










(a) Bortezomib, -12.15 kcal/mol (b) 2019-nCoV protease and Bortezomib complex

(c) Flurazepam, -10.38 kcal/mol (d) 2019-nCoV protease and Flurazepam complex

(e) Ponatinib, -10.25 kcal/mol (f) 2019-nCoV protease and Ponatinib complex

Figure 3: Bortezomib, Flurazepam, Ponatinib and their complexes with 2019-nCoV protease.

bonds are formed by two O atoms in two hydroxyls on the head of Bortezomib and three different aminos in
the main chains of residues Gly143, Ser144, and Cys145 of nCoV-2019 protease. Therefore, the head bonds
tightly with the side chains of the aforementioned residues. The other two important hydrogen bonds are
located at the tail of the drug molecule. The first one is between the O atom in the Hydroxyl on the tail and
the two H atoms in the amino acid of the main chain of Glu166 and the methyl of the main chain of Met165.
The second one is the H atom in the amino on the tail and the O atom in the side chain of Gln189. As a
result, the head, body, and tail of Bortezomib interact firmly with the protease binding site.

The second-best drug is Flurazepam (see Figure 3(d)) with a binding affinity of -10.37 kcal/mol. The
strong hydrogen bonds between this molecule and the protease are formed by five different H atoms on
the head of the drug with four different O atoms in the main chains of Phe140 , Leu141, as well as the side
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chains of Asn142 and Glu166. Another important bond is formed by the H atom in the amino of the side
chain of Gln189 with the F atom of the fluorobenzene and one N atom of the 1,4-diazepane in the drug.
Additionally, the O atom in the drug adjacent to the 1,4-diazepane is bonded with the amino H atom of the
side chain of Glu166. Therefore, the head, tail, and body of the molecule are firmly fixed to the binding site,
which promises a strong binding to the 2019-nCoV protease.

The third one, Ponatinib (see Figure 3(f)), has a binding affinity -10.29 kcal/mol. The strong hydrogen
bonds between this molecule and the protease are formed by two H atoms of the piperazine with the O
atom in the side chain of Ser144 and the main chain of Leu141. Additionally, a bond exists between the
O atom in the main chain of the drug and the H atom in the methyl of the main chain of Met165. These
hydrogen bonds lead to a high binding affinity with 2019-nCoV protease.

The 3D complexes of 2019-nCoV protease and other 12 potential drugs are given in Supplementary
Material.

3.2 Binding affinities of anti-virus protease drugs

It is interesting to analyze the predicted binding affinities of existing antiviral drugs developed as protease
inhibitors. Their binding affinities are listed in Table 2. It is interesting to see that except for Boceprevir,
which is a protease inhibitor used to treat hepatitis caused by the hepatitis C virus (HCV), the rest of pro-
tease inhibitors do not have a strong effect on 2019-nCoV. The predicted values by a recent study [24] are
given in the parenthesis. It appears that these values are overestimated.

Table 2: A summary of predicted binding affinities (unit: kcal/mol) of antiviral protease inhibitors. Numbers in parenthesis are results
from the literature [24].

DrugID Predicted DrugID Predicted
Binding Energy Binding Energy

Boceprevir -9.36 Ritonavir -7.19 (-8.47)
Tipranavir -8.87 Lisinopril -7.17
Dabigatran etexilate -8.23 Enalapril -7.15
Rivaroxaban -7.88 Vildagliptin -7.15
Fosamprenavir -7.82 Lopinavir -7.12
Argatroban -7.81 Apixaban -7.09
Sitagliptin -7.79 Perindopril -7.06
Saquinavir -7.75 Darunavir -7.05
Candoxatril -7.62 Ecabet -6.86
Simeprevir -7.52 (-8.29) Cilastatin -6.86
Telaprevir -7.50 Cilazapril -6.85
Saxagliptin -7.49 Quinapril -6.80
Indinavir -7.46 Nelfinavir -6.74
Linagliptin -7.33 Amprenavir -6.73
Atazanavir -7.28 (-9.57) Moexipril -6.65
Ramipril -7.28 Spirapril -6.63
Fosinopril -7.28 Trandolapril -6.61
Ximelagatran -7.27 Benazepril -6.43
Alogliptin -7.26 Captopril -6.05
Remikiren -7.21 Isoflurophate -4.94
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4 Material and methods

Our deep learning-based drug repositioning models employ mathematical pose (MathPose) and mathemat-
ical deep learning (MathDL) to predict 3D poses and protein-ligand binding affinities. The latter is used as
a major criterion for searching anti-2019-nCoV therapies from the existing FDA-approved drugs. We first
build a 3D 2019-nCoV 3CL protease structure by using homology modeling. A set of SARS-CoV protease
inhibitors are docked to the 3D 2019-nCoV 3CL protease structure using our MathPose. The resulting com-
plexes are used as a set of machine learning training. Additionally, a set of protein-ligand complexes from
the PDBBind database is collected as another machine learning training set. Our training accuracy in terms
of the Pearson correlation coefficient is higher than 0.99 in all deep learning models.

4.1 3D 2019-nCoV protease structure

Homology modeling, a procedure that constructs an atomic-resolution model of a protein from its amino
acid sequence and experimental 3D structure of the related homologous protein, i.e., the “template,” is used
to generate the 3D structure of 2019-nCoV 3CL protease. The SWISS model
(https://swissmodel.expasy.org/) is employed with the protease structure of SARS-CoV (PDB ID: 2A5I
[13]) as a template. The sequence identity between the 3CL proteases of SARS-CoV and 2019-nCoV is
96.08%.

4.2 SARS-CoV protease inhibitor dataset

ChEMBL [14], an open database that brings chemical, bioactivity, and genomic data together to translate
genomic information into effective new drugs, is employed to construct our 2019-nCoV training set. Con-
sidering the high sequence identity between viral proteases of 2019-nCoV and SARS-CoV, we take the
protease of SARS-CoV as the input target in ChEMBL and a total 115 ChEMBL IDs of the target can be
found. The experimental ∆G values of 2019-nCoV 115 SARS-CoV protease inhibition compounds range
from −10.0 kcal/mol to 7.5 kcal/mol. We exclude compounds with positive values, resulting in a total of
84 SARS-nCoV protease inhibition compounds for our machine learning training. A collection of these 84
compounds is given in the Supplementary Materials.

4.3 Binding affinity training set

The PDBbind database is a yearly updated collection of experimentally measured binding affinity data
(Kd, Ki, and IC50) for the protein-ligand complexes deposited in the Protein Data Bank (PDB). The PDBbind
general set, instead of the high-quality refined set, is chosen as our training set because of the FDA approved
drugs involve a wide range of protein targets. In the current work, we use a set of 15,843 X-ray crystal
structures of protein-ligand complexes and associated binding affinities from the PDBbind v2018 general
set [15]. The information of these complexes is provided in the Supplementary Materials.

4.4 FDA approved drugs

DrugBank (www.drugbank.ca) is a richly annotated, freely accessible online database that integrates mas-
sive drug, drug target, drug action, and drug interaction information about FDA-approved drugs with
the experimental drugs which are going through the FDA approval process [16]. Due to the high quality
and sufficient information contained in, the DrugBank has become one of the most popular reference drug
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resources used all over the world. A total of 1553 FDA-approved drugs are contained in the DrugBank.
However, in the present work, a number of FDA-approved drugs encountered difficulties in docking with
the target molecule. Therefore, the MathPose successfully created 3D protein-ligand complex structures for
1465 FDA-approved drugs and 2019-nCoV protease.

4.5 MathDL

Figure 4: A framework of MathDL energy prediction model which integrates advanced mathematical representations with sophisti-
cated CNN architectures

MathDL, designed for predicting various druggable properties of 3D molecules [23], is capable of effi-
ciently and accurately encoding the high-dimensional biomolecular interactions into low-dimensional rep-
resentations. Algebraic graph theory-based algorithms [25], differential geometry, and algebraic topology
methods [23] are applied to generate three mathematical representations of data in MathDL. These data
representations can be integrated with well-designed deep learning models, such as gradient-boosted trees
(GBTs) and convolutional neural networks (CNNs), for pose ranking and binding affinity predictions. In
D3R Grand Challenges (https://drugdesigndata.org/about/grand-challenge), a worldwide competition
series in computer-aided drug design, MathDL had been proved as the top performer in free energy pre-
diction and ranking [22, 23]. Figure 4 illustrates the framework of the MathDL model, which combined
the aforementioned mathematical representations with the CNN architecture for druggable properties pre-
dictions. The PDBbind 2018 general set [15], along with the SARS 3CL protease related dataset is used in
our training process. In this section, we briefly describe the algebraic topology representation used in the
present work. Details can be found in the literature [23].

4.5.1 Algebraic topology-based representation

Even with a glimpse of topology, one can realize it dramatically simplifies geometric complexity [9, 17–
20]. The study of topology reveals characterizes of different dimensions. As a type of algebraic topology,
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simplicial homology studies complexes on discrete datasets under various settings, such as the Vietoris-
Rips (VR) complex, Čech complex or alpha complex, and identifies the topological invariants of a point-
cloud dataset such as atomic coordinates in a protein [26]. Separated components, rings, and cavities can
be classified for a given configuration and their numbers are referred to as Betti-0, Betti-1, and Betti-2,
respectively. In this topological analysis process, the metrics or coordinates are fully abandoned. Instead,
geometric and topological information is captured as data representation. Moreover, as a new development
branch of algebraic topology, persistent homology which combines multiscale geometric information and
topological invariants to achieve a geometry-enriched topological characteristic, e.g., barcodes. Therefore,
the “birth” and “death” of separated components, circles, rings, voids or cavities can be indicated at all
spatial scales by topological measurements. Key concepts are briefly shown as following.

In algebraic topology, simplices are the essential building blocks. Let v0, v1, v2, · · · , vk be k+1 affinely
independent points. A (geometric) k-simplex σk is the linear combinations of these points in Rn (n ≥ k),
whose coefficients are positive and satisfy that their summation equals to 1. For example, a 0, 1, 2, or 3-
simplex is considered as a vertex, an edge, a triangle, or a tetrahedron, respectively. A simplicial complex
K is a topological space composed of simplices which satisfies that every face of a simplex σk ∈ K is also in
K and the non-empty intersection of any two simplices is a face for both. To identify the homology group, a
k-chain [σk] is a summation

∑
i αiσ

k
i of k-simplices σk

i , and the set of all k-chains of the simplicial complex
K equipped with an algebraic field (typically, Z2) forms an abelian groupCk(K,Z2). The homology defined
on a series of abelian groups is used to analyze topological invariants which requires boundary operators to
connect these chain spaces. The boundary operators ∂k : Ck→Ck−1 for a k-simplex σk = {v0, v1, v2, · · · , vk}
are homomorphisms defined as ∂kσk =

∑k
i=0(−1)i{v0, v1, · · · , v̂i, · · · , vk}, where {v0, v1, · · · , v̂i, · · · , vk}

is a (k− 1)-simplex excluding vi from the vertex set. Consequently, a important property of boundary
operator, ∂k−1∂k = ∅, follows from that boundaries are boundaryless. The algebraic construction to connect
a sequence of complexes by boundary maps is called a chain complex

· · · ∂i+1−→ Ci(X)
∂i−→ Ci−1(X)

∂i−1−→ · · · ∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0

and the kth homology group is the quotient group defined by

Hk = Zk/Bk, (1)

where the k-cycle group Zk and the k-boundary groupBk are the subgroups of Ck defined as, Zk = ker∂k =

{c ∈ Ck | ∂kc = ∅}, Bk = im ∂k+1 = {∂k+1c | c ∈ Ck+1}. The aforementioned property implies Bk ⊆ Zk ⊆
Ck. The Betti numbers are defined by the ranks of kth homology group Hk which counts k-dimensional
holes, especially, β0 = rank(H0) reflects the number of connected components, β1 = rank(H1) reflects the
number of loops, and β2 = rank(H2) reveals the number of voids or cavities. Together, the set of Betti
numbers {β0, β1, β2, · · · } indicates the intrinsic topological property of a system.

Persistent homology [18] is devised to track the multiscale topological information over different scales
along a filtration. A filtration of a topology space K is a nested sequence of subspaces {Kt}t=0,...,m of K
such that ∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K. Moreover, on this complex sequence, we obtain a sequence
of chain complexes by homomorphisms: C∗(K0) → C∗(K1) → · · · → C∗(Km) and a homology sequence:
H∗(K0) → H∗(K1) → · · · → H∗(Km), correspondingly. The p-persistent kth homology group of Kt is
defined as

Ht,p
k = Zt

k/(B
t+p
k

⋂
Zt
k), (2)

where Bt+p
k = im∂k+1(Kt+p). Intuitively, this homology group records the homology classes of Kt that

are persistent at least until Kt+p. Under the filtration process, the persistent homology barcodes can be
generated. To make use of advanced deep learning algorithms, we vectorize persistent homology barcodes
by dividing them into bins and calculating persistence, birth, and death incidents in each bin. Furthermore,
the statistics of element-specific persistent homology barcodes are taken into consideration as well in fixed-
length features.
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4.6 MathPose

MathPose, a 3D pose predictor which converts SMILES strings into 3D poses with references of target
molecules, was the top performer in D3R Grand Challenge 4 in predicting the poses of 24 beta-secretase
1 (BACE) binders [23]. For one SMILES string, around 1000 3D structures can be generated by a common
docking software tool, i.e., GLIDE [27]. Moreover, a selected set of known complexes is re-docked by the
three docking software packages mentioned above to generate at 100 decoy complexes per input ligand
as a machine learning training set. The machine learning labels will be the calculated root mean squared
deviations (RMSDs) between the decoy and native structures for this training set. Furthermore, MathDL
models will be set up and applied to select the top-ranked pose for the given ligand. Additionally, the top
poses will be fed into the MathDL for druggable proprieties evaluation.

5 Conclusion

The current pneumonia outbreak caused by a new coronavirus (CoV), called 2019-nCoV in China, has
evolved into a global health emergency declared by the World Health Organization. Although there is no
effective anti-viral medicine for the 2019-nCoV, the 3CL proteases of 2019-nCoV and SARS-CoV have a se-
quence identity of 96%, which provides a foundation for us to hypothesize that all potential anti-SARS-CoV
chemotherapies are also effective anti-2019-CoV molecules. We build a three-dimensional (3D) 2019-nCoV
3CL protease structure using a SARS-CoV 3CL protease crystal structure as a template and collect a set
of 84 SARS-CoV inhibition experimental data. The molecules of this set are docked to the 3D 2019-nCoV
3CL protease structure to form a machine learning training set. Additionally, the PDBbind 2018 general set
of 15,843 protein-ligand complexes is also included as an additional machine learning training set. Using
these training sets, we develop two deep learning models based on low-dimensional algebraic topology
representations of macromolecular complexes. A total of 1465 FDA-approved drugs is evaluated by their
binding affinities predicted by the consensus of two models built with 1) a combination of algebraic topol-
ogy and deep convolutional neural networks (CNNs), and 2) a combination of algebraic topology and deep
multitask CNNs. According to the predicted binding affinities, we recommend many FDA-approved drugs
as potentially highly potent medications to 2019-nCoV, which serve as a crucial step for the development
of anti-2019-nCoV drugs.

Supplementary Materials

Supplementary Materials are available online for 3D structure information and affinities of SARS-CoV in-
hibitors, FDA-approved drugs, and PDBbind data set.
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