low doses of ROS can stimulate growth in various types of cancer11. However, unbalanced 

2 increase in ROS level can induce cancer cell cycle arrest, senescence and apoptosis11. Here, it is 

3 appealing to assume that HCC can reprogram its tyrosine metabolism to maintain ROS balance as 

4 a growth strategy. Additionally, we detected an overall enrichment in metabolism of proteins and 

5 lipids pathways and decrease in glycolysis genes following GSTZ1 expression (Figure 5). Liver is 

6 a dynamic organ which constantly undergoes metabolic shift. Cancer cells, including HCC, usually 

7 switch to aerobic glycolysis to maximize energy usage and further fuel growth2. Since 

8 overexpression of GSTZ1 led to downregulation of several glycolysis genes, we consider it 

9 possible that the suppression of tyrosine catabolism can be a mechanism by which HCC switch to 

10 aerobic glycolysis during cancer progression.

11 The downregulation of other genes in the tyrosine catabolic pathways have not been linked to 

12 changes in DNA. Thus, we reason that the downregulation of HPD, HGD, GSTZ1 and FAH might 

13 be dependent or independent of the downregulation of TAT. We found that four out of five genes 

14 were predicted to be regulated by miR-539, miR-661. Noticeably, investigation of TCGA-LIHC 

15 dataset showed that miR-539 significantly increased in HCC compared to normal skin and that the 

16 miR-539 level inversely correlated with expression of TAT, GSTZ1, HPD, FAH (Supplementary 

17 Figure S4). Here, our analyses showed that expression of two of these microRNAs positively 

18 correlated with overall survival in HCC patients (Figure 6B). As previously reported, miR-539 

19 was usually downregulated and acted as tumor suppressors in various tumor types49,50. In HCC, 

20 miR-539 was also demonstrated to suppress HCC development in vitro by targeting FSCN1 and 

21 suppressing apoptosis51,52. Here, our findings suggested that on miR-539 might be a tumor 

22 promoter in contrast to previous experimental studies. On the other hand, prior studies showed that 

23 miR-661 was a tumor promoter in non-small cell lung cancer, colon cancer and ovarian cancer 53-
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1 55. However, the roles of miR-661 in HCC development has not been investigated. Taken together, 

2 we speculate that miR-539 and miR-661 can be potential regulators of tyrosine catabolic genes 

3 and whether these regulation lead to HCC development need to be validated by functional studies.

4 Tyrosine metabolism is an important process that is often dysregulated in various diseases 

5 including cancers and chronic disorders56. Tyrosinemia type I patients have a higher risk of 

6 developing HCC56. The reasons for the high incidence of HCC are unknown but it has been 

7 suggested that it may be caused by accumulated metabolites such as fumarylacetoacetate (FAA) 

8 and maleylacetoacetate (MAA)56. A metabolomics study on esophageal cancer (EC) showed that 

9 tyrosine decreased in serum of patients with EC compared with healthy control57,58. There has been 

10 little evidence on how tyrosine metabolism might contribute to cancer development even though 

11 changes in expression of some tyrosine metabolic genes have been reported in HCC patients22,59. 

12 To summarize, our findings from the integrative databases and comprehensive analysis of this 

13 study demonstrated the downregulation of tyrosine catabolic genes and their prognostic value in 

14 HCC. We provided evidence on how suppressing these genes can benefit HCC development and 

15 that tyrosine catabolism is a novel pathway through which HCC reprogram its metabolism. Finally, 

16 we provided evidence suggesting that microRNAs can regulate the expression of tyrosine catabolic 

17 genes and might be a potential prognostic biomarker for HCC. However, more investigations need 

18 to be applied to fully reveal the role of tyrosine catabolism in HCC for further translational study.

19 We further discovered that the expression of GSTZ1, the fourth rate limiting enzyme in tyrosine 

20 catabolism, regulates glycolytic gene expression. We provided evidence to support that tyrosine 

21 catabolic genes can be regulated by microRNAs. Thus, we present here a novel function for 

22 tyrosine catabolic genes in tumorigenesis and provide a previously unappreciated event by which 

23 cancer cells reprogram tyrosine metabolism during cancer progression.
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1 Methods

2 Oncomine analysis

3 The Oncomine online databases29 were accessed for the visualization of gene expression. 

4 Oncomine is an online cancer microarray database used to facilitate and promote discoveries from 

5 genome-wide expression analyses. The pan-cancer studies in Oncomine were selected to compare 

6 the expression levels in tumor vs normal tissue adjacent to the tumor. The selection criteria for the 

7 Oncomine studies were p < 0.05 as a threshold, 2-fold change and gene rank in the top 10%. The 

8 p value, fold changes, and cancer subtypes were extracted. 

9

10 Gene expression analysis

11 The TCGA data was analysed by GEPIA30 (http://gepia.cancer-pku.cn/). For the differential 

12 expression analysis, the genes were log2(TPM + 1) transformed. One-way ANNOVA was used to 

13 compute p value. Those with log2(TPM+1) > 1 and p < 0.01 were then considered differentially 

14 expressed genes. Normal tissues are matched TCGA adjacent tissue and GTEx normal tissue.

15

16 Survival analysis

17 The overall survival curves of TAT, HPD, HGD, GSTZ1 and FAH were investigated using the 

18 Kaplan-Meier method with the log-rank test. We set the high and low gene expression level 

19 groups by the median value. The overall survival plot was obtained with the hazard ratios (HR) 

20 and the 95% confidence interval information. The whole process was implemented using the 

21 web-based tool GEPIA30.
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1 The prognostic values of hsa-miR-539 and has-miR-661 in HCC were analyzed using Kaplan 

2 Meier plotter (KM plotter) database44. In brief, the miRNAs were entered into the database, after 

3 which survival plots were generated and hazard ratio, 95% confidence intervals, log rank P-value 

4 were displayed on the webpage. The log-rank p value was calculated with <0.05 considered 

5 statistically significant.

6

7 Gene expression omnibus data mining 

8 We retrieved transcriptome profiles of HCC tissues from GEO which is a public genomics 

9 database, allowing users to investigate gene expression profiles of interest60. The GSE89377 is a 

10 microarray dataset of multi-stage HCC in a GPL570 Affymetrix Human Genome U133 Plus 2.0 

11 Array Platform. The GSE89377 dataset contains 108 samples in total, including 13 healthy people, 

12 5 with early HCC, 9 with Stage 1 HCC, 12 with Stage 2 HCC and 14 with Stage 3 HCC. 

13 Processed gene expression dataset was downloaded using GEOquery61. limma62 R packages was 

14 used to determine the DEGs between normal and HCC tissues. p<0.01 was considered as the cutoff 

15 value. 

16

17 Differentially expressed genes identification and Gene set enrichment analysis (GSEA)

18 The GSE89377 dataset published in 2017 was processed by Bioconductor package DESeq233 to 

19 identify DEGs and analyzed by GSEA with the Molecular Signatures Database “Canonical 

20 Pathways” gene set collection34. The default GSEA basic parameters were used; to find gene sets 

21 that correlate with GSTZ1 expression profile (continuous phenotype label), Pearson metric was 

22 used for ranking genes.

23
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1 Quantification of immunohistochemistry images from Human Protein Atlas

2 Immunohistochemistry (IHC) images were downloaded from the publicly available The Human 

3 Protein Atlas63 (HPA; http://www.proteinatlas.org) version 8.0. The analyses in present study were 

4 performed using HPA images of liver sections that were labeled with antibodies for HPD (antibody 

5 HPA038321), HGD (antibody HPA047374), GSTZ1 (antibody HPA004701) and FAH (antibody 

6 HPA041370). A custom script written in MATLAB programming language was used to detect 

7 positive staining based on brown pixel-counting. The absolute amount of antibody-specific 

8 chromogen per pixel was determined and normalized against total tissue area. Code is available at 

9 http://github.com/nguyenquyha/IHC-method.

10

11 Identify miRNA candidates by Targetscan

12 Targetscan database (http://www.targetscan.org) were accessed for identifying miRNA 

13 candidates. In brief, gene name was entered to retrieve a list of microRNAs that was predicted to 

14 target the input gene. Default parameters were used. After that, the miRNA lists were merged to 

15 find common miRNAs that target TAT, HPD, GSTZ1 and FAH.

16

17 Copy Number Analysis

18 Copy number alteration data from Gene-Centric GISTIC analyses was retrieved from TCGA Copy 

19 Number Portal (http://portals.broadinstitute.org/tcga/home). Liver hepatocarcinoma tumor type 

20 was selected for this analysis using the stddata__2015_04_02 TCGA/GDAC tumor sample sets 

21 from FireHose. 

22
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1 Statistical Analysis

2 Statistical analyses were performed using GraphPad Prism 8.0.2. Independent Student’s t test was 

3 used to compare the mean value of two groups. Bars and error represent mean ± standard 

4 deviations (SD) of replicate measurements. Statistical significance was defined as p ≤ 0.05. ∗p < 

5 0.05, ∗∗p < 0.01 and ∗∗∗p < 0.001. 

6 Resource table

Software and 

Algorithms

Version Source

GraphPad 

PRISM

8.0.2 https://www.graphpad.com

R 3.5.3 https://www.r-project.org/

limma R package 3.8 https://bioconductor.org/packages/release/bioc/html/limma.html

Cytoscape 3.7.1 https://cytoscape.org/

EnrichmentMAP 3.2.0 http://apps.cytoscape.org/apps/enrichmentmap

GEPIA 1 http://gepia.cancer-pku.cn

Oncomine NA https://www.oncomine.org

KMPlotter NA https://kmplot.com

GSEA software 2-2.2.3 http://software.broadinstitute.org/gsea/index.jsp

7
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13

14 Figure Legends

15 Figure 1: Downregulation of the tyrosine catabolic genes in several types of cancer, including 

16 HCC. (A) Graphics of tyrosine catabolism process. (B) The mRNA expression levels of the 

17 tyrosine catabolic genes according to Oncomine database. The mRNA expression of the genes 

18 (cancer versus normal tissue) in pan-cancers analyzed with the Oncomine database. The graphic 

19 demonstrates the numbers of datasets that meet our threshold in each cancer type. Cell color was 

20 defined as the gene rank percentile in the study. (C) The heat map indicates the expression after 

21 normalization by TPM+1 for comparison between tumor (T) and normal (N) across cancer types. 
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1 Normal tissues are matched TCGA adjacent tissue and GTEx data. The cancer abbreviation names 

2 are shown according to TCGA study abbreviations (Supplementary Table S1). TPM, transcript per 

3 million.

4

5 Figure 2: Gene expression profile of the tyrosine catabolic genes in HCC. (A) Gene expression 

6 analysis of tyrosine catabolic genes using GEPIA based on the TCGA and GTEx database. Box 

7 plots represent the gene expression level in terms of log2(TPM+1) in the tumor (red, n=369) and 

8 normal (grey, n=160) samples, respectively. Normal tissues are matched TCGA adjacent tissue 

9 and GTEx data. The method for differential analysis is one-way ANOVA. (B) Gene expression 

10 analysis across stages of the tyrosine catabolic genes in GSE89377 dataset. Violin plots represent 

11 log2(TPM+1) of genes in normal (grey, n= 13), early HCC (red, n=5), stage 1 HCC (red, n=9), 

12 stage 2 HCC (red, n=12) and stage 3 HCC (red, n=14).  A t-test was used to compare the expression 

13 difference between tumor and normal tissue; p < 0.05 was considered statistically significant. 

14 *p < 0.05, **p < 0.01, ***p < 0.001 based on the Student's t test. Values are mean ± SEM. TPM, 

15 transcript per million.

16

17 Figure 3: Overall survival outcomes of 364 HCC patients were analyzed using log-rank tests based 

18 on gene expression in HCC tissues from the TCGA cohort. Kaplan-Meier curves are plotted using 

19 GEPIA for TAT, HPD, HGD, GSTZ1 and FAH, and HRs and 95% confidence intervals are shown. 

20 Abbreviation: HCC, hepatocellular carcinoma, HRs, hazard ratios; TCGA, the Cancer Genome 

21 Atlas.

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.05.935429doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.935429
http://creativecommons.org/licenses/by/4.0/


1 Figure 4: The protein expression profile of the tyrosine catabolic genes in the pan-cancer 

2 analysis (A) Quantification of HPD, HGD, GSTZ1 and FAH expression in IHC images obtained 

3 from HPA. A t-test was used to compare the expression difference between tumor and normal 

4 tissue adjacent to the tumor; p < 0.05 was considered statistically significant. *p < 0.05, 

5 ***p < 0.001 based on the Student's t test. Values are mean ± SEM. (B) Representative images of 

6 normal liver tissue and HCC tissue stained with antibody against GSTZ1.

7

8 Figure 5: Enrichment Map of GSTZ1 overexpressed huh7 and non-targeted control: GSEA was 

9 used to obtain canonical pathway gene sets that were visualized using the Enrichment Map plug-

10 in for Cytoscape. Each node represents a gene set with similar nodes clustered together and 

11 connected by edges with the number of known interactors between the nodes being represented by 

12 the thickness of edges. The size of each node denotes the gene set size for each specific. 

13

14 Figure 6: Prognostic value of microRNAs that target the tyrosine catabolic genes (A) The Venn 

15 diagram demonstrated the number of predicted miRNAs that target TAT, HPD, FAH and GSTZ1 

16 from TargetScan database. (B) Survival analysis with miR-539 and miR-661 (KM Plotter dataset). 

17 The TCGA-LIHC dataset43 from Kaplan-Meier Plotter44 was used to test for survival prediction 

18 capacity of miR-539 in liver cancer. The CapitalBio miRNA Array liver dataset42 was used to test 

19 for survival prediction capacity of miR-661 in liver cancer. Cox regression model was used for 

20 each gene to predict relapse-free survival. Samples are divided into Low (black) and High (red) 

21 expression groups for each gene. Hazard ratio (HR) and p value for each association are shown 

22 within each plot. 

23
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1 Table 1. Summary of mutations of tyrosine catabolic genes in patients with HCC

 Gene DNA change Type Consequences SIFT Impact

chr16:g.71568080 G>C Substitution 3 Prime UTR N/A

chr16:g.71570753_71570754insG Insertion Frameshift N/A

chr16:g.71576063G>T Substitution Intron N/A

chr16:g.71568109A>T Substitution 3 Prime UTR N/A

chr16:g.71570812T>C Substitution Missense Deleterious

chr16:g.71572596A>G Substitution Synonymous N/A

TAT

 

 

 

 

 

 chr16:g.71568283C>A Substitution Missense Deleterious

chr12:g.121847089T>C Substitution Missense Deleterious

chr12:g.121849748T>C Substitution Missense Deleterious

HPD

 

 chr12:g.121858824G>A Substitution 5 Prime UTR N/A

chr3:g.120646351T>A Substitution Missense Deleterious

chr3:g.120650834A>T Substitution Missense Deleterious

chr3:g.120670454C>A Substitution Missense Deleterious

HGD

 

 

 chr3:g.120682178delTTCT Deletion 5 Prime UTR N/A

GSTZ1 chr14:g.77330329G>T Substitution Missense N/A

chr15:g.80172237A>G Substitution Missense Deleterious

chr15:g.80160464G>T Substitution Splice Region N/A

chr15:g.80173063G>A Substitution Synonymous N/A

chr15:g.80186294G>T Substitution 3 Prime UTR N/A

FAH

 

 

 

 chr15:g.80186299G>A Substitution 3 Prime UTR N/A
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chr15:g.80162464C>T Substitution Intron N/A

1

2 Table 2. Summary of CNAs of tyrosine catabolic genes in patients with HCC

Frequency of detection

Gene 

name Location Nearest peak

In 

peak

?

Q-

value

Overal

l Focal

High 

value

TAT

chr16:71600753-

71610998

chr16:78129906-

79627535 No 1 0.4108 0.0135 0

HPD

chr12:12227743

2-122326517

chr12:12345346

9-133155338 No

0.019

1 0.1432 0.0486 0

HGD

chr3:120347014-

120401418

chr3:114042610-

115341566 No 1 0.1135 0.0081 0

GSTZ1

chr14:77787229-

77797940

chr14:66969095-

67653632 No 0.856 0.3405 0.0324 0.0054

FAH

chr15:80445232-

80478924

chr15:88785838-

101883952 No 1 0.1892 0.0189 0

3
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5 1. Gene Expression Omnibus GSE89377 (2017)

6 2. Gene Expression Omnibus GSE117822 (2019)
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