
1 

External error attribution dampens efferent-based 

predictions but not proprioceptive changes in hand 

localization 

Author names  

Raphael Q. Gastrock*1,2, Shanaathanan Modchalingam1,3, Bernard Marius ’t Hart1, 

Denise Y. P. Henriques1-3 

Affiliations  

1Centre for Vision Research, York University, Toronto, Ontario, Canada, M3J 1P3 

2Department of Psychology, York University, Toronto, Ontario, Canada, M3J 1P3 

3School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, 

M3J 1P3 

*Corresponding author: Raphael Q. Gastrock, raphaelgastrock@gmail.com  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.02.05.936062doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936062
http://creativecommons.org/licenses/by/4.0/


2 

Abstract 

In learning and adapting movements in changing conditions, people attribute the errors 1 
they experience to a combined weighting of internal or external sources. As such, error 2 
attribution that places more weight on external sources should lead to decreased 3 
updates in our internal models for movement of the limb or estimating the position of the 4 
effector, i.e. there should be reduced implicit learning. However, measures of implicit 5 
learning are the same whether or not we induce explicit adaptation with instructions 6 
about the nature of the perturbation. Here we evoke clearly external errors by either 7 
demonstrating the rotation on every trial, or showing the hand itself throughout training. 8 
Implicit reach aftereffects persist, but are reduced in both groups. Only for the group 9 
viewing the hand, changes in hand position estimates suggest that predicted sensory 10 
consequences are not updated, but only rely on recalibrated proprioception. Our results 11 
show that estimating the position of the hand incorporates source attribution during 12 
motor learning, but recalibrated proprioception is an implicit process unaffected by 13 
external error attribution. 14 

Introduction 

Knowing our limbs’ positions is crucial for our ability to move competently. Moreover, 15 
changing circumstances may cause movement errors, which require us to adapt our 16 
motor control to restore performance [1-5]. When errors are not caused by our own motor 17 
system, but are instead externally caused, the way in which movements are adapted to 18 
counter them should change [6-10]. Externally caused errors should also affect our 19 
estimate of the position of our limb, but this has not been directly investigated yet. Here, 20 
we introduce two types of movement feedback to investigate how our limb position 21 
estimates may be affected when errors are clearly not caused by the individual. 22 

In reaching movements, adaptive changes that result from small or gradually 23 
introduced visual or mechanical perturbations are traditionally considered as largely 24 
implicit [2,11]. Implicit adaptation is manifested by reach aftereffects, persistent deviations 25 
in hand movements after perturbation removal, suggesting an internal representational 26 
remapping has occurred in the brain [5,11-12]. Reach aftereffects also occur with larger 27 
and abruptly introduced perturbations, as well as when participants are made aware of 28 
the nature of the perturbation. In these cases, explicit processes account for a part of 29 
the resulting adaptive change [13-18]. Thus, both explicit and implicit processes contribute 30 
to adaptation [19-22]. Here, we first quantify implicit and explicit contributions to learning 31 
with responses to different visual manipulations. These manipulations differentially 32 
demonstrate the nature and source of errors experienced, thereby varying the extent of 33 
external error attribution.  34 

 Motor adaptation leads not only to changes in motor performance, but previous 35 
research has also found that adapting reach movements to visual or mechanical 36 
perturbations leads to changes in proprioceptive estimates of hand location [23-25], even 37 
if the two perturbations likely have different underlying mechanisms [26-27]. This 38 
proprioceptive recalibration emerges quickly [28-29] and reflects about 20% of the visual 39 
misalignment of the hand [23-24]. Recalibrated proprioception is also preserved in aging 40 
[30] and in different perturbations (rotations and translations [23], force fields [31], gains [32], 41 
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split-belt walking [33-34]). In visuomotor rotations, it seems that a visuo-proprioceptive 42 
discrepancy is sufficient to drive proprioceptive recalibration, and leads to reach 43 
aftereffects that mimic this proprioceptive shift [29,35-37]. Thus, proprioceptive recalibration 44 
is ubiquitous, and seems to contribute to motor performance. 45 

 Apart from afferent proprioceptive information, hand localization is also based on 46 
predicted sensory consequences of the movement, calculated by internal forward 47 
models that use an efference copy of the outgoing motor command [38-39]. These 48 
efferent-based updates are considered a pre-requisite for implicit adaptation [3,40], and 49 
seem to contribute to reach aftereffects separately from recalibrated proprioception 50 
[29,35,41]. Efferents and non-visual afferents should both be present when estimating hand 51 
location after self-generated ‘active’ movements, while robot-generated ‘passive’ 52 
movements should only allow afferent-based proprioceptive signals. Thus, active and 53 
passive movements assess the relative contributions of afferent and efferent signals to 54 
hand position estimates [18,32,41], which should both be implicit. 55 

Fig. 1: Experimental apparatus and stimuli. a-c: Top-down view displaying the different manipulations 
for the reach-training tasks, where the cursor (light blue) is rotated 30° CW. Reaches are made to one of 
three possible target locations (indicated as hollow white circles for reference), but only one target 
appeared on every trial (yellow disc). a: In both the Instructed and Control groups, participants do not see 
their hand, and the cursor has a constant rotation throughout each trial. b: Participants in the Cursor 
Jump group see the cursor “jump” to the 30° CW rotation mid-reach on every trial. c: In the Hand View 
group, participants see both their actual, illuminated hand and the cursor. d: Participants sit on an 
adjustable chair in a dark room and hold a robot manipulandum located below a touch screen (bottom 
surface), while viewing stimuli through a reflective tint (middle surface) which projects stimuli generated 
from a downward facing computer screen (top surface). e: Active and Passive Localization trials: 
Participants use their visible left hand to indicate on the touch screen where they have crossed the arc 
with their unseen right hand, after voluntarily generating a right-handed movement (active) or after a 
robot-generated movement (passive). f: No-cursor trials: Reaches are made to the same three targets in 
the absence of visual feedback of the cursor or hand. 

Since both contributions to hand location estimates should be implicit, they 56 
should be reduced or not occur when errors are attributed externally, as implicit learning 57 
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is engaged less or not at all. In other words, given that the cursor in a visuomotor 58 
rotation task is considered a representation of the hand [42], it would be intuitive for 59 
people to not update estimates of their hand location, when it is clear that the error is 60 
being caused by an external source. However, modulating explicit knowledge about the 61 
nature of the perturbation, by providing instructions or increasing the perturbation size, 62 
does not affect persistent shifts in both proprioceptive recalibration and updating of 63 
predicted sensory consequences [18]. In the current study, we instead investigate the 64 
effect of the external attribution of errors on both afferent and efferent-based changes. 65 
To do this, we vary the extent that people attribute the error they experience to a cursor 66 
representing their hand position, while holding a robot manipulandum and training in a 67 
visuomotor rotation task (Fig. 1a-1d). The experiment consists of two sessions: a 68 
baseline, aligned session, where visual feedback of the cursor matched the actual hand 69 
position, and a rotated session where participants adapt to a 30° rotated hand-cursor 70 
(Fig. 2). In two groups that either receive instructions about the nature of the rotation 71 

Fig. 2: Experiment Schedule. Top: First session, and considered as baseline, where the cursor was 
aligned with the position of the right hand. Participants performed 45 cursor training trials followed by 
blocks of active localization (18 trials/block), passive localization (18 trials/block), and no-cursor trials (9 
trials/block). Top-up cursor training trials (9 trials/block) were interleaved in between localization and no-
cursor blocks. Bottom: Second session where the cursor was rotated 30° CW, relative to the position of 
the right hand. Participants performed 90 cursor training trials followed by blocks of active localization (18 
trials/block), passive localization (18 trials/block), and two variations of no-cursor trials (with- or without-
strategy; 9 trials/block). Top-up cursor training trials (30 trials/block) were interleaved in between 
localization and no cursor blocks. For both aligned and rotated sessions, passive localization always 
proceeded after active localization, as endpoint locations of the robot-generated movements in passive 
localization are based on locations that participants voluntarily moved towards during active localization. 
For no-cursor trials in the rotated session, the two variations are counterbalanced both within and 
between participants. That is, with- and without-strategy trials alternate within one participant, and the 
variation that an individual starts with is also alternated between participants. 

and a strategy to counter for it, or not (Instructed and Control groups; Fig. 1a), we 72 
expect external error attribution to be minimal, as only explicit knowledge is modulated. 73 
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In addition, we test two other groups that also do not receive instructions but either have 74 
visual feedback of the hand-cursor jump to the imposed rotation mid-reach on every 75 
training trial (Cursor Jump group; Fig. 1b) or a view of the actual hand of the participant 76 
is present along with the rotated cursor (Hand View group; Fig. 1c). We expect that 77 
these manipulations should make clear to participants that the cursor errors are caused 78 
externally. We interleave a localization task (Fig. 1e) and no-cursor reaches (Fig. 1f) 79 
across blocks of cursor training in both aligned and rotated sessions, to investigate how 80 
our manipulations affect changes in hand location estimates and motor behaviour 81 
respectively, following adaptation (Fig. 2). We hypothesize that with increased external 82 
error attribution, both changes in motor behaviour and shifts in afferent and efferent-83 
based estimates of hand localization will decrease. 84 

Results 

 

Before investigating how external error attribution affects changes in motor behaviour 85 
and hand localization, we first confirm that all groups appropriately counter the 86 
perturbation by the end of 90 training trials (Fig. 3a) and observe that reach trajectories 87 
are not qualitatively different (Fig. 4). We test for group differences at different time 88 
points during adaptation training (three blocks: trials 1-3, 4-6, 76-90) using a 3X4 mixed 89 
design ANOVA, with block (blocks 1, 2, and 3) as a within-subject factor and group 90 
(Control, Instructed, Cursor Jump, Hand View) as a between-subject factor. We find 91 
main effects of group (F(3,86) = 5.678, p = .001, generalized eta squared (η2

G) = .092, 92 
BFincl > 1 · 106) and block (F(2,172) = 78.411, p < .001, η2

G = .307, BFincl > 3 · 1014), and a 93 
group X block interaction (F(6,172) = 7.856, p < .001, η2

G = .118, BFincl > 4 · 105). This 94 
suggests that, as expected, group differences in learning rates are modulated by the 95 
block of trials. Follow-up tests comparing each group to the Control group, show the 96 
expected initial advantage of instructions in reducing reach direction error within block 97 
one (Fig. 3a-3b), as only the Instructed group differs from the Control group (t(148) = 98 
4.632, p < .001, eta squared (η2) = .127, BF10 > 1 · 105). In the second block (Fig. 3c), 99 
no groups differ from the Control group (Instructed: t(148) = 1.922, p = .295, η2 = .024, 100 
BF10 = 6.506; Cursor Jump: t(148) = 2.538, p = .071, η2 = .042, BF10 = 3.386; Hand View: 101 
t(148) = 0.910, p = .934, η2 = .006, BF10 = 0.381). Bayesian analysis show moderate 102 
evidence for a difference between the Control group and the Instructed or Cursor Jump 103 
groups, but we note that these are calculated without correcting for multiplicity. For the 104 
last block (Fig. 3a,3d), an ANOVA on the effect of group on angular reach deviations 105 
shows that the groups do not differ from each other (F(3,86) = 0.561, p = .642, η2

G = .019, 106 
BF10 = 0.115), suggesting that our manipulations do not affect the asymptotic level of 107 
adaptation. Thus, any effects of training on changes in motor behaviour and hand 108 
localization can’t be explained by levels of adaptation in the different groups.  109 
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 Fig. 3: Rate of learning during adaptation training. a: Only the first and last 15 trials of adaptation 
training are shown. Grey dashed line at the 30° mark indicates the direction that the hand must deviate in 
order to fully and successfully counter for the perturbation. The grey dashed line at the 0° mark indicates 
reach directions similar to those in the baseline, aligned session (i.e., no compensation). The Instructed 
group shows an initial advantage in successfully countering for the perturbation as early as the first trial. 
There are no differences in reaches performed by participants from all groups for the last 15 trials. Solid 
lines are group means and shaded regions are corresponding 95% confidence intervals. b-d: Individual 
participant data from each group are shown, separated in three blocks of trial sets during adaptation 
training. Orange dashed line indicates mean for the Control group. Solid dots and error bars correspond 
to the group mean and bootstrapped 95% confidence intervals. 

Implicit aftereffects persist despite external error attribution 

To investigate the effects of external error attribution on changes in motor behaviour, we 110 
use no-cursor trials both before and after adaptation (Fig. 1f). After adaptation, however, 111 
we use a process dissociation procedure (PDP), a cognitive research methodology 112 
adapted by Werner et al. [16] for motor learning, which measures awareness by having 113 
participants either express or repress a learned movement (see also [17-18,43]). Here, we 114 
ask people to make open-loop reaches, and move their unseen right hand to targets, 115 
while either including any strategy they learned to counter for the perturbation (with-116 
strategy reaches) or excluding it (without-strategy reaches). With explicit awareness 117 
about the nature of the perturbation, we expect a difference between these reaches, as 118 
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the ability to consciously produce a strategy adds explicit contributions on top of implicit 119 
contributions to learning. Meanwhile, excluding a strategy reflects only implicit 120 
contributions, which are not consciously accessible. Thus, the PDP allows us to 121 
measure both implicit and explicit adaptation.  122 

 

Fig. 4: Individual and average reach trajectories. The trajectory of reaches across all participants 
within their respective groups are shown with light coloured lines. Each participant’s trajectory combines 
reaches during the last three trials of the first block of cursor training in the aligned session (top), as well 
as the first (middle) and last three (bottom) trials of the first block of cursor training in the rotated 
session. Light solid lines indicate the trajectory of the hand-cursor and light dashed lines indicate the 
trajectory of the hand. Only solid lines are shown in the aligned session, as both hand and hand-cursor 
trajectories are similar. Group means for the hand trajectories are indicated with the dark dashed line, and 
dark solid lines indicate the mean hand-cursor trajectory. All groups seem to produce similar reach 
trajectories, across the different time points in the experiment, regardless of condition. Moreover, despite 
curved reaches during early adaptation training, reach trajectories are straight towards the end of 
adaptation training. 

We first compare aligned no-cursor trials and without-strategy no-cursor reaches 123 
in the rotated session, to test for implicit reach aftereffects (Fig. 2, 5). We conduct a 2X4 124 
mixed design ANOVA with session (aligned or rotated) as a within-subject factor and  125 
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Fig. 5: No cursor reaches and strategy use. Angular reach deviations of the hand per group, while 
either excluding (without-strategy) or including (with-strategy) any strategies developed during adaptation 
training. Grey dashed line at the 30° mark indicates angular reach deviations equivalent to full 
compensation for the perturbation, and grey dashed line at the 0° mark indicates reaches that did not 
correct for the perturbation. Only the Control group was unable to switch between excluding and including 
a strategy to counter for the perturbation. Implicit reach aftereffects, indicated by without-strategy angular 
reach deviations, are reduced for the Cursor Jump group and are further reduced in the Hand View 
group. Solid lines are group means and shaded regions are corresponding 95% confidence intervals. 
Individual participant data from each group are shown for both types of strategy use. 

group as a between-subject factor. We confirm the presence of reach aftereffects with a 126 
main effect of session (F(1,86) = 373.023, p < .001, η2

G = .530, BFincl = inf.). Moreover, we 127 
find a main effect of group (F(3,86) = 16.576, p < .001, η2

G = .230, BFincl > 9 · 1013) and an 128 
interaction between session and group (F(3,86) = 22.605, p < .001, η2

G = .170, BFincl > 4 · 129 
108), suggesting that the effect of session is modulated by group. Follow-up tests show 130 
that aligned and without-strategy reach deviations differ within each group (Instructed: 131 
t(86) = -11.830, p < .001, η2 = .619, BF10 > 1 · 106; Control: t(86) = -12.912, p < .001, η2 = 132 
.660, BF10 > 1 · 108; Cursor Jump: t(86) = -9.050, p < .001, η2 = .488, BF10 > 4 · 105; 133 
Hand View: t(86) = -4.037, p < .001, η2 = .159, BF10 = 1 · 103). This means that implicit 134 
reach aftereffects are present in each group. To address how the effect of session is 135 
modulated by group, follow-up tests compare implicit reach aftereffects for each group 136 
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to those in the Control group. We find that the Instructed group doesn’t differ from the 137 
Control group (t(86) = -0.722, p = .922, η2 = .006, odds = 0.099), but the Hand View (t(86) = 138 
-7.538, p < .001, η2 = .398, odds > 7 · 103) group does, suggesting that external error 139 
attribution in the Hand View group leads to reduced implicit reach aftereffects, 140 
compared to the Instructed and Control groups. Frequentist analysis shows that the 141 
Cursor Jump group differs from the Control group (t(86) = -3.419, p = .004, η2 = .120), but 142 
this is not supported by Bayesian analysis (odds = 0.875). Furthermore, the reduction in 143 
aftereffects is more pronounced for the Hand View group compared to the Cursor Jump 144 
group (t(86) = 3.818, p = .001, η2 = .145, odds = 2.220). In short, reach aftereffects persist 145 
across groups, but are greatly reduced for the Hand View group. 146 

 After confirming the presence of reach aftereffects, we use the PDP to assess 147 
explicit contributions to learning, by comparing with- and without-strategy no-cursor 148 
reaches (Fig. 5). We conduct a 2X4 mixed design ANOVA with strategy use (without-149 
strategy or with-strategy) as a within-subject factor and group as a between-subject 150 
factor. We find main effects of strategy use (F(1,86) = 285.493, p < .001, η2

G = .592, BFincl 151 
= inf.) and group (F(3,86) = 6.779, p < .001, η2

G = .118, BFincl > 1 · 1013), and a strategy 152 
use and group interaction (F(3,86) = 28.678, p < .001, η2

G = .304, BFincl > 1 · 1013). This 153 
suggests that the effect of strategy use in at least one group is different from the other 154 
groups. Follow-up tests compare with- and without-strategy angular reach deviations for 155 
each group separately. We find no evidence for or against an effect of strategy use in 156 
the Control group (t(86) = -1.529, p = .427, η2 = .026, BF10 = 0.940), but do see a 157 
difference in strategy use in the other groups (Instructed: t(86) = -9.877, p < .001, η2 = 158 
.531, BF10 > 3 · 106; Cursor Jump: t(86) = -7.637, p < .001, η2 = .404, BF10 > 5 · 104; 159 
Hand View: t(86) = -16.185, p < .001, η2 = .753, BF10 > 5 · 1011). Thus, despite receiving 160 
no instructions, both Cursor Jump and Hand View groups can evoke an explicit strategy 161 
like the Instructed group.  162 

Changes in afferent-based estimates of hand localization persist 

We then investigate the effects of external error attribution on afferent and efferent-163 
based shifts in hand location estimates. We use localization trials (Fig. 1e, 2), where 164 
participants indicate with their visible left hand, the position of their unseen right hand. 165 
Hand localization is either based on both afferent and efferent contributions (active 166 
localization) or based mainly on afferent contributions (passive localization). All groups 167 
appear to show shifts in hand localization, despite external error attribution (Fig. 6). 168 
Moreover, these shifts seem larger in active than passive localization for each group, 169 
except for the Hand View group (Fig. 6a-6b, 6d-6e). To test if training affected hand 170 
location estimates, we conduct a 2X2X4 mixed design ANOVA on localization error with 171 
session (aligned or rotated) and movement type (active or passive) as within-subject 172 
factors and group as a between-subject factor. We find a main effect of session (F(1,86) = 173 
82.972, p < .001, η2

G = .199, BFincl = inf.) and group (F(3,86) = 10.214, p < .001, η2
G = 174 

.195, BFincl > 1 · 105), an interaction between session and group (F(3,86) = 2.895, p = 175 

.040, η2
G = .025, BFincl = 354.651) and between session and movement type (F(1,86) = 176 

16.802, p < .001, η2
G = .004, BFincl = 0.169). This suggests that estimates of hand 177 

position do shift despite external error attribution, but these shifts are modulated by 178 
group and movement type. Bayesian analysis suggests that including the session and 179 
movement type interaction does not lead to the best model (BF10 best model > 1 · 1034).  180 
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Fig. 6: Afferent and efferent-based changes in hand location estimates. During localization trials, the 
arc stimulus is presented and participants either move, or are moved, towards different points on the arc. 
Shifts in localizing the unseen right hand following adaptation training after a: self-generated movements 
(active localization), b: robot-generated movements (passive localization), and c: the difference between 
active and passive localization as a measure of updates in efferent-based estimates (predicted sensory 
consequences). Grey dashed line at the 0° mark indicates the absence of shifts, while positive and 
negative values indicate the direction of shifts. Solid lines correspond to group means at each of three 
hand positions on the arc, which mark the position in polar coordinates of where the arc stimuli are 
centred on during these trials. These positions closely match the target locations during adaptation 
training and no-cursor reaches. Shaded regions are corresponding 95% confidence intervals. d-f: 
Individual participant data for shifts in hand localization are shown in transparent dots, separated 
according to group and movement type. Solid dots and error bars to the side of individual data 
correspond to group means and bootstrapped 95% confidence intervals. 

Nonetheless, as planned, we consider movement type in the following frequentist test. 181 
We analyze the effects of group and movement type using a 2X4 mixed design ANOVA 182 
on localization shifts (i.e. difference in localization error between rotated and aligned 183 
sessions), with movement type as a within-subject factor and group as a between-184 
subject factor. We find a main effect of movement type (F(1,86) = 16.802, p < .001, η2

G = 185 
.016, BFincl = 62.496) and group (F(3,86) = 2.895, p = .040, η2

G = .085, BFincl = 2.540), but 186 
no interaction (F(3,86) = 2.425, p = .071, η2

G = .007, BFincl = 1.849), which is supported by 187 
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Bayesian analysis showing that the best model does not include this interaction (BF10 188 
best model = 131.040). The main effect of movement type is expected because active 189 
movements contain afferent and efferent contributions to hand localization, while 190 
passive movements only have afferent contributions. For follow-up tests on the group 191 
effect, we compare the localization shifts of each group to the other groups regardless 192 
of movement type, and find that the Hand View group differs from the Instructed group 193 
(t(86) = 2.901, p = .028, η2 = .089, odds = 14.120). Regardless, given the persistent shifts 194 
in hand position estimates, we investigate the afferent and efferent contributions for 195 
each group separately.  196 

 Passive localization should rely mainly on updated afferents, or recalibrated 197 
proprioception. We confirm the persistence of passive localization shifts across all 198 
groups with one-tailed t-tests that compare the mean passive localization shift of each 199 
group to zero (Instructed: t(20) = -4.614, p < .001, d = 1.007, BF10 = 348.746; Control: t(19) 200 
= -4.869, p < .001, d = 1.089, BF10 = 525.747; Cursor Jump: t(19) = -4.832, p < .001, d = 201 
1.080, BF10 = 488.283; Hand View: t(28) = -2.372, p = .012, d = 0.440, BF10 = 4.201). 202 
These tests show that the attribution of error to external sources surprisingly does not 203 
reduce proprioceptive recalibration. Given that passive localization shifts reflect 204 
proprioceptive recalibration, a difference between active and passive localization shifts 205 
is likely due to efferent-based contributions. Thus, we measure efferent-based 206 
contributions or updates in predicted sensory consequences by removing afferent-207 
based contributions (active minus passive; Fig. 6c,6f). We confirm the presence of 208 
updates in predictions for all groups with one-tailed t-tests comparing the mean shifts for 209 
each group to zero. We find that updates in predictions differ from zero for three groups 210 
(Instructed: t(20) = -2.411, p = .013, d = 0.526, BF10 = 4.570; Control: t(19) = -2.101, p = 211 
.025, d = 0.470, BF10 = 2.729; Cursor Jump: t(19) = -2.751, p = .006, d = 0.615, BF10 = 212 
8.327), but not for the Hand View group (t(28) = -0.037, p = .485, d = 0.007, BF10 = 213 
0.203). However, a Bayesian t-test comparing updates in predictions between the 214 
Control and Hand View groups provides little evidence for a difference between the two 215 
(BF10 = 1.225). On the other hand, reduced or absent updates in prediction could 216 
explain that active and passive localization shifts are not much different in the Hand 217 
View group. These results show that external error attribution might decrease or even 218 
eliminate efferent-based contributions to hand localization, but clearly does not affect 219 
afferent contributions to hand localization. 220 

We then investigate whether the processes underlying afferent and efferent-221 
based estimates of hand localization may independently be contributing to motor 222 
behaviour. Sensory prediction-error based learning should lead to updated predictions 223 
of hand location and contribute to reach aftereffects [3,4,13,44-46], and aftereffects have 224 
been shown to emerge in the absence of updates to efferent-based predictions [29,35-37], 225 
showing that recalibrated proprioception may be associated with both changes in hand 226 
location estimates and changes in behaviour [47]. When considering either passive 227 
localization shifts or updates in predictions and their respective relationships with 228 
angular reach deviations in without-strategy no-cursor trials (Fig. 7a-7b), we find that 229 
both share a small relationship with implicit aftereffects (passive-aftereffects: p < .001, 230 
r2

adj
 = .111, BF10 = 34.473; prediction-aftereffects: p = .004, r2

adj
 = .079, BF10 = 7.309). 231 

Moreover, a multiple regression with both variables as predictors and angular reach  232 
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Fig. 7: Contributions of afferent and efferent-based hand localization changes to implicit 
aftereffects and explicit learning. Relationships of afferent and efferent-based changes in hand location 
estimates with reach deviations when no visual feedback of the cursor is presented, while either 
excluding any strategies used during adaptation training (implicit aftereffects; a-b), or taking the difference 
of including and excluding such strategies (explicit learning, d-e). Individual data points from all 
participants are colour-coded according to their respective groups. Solid line corresponds to a regression 
line, while the grey shaded region corresponds to 95% confidence intervals. We then validate the multiple 
regression model using both shifts in afferent and efferent-based hand localization as predictors, and 
show the predicted values for reach aftereffects plotted over observed values for reach aftereffects (c), as 
well as the predicted values for explicit learning plotted over observed values for explicit learning (f). The 
diagonal represents perfect prediction. Individual data points are colour-coded according to group, and 
lines represent residual errors. 

deviations in without-strategy no-cursor trials as the dependent variable, shows that 233 
both passive localization shifts (β = -0.430, p < .001, sr2 = .204) and updates in 234 
predicted sensory consequences (β = -0.694, p < .001, sr2 = .171) are significantly 235 
associated with reach aftereffects (r2

adj
 = .276, BF10 > 5 · 104). Importantly, both hand 236 

localization components are still related to implicit reach aftereffects after accounting for 237 
a group effect, showing that these relationships are not spurious (data and analysis 238 
available on OSF [48]). Furthermore, given that we calculate afferent and efferent 239 
contributions to hand localization as additive (see Methods), the two hand localization 240 
components are independent from each other (confirmed by a low collinearity: vif = 241 
1.087). Finally, we validate our regression model by comparing predicted and observed 242 
values of reach aftereffects (Fig. 7c). We find that model predictions are not perfect, but 243 
relatively close to observed values (r2

adj
 = .285, BF10 > 3 · 105). The model is likely 244 

incomplete, which would explain this disparity, but we don’t investigate this further. In 245 
contrast, explicit learning (i.e., with-strategy minus without-strategy reach deviations) 246 
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has a weak anti-correlation with efferent components of hand localization, and no 247 
relation with afferent components of hand localization shifts (Fig. 7d-7f; predicted and 248 
observed explicit learning: p = .038, r2

adj
 = .037, BF10 = 0.911). Thus, afferent and 249 

efferent-based components of hand localization shifts are weakly, but independently 250 
related with implicit reach aftereffects, hinting that at least two separate processes 251 
underlie implicit visuomotor adaptation. 252 

Discussion 

We test if manipulating the extent of external error attribution affects both changes in 253 
motor behaviour and hand location estimates after visuomotor adaptation training. 254 
Particularly, the visual feedback of the hand-cursor either jumps to the imposed rotation 255 
mid-reach on every training trial, or is present along with a view of the actual hand of the 256 
participant. Given the mismatch between cursor and hand positions, errors should be 257 
attributed externally and not lead to changes in hand location estimates. In the Hand 258 
View group, despite the error source being clearly external, afferent-based 259 
(proprioceptive) hand location estimates still shift to the same extent as in other groups 260 
where external error attribution should be minimal. With both afferent and efferent-261 
based estimates (active localization), shifts are not much different in the Hand View 262 
group compared to passive localization shifts. Furthermore, we find evidence that the 263 
Instructed, Cursor Jump, and Hand View groups developed an explicit strategy. 264 
However, the persistent but reduced implicit reach aftereffects in the Cursor Jump and 265 
Hand View groups, suggest that the feedback in these groups leads to less implicit 266 
learning. The reduction of aftereffects is more profound in the Hand View group, as 267 
could be expected with more external error attribution. Finally, we find that both afferent 268 
and efferent-based changes in hand localization share a relationship with implicit 269 
aftereffects. The persistent implicit motor changes and afferent-based changes in hand 270 
position estimates suggest that these are robust against external error attribution, while 271 
updating of efferent-based predicted sensory consequences is not. 272 

In visuomotor adaptation, visual feedback of the hand is consistently shifted, 273 
which eventually updates estimates of the unseen hand after a movement [23-24,28,30-32,44-274 
45]. These updates rely on at least two components: an efferent-based component, 275 
where the expected outcome of a motor command is updated to reflect the experienced, 276 
altered visual outcome of the movement, and an afferent component, where a 277 
proprioceptive signal is recalibrated to the experienced visual outcome [29,35,41]. People 278 
should not update either hand location estimate when the rotated cursor does not 279 
represent their true hand location. Yet, our previous results suggest that when explicit 280 
adaptation increases, due to instructions or increased rotation size, there is no 281 
concomitant decrease in updates of afferent and efferent-based estimates [18,49]. In the 282 
current study, despite the error source being clearly external in the Hand View group, 283 
we surprisingly find shifts in afferent-based hand location estimates across all groups. 284 
We also find evidence of efferent-based contributions to hand localization in the other 285 
three groups, while this is not so clearly present in the Hand View group. This could 286 
mean that heightened external error attribution in the Hand View group decreases 287 
efferent contributions to hand location estimates. Nevertheless, proprioceptive 288 
recalibration seems to be robust against varying degrees of explicit adaptation and 289 
external error attribution. 290 
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Changes in afferent-based hand location estimates seem to be a robust form of 291 
sensory plasticity, given its relatively quick emergence [28-29], persistence despite explicit 292 
adaptation [18], and its preservation despite aging [30,49] and within other forms of 293 
perturbations [23,31-34]. Furthermore, recalibrated proprioception is intact in people with 294 
mild cerebellar ataxia [50], despite the cerebellum’s crucial role in adaptation [1,3,14,44-46,51-295 
52]. This implies that proprioceptive recalibration relies on a signal different from efferent-296 
based contributions to hand localization, such as a visuo-proprioceptive discrepancy 297 
[29,35,41]. Although there should be no visuo-proprioceptive discrepancy in the Hand View 298 
group, as they see and feel their hand, our findings suggest otherwise. Since the task is 299 
completed by bringing the cursor to the target, the cursor could be acting as a visual 300 
placeholder for the actual hand, while proprioceptive feedback is still veridical. This 301 
could create a sensory discrepancy, between seen cursor and felt hand, leading to 302 
sensory recalibration. Thus, the Hand View group does not show decreased shifts in 303 
afferent-based hand localization, despite external error attribution. It also seems that in 304 
only the Hand View group, there might not be an efferent-based contribution to hand 305 
localization, or one that is hard to detect. While this will have to be replicated, it is in line 306 
with previous findings [35,41] that also indicate that efferent and afferent contributions to 307 
hand localization rely on different error signals. 308 

Aside from sensory recalibration, visuomotor adaptation also leads to implicit 309 
motor behaviour changes. Implicit learning is rather stable, but awareness of the 310 
perturbation’s nature increases explicit contributions during adaptation [15-16,18-22,53-54]. 311 
Here, participants make open-loop reaches with (implicit and explicit) or without 312 
(implicit) the strategy they learned. This process dissociation procedure (PDP, [16]) is 313 
consistent with similar tasks [53,55], has been used in previous studies [17-18,43,56], and 314 
doesn’t seem to evoke additional explicit learning unlike other methods [56-58]. While 315 
explicit learning does not necessarily correspond to external error attribution, it is likely 316 
that external error attribution is accompanied by more explicit adaptation. Despite no 317 
elaborate instructions, the Cursor Jump and Hand View groups exhibit explicit learning 318 
like the Instructed group. Furthermore, it seems advantageous to suppress implicit 319 
learning with external and likely transient perturbations [6-10], making adaptation largely 320 
explicit or strategy-based [59-60]. Here, although implicit learning persists, we observe a 321 
small decrease in implicit adaptation in the Cursor Jump group, which is much more 322 
pronounced in the Hand View group. Although we expect increased external error 323 
attribution in the Cursor Jump and Hand View groups, this effect seems to be less clear 324 
for the Cursor Jump group. Nonetheless, we are certain that the Hand View group 325 
attributes the source of the error more externally than other groups. 326 

A reduction of sensory prediction error-based learning may explain the reduced 327 
reach aftereffects and efferent-based hand localization shifts in the Hand View group. 328 
Implicit adaptation is based on sensory prediction errors [3-4,13,44-46], that both healthy 329 
individuals and people with cerebellar damage involuntarily engage in [1,3,14,46,52]. In the 330 
Hand View group, the balance between sensory prediction error-based learning and 331 
explicit strategy contributions to behaviour is changed. Consistent with previous studies 332 
using a similar condition as the Hand View group [46,59-60], our data suggest that 333 
increased external error attribution leads to reduced sensory prediction error-based 334 
visuomotor adaptation. Furthermore, efferent-based updates in predicted sensory 335 
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consequences contribute to hand location estimates. The decreased sensory prediction 336 
error-based learning should result in little to no shift in efferent-based hand position 337 
estimates. Thus, while afferent-based contributions to hand localization rely on visuo-338 
proprioceptive discrepancy signals, changes in efferent-based contributions depend on 339 
sensory prediction error-based learning. Consequently, it seems that external error 340 
attribution only reduces sensory prediction error-based learning. 341 

Reach aftereffects are evidence that people have updated their internal model, 342 
and hence efferent-based predictions, to adapt movements [5,11-12]. Recalibrated 343 
proprioception also informs movements [29,35-37,47,50,61]. First, preventing updates of 344 
internal models while allowing for proprioceptive recalibration, leads to reach 345 
aftereffects that follow the proprioceptive shift [29,32,35-37,47,50]. Second, recalibrated 346 
proprioception is at maximum within six trials or faster [28-29]. Both these findings make it 347 
unlikely that proprioceptive recalibration arises due to repeated hand movements 348 
performed during adaptation. One likely interpretation is that both changes in efferent-349 
based predictions and recalibrated proprioception separately contribute to changes in 350 
motor behaviour (reach aftereffects). Here, we show with a multiple regression that both 351 
afferent and efferent changes are independently related to reach aftereffects in without-352 
strategy no-cursor reaches. Given that, for now, we consider afferent and efferent 353 
contributions as additive in hand localization (see Methods), these contributions are 354 
necessarily statistically independent from each other. Moreover, our behavioural 355 
evidence shows that suppressed efferent-based changes in the Hand View group are 356 
tied to reduced implicit reach aftereffects. Based on these results, we speculate that the 357 
remaining reach aftereffects for the Hand View group are solely based on afferent 358 
changes. Regardless, our data show that changes in motor behaviour after learning 359 
take into account updates to our multi-modal internal estimates of hand location. 360 

The changes in both afferent and efferent-based hand location estimates that 361 
rely on different error signals, and are independently related with changes in motor 362 
behaviour, are likely processed in different regions of the brain. While the relationship 363 
between implicit adaptation and sensory prediction error-based learning has been linked 364 
to the cerebellum [3-4,13,44-46], the visuo-proprioceptive discrepancy leading to 365 
recalibrated proprioception has been linked to parietal areas [25,31,62-63]. Particularly, 366 
parietal lesions that disrupt the angular gyrus in the posterior parietal cortex (PPC) 367 
affect the relationship between the weighting of visuo-proprioceptive information and 368 
corresponding realignment [62], which in turn affects corresponding activity in 369 
somatosensory and motor areas [25,63]. In the current study, the greatly reduced efferent-370 
based changes and persistent afferent-based changes in hand location estimates, due 371 
to external error attribution in the Hand View group, show that processing for these two 372 
signals is dissociated to some degree in the brain. However, although afferent and 373 
efferent-based signals seem to be independently processed in brain, both the PPC and 374 
cerebellum have connections with premotor and motor cortical areas [25,63]. Here, we do 375 
find that afferent and efferent-based hand location estimates share small but significant 376 
relationships with implicit reach aftereffects. Thus, our data are consistent with the 377 
interpretation that the independent signals used in updating our hand location estimates 378 
are likely integrated within premotor and motor areas, and consequently affect our 379 
motor behaviours. 380 
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In summary, external error attribution affects changes in our internal estimates of 381 
hand location and motor behaviour. Particularly, changes in afferent-based 382 
(proprioceptive) estimates of hand location are so robust, that the resulting recalibration 383 
is unaffected by external error attribution. However, external error attribution can be 384 
manipulated to change efferent-based, sensory prediction error-based learning. As 385 
adaptation becomes less reliant on sensory prediction error-based learning, implicit 386 
motor behaviour changes (reach aftereffects) are consequently reduced. We also find 387 
behavioural evidence that these afferent and efferent-based estimates contribute 388 
independently to motor behaviour changes. Taken together, it seems that proprioceptive 389 
plasticity plays an important role when updating our hand location estimates after 390 
experiencing movement errors, as sensory prediction error-based processes are 391 
reduced with increased external error attribution, but visuo-proprioceptive recalibration 392 
is impervious to this. 393 

Methods 

Participants 

Ninety right-handed university students (64 female, MAge = 20.8, SDAge = 3.88) were 394 
assigned to one of four groups: Control (n = 20, 14 females), Instructed (n = 21, 13 395 
females), Cursor Jump (n = 20, 14 females), and Hand View (n = 29, 23 females). Data 396 
for the Instructed and Control groups have been used in our earlier work and are 397 
publicly available on OSF [18]. In those two data sets, the samples (~20 participants per 398 
group) were large enough to detect differences between active and passive localization 399 
shifts (see also [41], n = 19). For the Cursor Jump group, the sample size matched these 400 
reference groups. Since, to our knowledge, no previous study has compared active and 401 
passive hand localization shifts after training with a full view of the hand, we ensured 402 
sufficient power to detect subtler effects by adding more participants to the Hand View 403 
group. All participants gave written informed consent prior to participating. All 404 
procedures were in accordance with institutional and international guidelines. All 405 
procedures were approved by York University’s Human Participants Review Committee.  406 

Experimental Set-up 

Apparatus 

Participants held the handle of a 2-joint robot manipulandum (Interactive Motion 407 
Technologies Inc., Cambridge, MA, USA) with their right hand, while placing their thumb 408 
on top of the handle. A downward facing monitor (Samsung 510 N, 60 Hz) 28 cm above 409 
the manipulandum projected visual stimuli on a reflective tint (14 cm above the 410 
manipulandum), making the stimuli appear on the same horizontal plane as the 411 
participant’s hand (Fig. 1a-1c). The reflective tint is applied to plexiglass and achieves 412 
the same result as a half-silvered mirror. Participants responded using their visible left 413 
hand in some tasks on a touchscreen 2 cm above the manipulandum (Fig. 1d). The 414 
right hand was occluded from the participant’s view and a black cloth was draped over 415 
their right arm and shoulder. For the Hand View group, the right hand was illuminated in 416 
some tasks, making it visible to the participant. 417 
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Stimuli 

Participants made smooth and straight 12 cm out-and-back reaching movements from 418 
the “home position” to one of three targets (or arcs). Targets and arcs were presented 419 
once in a shuffled order before being presented again, such that reach directions were 420 
evenly distributed across trial types (Fig. 2).  421 

Cursor Training Trials. Participants kept a green cursor (circle, 1 cm diameter), 422 
representing their right thumb, at the home position for 300 ms. A yellow target (circle, 1 423 
cm diameter) then appeared at one of three possible locations: 45°, 90°, 135° in polar 424 
coordinates. Once the target was acquired, they held the cursor for 300 ms within 0.5 425 
cm of the target’s centre. Afterwards, both stimuli disappeared, and participants 426 
returned their hand to the home position via a robot-constrained path (perpendicular 427 
resistance force: 2 N/(mm/s); viscous damping: 5 N/(mm/s)). Participants in the Hand 428 
View group saw their right hand along with the cursor throughout these trials. For these 429 
trials, we calculated the angular difference between the hand position at the peak of 430 
movement velocity and the target, relative to the home position. Thus, once the rotation 431 
is introduced, full adaptation should then result in angular reach deviations of 30°. 432 

No-Cursor Trials. These proceeded similarly to cursor training trials, but without visual 433 
feedback from the cursor or hand (Fig. 1f). Participants kept stationary for 500 ms once 434 
they believe they had acquired the target with their unseen right hand, making the target 435 
disappear. They returned to the home position via the constrained path. 436 

 During the rotated session, participants completed two variations of no-cursor 437 
trials in succession (with- and without-strategy; Fig. 2). Using the process dissociation 438 
procedure from Werner et al. (PDP; [16]), we instructed participants to either include or 439 
exclude any consciously accessible strategy they developed to counter for the 440 
visuomotor rotation, to measure implicit and explicit adaptation. The order of these 441 
blocks was counter-balanced within one participant and between participants (Fig. 2). 442 
For all no-cursor trials, we calculated the angular difference between the endpoint of the 443 
participant’s hand movement and the target, relative to the home position. Considering 444 
reach endpoints makes this data set comparable to those from localization trials. 445 

Localization Trials. Participants saw a white arc (0.5 cm thick) 12 cm away from the 446 
home position (Fig. 1e), which spanned 60°, and was centred on either the 50°, 90°, or 447 
130° mark in polar coordinates. In self-generated active localization trials, participants 448 
moved their unseen right hand from the home position to any point on the arc, and were 449 
instructed to vary their chosen crossing points across trials. In passive localization trials, 450 
the robot guided the participant’s right hand towards the same points on the arc that 451 
they intersected during active localization trials in the preceding task. Regardless of 452 
localization type, a cushion force prevented hand movements from moving beyond the 453 
arc position. Participants then voluntarily returned their right hand to the home position 454 
via the constrained path, and used their visible left hand to indicate on the touchscreen 455 
the point at which they believed their unseen right hand intersected the arc. 456 
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Procedure 

The aligned session served as baseline data, and started with aligned cursor training 457 
trials, followed by blocks of active localization, passive localization, and no-cursor trials 458 
respectively (Fig. 2). Localization and no-cursor blocks were repeated in the same order 459 
for three more times during this session. To prevent decay in learning, we interleaved 460 
shorter blocks of “top-up” cursor training trials between every localization and no-cursor 461 
block. The aligned session ended upon completion of the fourth no-cursor block. 462 

 Participants were given a mandatory five-minute break. During this break, the 463 
Instructed group was informed about the nature of the perturbation and was given a 464 
strategy to counter it (see [15,18] for details). The other groups were simply advised to 465 
compensate since the cursor would be “moving differently”, and to remember any 466 
strategy they develop as they would be asked to either use or not use it. 467 

In the following session, the cursor was rotated 30° clockwise (CW) relative to 468 
the hand position for all cursor training trials. Hence, correcting for this perturbation 469 
requires straight reaches in the 30° counterclockwise (CCW) direction. Regardless of 470 
instructions received during the break, both Instructed and Control groups simply 471 
experienced this perturbation. For the Cursor Jump group, the cursor shifted to this 472 
rotated trajectory after participants moved for one-third (4 cm) of the home-target 473 
distance (Fig. 1b). For the Hand View group, illuminating the right hand allowed 474 
participants to see the misalignment between cursor and hand, making this the clearest 475 
demonstration that the error was caused externally (Fig. 1c). The rotated session 476 
proceeded similarly to the aligned session. However, to saturate learning of the 477 
visuomotor rotation, we increased the number of cursor training trials in each block (Fig. 478 
2). Moreover, each block of no-cursor trials was done twice, each in one variation (with-479 
strategy or without-strategy). 480 

Data Analysis 

We compared all four groups within the different trial types. Results from frequentist 481 
tests are reported with an alpha level of 0.05. Greenhouse-Geisser corrections were 482 
applied when necessary. Planned follow-up tests used the Sidak method when it was 483 
necessary to correct for multiplicity. Degrees of freedom for follow-up tests are larger 484 
than expected in some cases, as it uses a model fit on all the data (R emmeans 485 
package, [64]). For the figures, estimates of confidence intervals were bootstrapped to 486 
represent the individual data better, but confidence intervals for grouped data and the 487 
corresponding statistical tests were based on sample t-distributions. All data 488 
preprocessing and analyses were conducted in R version 3.6.0 [65]. Bayesian statistics 489 
are reported for each corresponding frequentist test and were conducted in JASP 490 
version 0.11.1 [66]. Follow-up tests for Bayesian ANOVAs were only conducted on main 491 
effects (odds values in Results). We conducted Bayesian t-tests to follow-up on 492 
interaction effects, without correcting for multiplicity. 493 

Rate of Learning During Adaptation Training 

We analyzed cursor training trials from both the aligned and rotated sessions. Trials 494 
were manually inspected for outlier reaches (0.94% of trials removed). We corrected for 495 
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individual baseline biases by calculating the average reach deviation for each target 496 
separately within each participant, during the last 30 out of the first 45 aligned cursor 497 
training trials, and subtracting this from rotated cursor training trials. We compared 498 
angular reach deviation measures across all groups, within each one of three trial sets 499 
(rotated cursor training trials 1-3, 4-6, 76-90), to confirm learning and investigate any 500 
differences. 501 

Reach Aftereffects and Strategy Use 

We tested for group differences in reaches without cursor-feedback. Upon manual 502 
inspection, outlier reaches were removed (1.46% of trials). We confirmed the presence 503 
of reach aftereffects by comparing angular reach deviations from aligned no-cursor trials 504 
to without-strategy no-cursor trials. For the PDP [16,18], we implemented baseline-505 
correction (aligned session no-cursor reaches subtracted from no-cursor with- and 506 
without-strategy trials, respectively), before comparing angular reach deviations in with- 507 
and without-strategy trials. 508 

Proprioceptive Recalibration and Updating Predicted Sensory Consequences 

We investigated active and passive localization trials, before and after adaptation 509 
training. We calculated the angular difference between the endpoint of the participant’s 510 
right hand movement and their left hand responses on the touchscreen, relative to the 511 
home position. Localization response biases were accounted for using a circle fitting 512 
procedure (see [35] for details). Trials with hand movement endpoints beyond ±20° from 513 
the arc centre across all groups, and angular errors beyond ±3 standard deviations from 514 
the mean angular error per participant were removed (1.06% of angular errors). We 515 
used a kernel smoothing method (gaussian kernel with bandwidth = 15°) to interpolate 516 
changes in hand localization at specific points (50°, 90°, 130°) for every participant. 517 
Mean values at each of these points estimate active and passive hand localization 518 
errors for both the aligned and rotated sessions. 519 

 We compared hand localization errors in the rotated session to those in the 520 
aligned session. The difference of localization errors between the two sessions 521 
represents shifts in hand localization, and were compared across groups and movement 522 
type (active and passive). The difference between active and passive localization shifts 523 
were used as a measure of efferent-based updates in predicted sensory consequences, 524 
while passive localization shifts measured the afferent-based recalibration of 525 
proprioception. If afferent and efferent contributions to hand localization are optimally 526 
integrated (e.g. Bayesian integration), then variance in active localization should be 527 
lower than passive localization [41]. However, we have failed to find this in two earlier 528 
studies [35,41] as well as more recently, when we combined data from several studies, for 529 
a total of over 200 participants [67]. Thus, we take a parsimonious approach, and treat 530 
afferent and efferent contributions as additive in hand localization. We compared these 531 
measures for each group against zero, and investigated how both hand location 532 
estimates may contribute to implicit motor changes. 533 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.02.05.936062doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936062
http://creativecommons.org/licenses/by/4.0/


20 

Data Availability  

Data, analyses scripts, and preprint are available on Open Science Framework 
(https://doi.org/10.17605/osf.io/xdgh6 [48]). 
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