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Abstract 11 

The independent and repeated adaptation of populations to similar environments often results 12 

in the evolution of similar forms. This phenomenon creates a strong correlation between 13 

phenotype and environment and is referred to as parallel evolution. However, there is 14 

ongoing debate as to when we should call a system either phenotypically or genotypically 15 

‘parallel.’ Here, we suggest a novel and simple framework to quantify parallel evolution at 16 

the genotypic and phenotypic levels. Our framework combines both traditional and new 17 

approaches to measure parallel evolution, and categorizes them into broad- and narrow-sense 18 

scales. We then apply this framework to coastal ecotypes of an Australian wildflower, 19 

Senecio lautus, that have evolved in parallel. Our findings show that S. lautus populations 20 

inhabiting similar environments have evolved strikingly similar phenotypes. These 21 

phenotypes have arisen via mutational changes occurring in different genes, although many 22 

share the same biological functions. Our work paves the way towards a common framework 23 

to study the repeated evolution of forms in nature. 24 

25 
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Author summary 26 

When organisms face similar ecological conditions, they often evolve similar phenotypic 27 

solutions. When this occurs in closely related taxa, it is referred to as parallel evolution. 28 

Systems of parallel evolution provide some of the most compelling evidence for the role of 29 

natural selection in evolution, as they can be used as natural replicates of the adaptation 30 

process. However, there is debate as to when we should call a system ‘parallel’. This debate 31 

stems back to the mid 1900s, and although there have been multiple attempts within the 32 

literature to clarify terminology, controversy still remains. In this study, we propose a novel 33 

framework to quantify phenotypic and genotypic parallel evolution within empirical systems, 34 

partitioning parallelism into broad- and narrow-sense components. Our framework is 35 

applicable to non-model organisms and provides a common set of analyses to measure 36 

parallel evolution, enabling researchers to compare the extent of parallel evolution across 37 

different study systems. In turn, this helps to reduce confusion surrounding the term ‘parallel 38 

evolution’ at both the phenotypic and genotypic levels. We then apply our framework to two 39 

coastal ecotypes of an Australian plant, Senecio lautus. We show that similar phenotypes 40 

within each ecotype have evolved via mutational changes in different genes, though some are 41 

involved in similar biological functions. Our research not only helps to consolidate the field 42 

of parallel evolution, but paves the way to understanding the role of natural selection in the 43 

repeated evolution of similar phenotypes within nature.  44 
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Introduction 45 

When populations independently and repeatedly adapt to similar environments, they often 46 

evolve similar phenotypes (Schluter, 2000). This has been observed in a wide variety of 47 

animal taxa (e.g., Johannesson et al., 1993; Nosil et al., 2002; Elmer et al., 2010; Ravinet et 48 

al., 2013; Soria-Carrasco et al., 2014; Perreault-Payette et al., 2017) and in some plants (e.g., 49 

Foster et al., 2007; Trucchi et al., 2017; Cai et al., 2019; Konečná et al., 2019). When 50 

independent populations evolve from similar initial conditions, this phenomenon is referred 51 

to as ‘parallel evolution’ (Schluter & Nagel, 1995; Bolnick et al., 2018). The correlation that 52 

arises between phenotype and environment during parallel evolution provides strong 53 

evidence for the role of natural selection in creating new forms. This is because it is unlikely 54 

that similar phenotypes would have evolved multiple times purely by chance (Lenormand et 55 

al., 2009, but see Losos, 2011). Systems of parallel evolution are unique as they provide 56 

natural replicates of the evolutionary process, enabling researchers to study the genetics and 57 

ecology of how adaptation proceeds in nature (Lenormand et al., 2016). Such systems can 58 

also shed light on the level at which evolution is repeatable and predictable (Stern & 59 

Orgogozo, 2009; Blount et al., 2018). 60 

The evolution of similar phenotypes within the same environment can arise via independent 61 

and repeated selection on the same nucleotide site or gene (reviewed in Wood et al., 2005; 62 

Christin et al., 2010; Stern, 2013). Similar phenotypes can also arise by selection on entirely 63 

different genes, although often from the same functional pathway (e.g., Smith & Rausher, 64 

2011; Kowalko et al., 2013; Roda et al., 2013b; Laporte et al., 2015; Perreault-Payette et al., 65 

2017; Cassin‐Sackett et al., 2019). Here, different genetic routes are able to produce similar 66 

phenotypic outcomes across populations, even though selection does not act upon the same 67 

allele or gene. Within the literature there is controversy as to which level of biological 68 

organization (nucleotide site, gene, or biological function) should be viewed as genotypically 69 

‘parallel’. This makes it difficult to conceptualize both phenotypic and genotypic parallel 70 

evolution. 71 

The debate surrounding the term parallel evolution remains sprightly but confusing (Haas & 72 

Simpson, 1946; Arendt & Reznick, 2008; Lenormand et al., 2016; Stuart, 2019; Thompson et 73 

al., 2019). Some researchers argue that parallel systems arise only when the same nucleotide 74 

site or gene is repeatedly involved in the evolution of similar phenotypes (Rosenblum et al., 75 

2014). However, others maintain that when similar phenotypes independently arise, they 76 
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should be classed as cases of parallel evolution regardless of the underlying genetics (e.g., 77 

Lim et al., 2019). Some argue that the term parallel should be disregarded altogether and 78 

replaced with convergence (Arendt & Reznick, 2008). Although there are also several 79 

incompatible definitions of convergent evolution and parallel evolution (Stern, 2013), it is 80 

generally accepted that convergence refers to the evolution of similar forms from distantly 81 

related taxa, whereas parallel is the evolution of similar forms from similar initial conditions 82 

in closely related taxa – terminology that we are also adopting here (Speed & Arbuckle, 83 

2017; Bolnick et al., 2018 but see Stern, 2013; Lenormand et al., 2016). To reduce the 84 

ensuing confusion when the term parallel evolution is used in isolation, some researchers 85 

have proposed we should separate parallel evolution, or parallelism, into two distinct 86 

components: the phenotype and the genotype (Elmer & Meyer, 2011). 87 

Even though separating parallel evolution into phenotypic and genotypic components helps 88 

reduce confusion, researches often implement different statistical approaches to measure 89 

parallelism across different study systems. These different approaches can lead to different 90 

interpretations of parallel evolution at the level of the phenotype and genotype (Bolnick et 91 

al., 2018), which in turn makes it difficult to directly compare between studies. It becomes 92 

evident we require common approaches to measure parallelism so researchers can not only 93 

quantify the extent of parallel evolution within a given system, but also compare the amount 94 

of parallelism between systems.  95 

A framework to measure parallel evolution 96 

We propose a novel and simple framework to measure phenotypic and genotypic parallel 97 

evolution (Figure 1). Our framework synthesizes traditional and new approaches, and 98 

partitions these measures of parallelism into the broad- and narrow-sense scales. This 99 

partitioning allows researchers to gain information not only about the overall patterns within 100 

a system but also the specific similarities of replicate populations. We show that different 101 

measures of parallelism can reveal how natural selection creates patterns at different scales of 102 

phenotypic and genotypic variation. 103 

To characterize the extent of phenotypic and genotypic parallelism within a system, it is 104 

necessary to rigorously demonstrate that populations adapting to similar environments 105 

(collectively referred to as an ecotype) have arisen multiple times independently. We refer 106 

the reader to our previous analyses of parallel evolution in Senecio lautus (Roda et al., 2013b; 107 
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James et al., 2020) and to systems such as the marine snail, Littorina saxatilis (Quesada et 108 

al., 2007; Johannesson et al., 2010; Bierne et al., 2013; Butlin et al., 2014; Pérez-Pereira et 109 

al., 2017), and the threespine stickleback, Gasterosteus aculeatus (Colosimo et al., 2005; 110 

Chan et al., 2010; Dean et al., 2019; Marques et al., 2019) where one can find some of the 111 

strongest evidence for the independent origin of populations, and to the increasing number of 112 

potential cases of parallel evolution in plants (Foster et al., 2007; Ostevik et al., 2012; 113 

Trucchi et al., 2017; Cai et al., 2019; Konečná et al., 2019; Knotek et al., 2020). 114 

Phenotypic parallel evolution. Researchers of parallelism traditionally ask to what extent 115 

ecotypes are phenotypically distinct and which traits contribute to these differences (see 116 

Bolnick et al., 2018 for a detailed review of approaches). More recently, studies of 117 

parallelism (e.g., Elmer et al., 2014; Kusche et al., 2015; Oke et al., 2017; Stuart et al., 2017; 118 

Paccard et al., 2019; Pilakouta et al., 2019; Jacobs et al., 2020) have shifted to also quantify 119 

phenotypic similarities between each replicate population pair using geometric approaches 120 

such as phenotypic change vector analysis (Collyer & Adams, 2007; Adams & Collyer, 2009; 121 

Collyer et al., 2015). Unfortunately, geometric approaches do not quantify overall differences 122 

between ecotypes, so replicate pairs can show little parallelism yet contribute to strong 123 

parallel phenotypic differences between ecotypes. To maximize the benefits of both methods 124 

we propose to quantify phenotypic and genotypic parallelism with multiple approaches, 125 

which can be classified at broad- and narrow-sense scales (Figure 1). 126 

In the broad-sense, phenotypic parallelism quantifies the net contribution of all replicate 127 

populations within each ecotype to the overall phenotypic differences between ecotypes 128 

(Figure 1). It can be broken into two components: ‘parallel ecotype’, and ‘parallel trait’. 129 

‘Parallel ecotype’ describes the multivariate differences between ecotypes, such that a highly 130 

parallel system would show no overlap in the trait space occupied by each ecotype. ‘Parallel 131 

trait’ describes which univariate traits are different between ecotypes such that they can 132 

easily predict the habitat in which an individual lives, from trait attributes alone. In the 133 

narrow-sense, phenotypic parallelism quantifies and compares similarities between each 134 

replicate population pair (which we have called ‘parallel pair’). Narrow-sense parallelism 135 

gives insight into which pairs are most similar to each other, and which pairs deviate from the 136 

common trend within the system (Figure 1). These levels of phenotypic parallelism reveal 137 

both the net contribution of replicate pairs to the general differences between ecotypes 138 
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(broad-sense), as well as the relative similarities in divergence between each replicate 139 

population (narrow-sense). 140 

Genotypic parallel evolution. Researchers of genotypic parallelism often measure the 141 

proportion of shared outlier loci between replicate populations to ask whether the same 142 

alleles or genes are responsible for the evolution of similar phenotypes (Wood et al., 2005). 143 

In most cases, this will be difficult because causal alleles might not be sampled (Catchen et 144 

al., 2017; Lowry et al., 2017; McKinney et al., 2017), only their indirect linkage effects 145 

might be detected by outlier loci (Hoban et al., 2016), and random fixations can accumulate 146 

between populations over time as genetic drift increases dissimilarity between population 147 

pairs. If knowledge of causal alleles is available, then one must demonstrate that a given site 148 

has been under repeated and independent selection in each replicate pair (Lee & Coop, 2017, 149 

2019). Typically, these analyses are undertaken comparing individual replicate pairs (e.g., 150 

Roda et al., 2013b; Lamichhaney et al., 2017; Cassin‐Sackett et al., 2019), although some 151 

studies detect broad, or ‘global’ outliers by comparing the aggregate of all populations within 152 

each ecotype (e.g., Jones et al., 2012; Kautt et al., 2012). In the absence of repeated selection 153 

on the same allele or gene, parallelism can be manifested at the functional level, such that 154 

different genes under selection participating in the same predicted biological function 155 

contribute to the pattern of phenotypic parallelism in a system. It is frequently asked whether 156 

predicted biological functions are consistently enriched across independent populations 157 

(Smith & Rausher, 2011; Kowalko et al., 2013; Roda et al., 2013b; Perreault-Payette et al., 158 

2017; Cassin‐Sackett et al., 2019). These analyses can inform us about how genotypically 159 

parallel a system is at different scales of divergence, so we can also view genotypic parallel 160 

evolution as broad-sense or narrow-sense (Figure 1). 161 

Broad-sense genotypic parallelism quantifies the net contribution of all replicate populations 162 

within each ecotype to the overall genetic differences between ecotypes (Figure 1). We can 163 

measure it at different levels of biological organization: the nucleotide site, gene, and 164 

biological function. For instance, a highly parallel nucleotide site would clearly differentiate 165 

the two ecotypes. Such parallel alleles might have originated repeatedly and independently 166 

gone to fixation in each population inhabiting similar habitats, or might have recurrently 167 

increased in frequency from standing genetic variation. Broad-sense parallelism at the level 168 

of the biological function asks which, if any, predicted functions are enriched with divergent 169 
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genes between the ecotypes. An enriched function might suggest it has been repeatedly 170 

involved in adaptation across replicate populations. 171 

On the other hand, narrow-sense genotypic parallelism quantifies which outlier nucleotide 172 

sites and genes are the most similar across replicate pairs, and how similar the enriched 173 

biological functions are for each pair (Figure 1). It asks which genetic differences distinguish 174 

the ecotypes of each replicate pair and at what level of organization. Patterns of genotypic 175 

divergence can be complex and create a mismatch between genotypic and phenotypic 176 

parallelism. For instance, all replicate pairs might have biological functions that diverged in 177 

parallel, but in each case recruiting different genes. This will lead to lack of genotypic 178 

parallelism at the nucleotide site and gene level both in the broad- and narrow-sense. Such a 179 

system can still be highly parallel at the phenotypic level. We expect this to be common when 180 

parallel evolution occurs on complex traits via polygenic adaptation (Gompel & 181 

Prud’homme, 2009; Ralph & Coop, 2010; Rosenblum et al., 2014; Yeaman, 2015; 182 

MacPherson & Nuismer, 2017).  183 

Overall, our framework is particularly useful for systems with the repeated and independent 184 

origin of populations, where pairs of ecotypes have adapted to contrasting environments. 185 

Nevertheless, our framework can also be used for single origin systems containing multiple 186 

secondary contacts with gene flow between ecotypes, or species. In this case, researchers can 187 

still examine the dynamics of repeated population divergence and parallel maintenance of 188 

species differences in the face of gene flow, but cannot interpret populations as being from 189 

independent origins. Here, we examine the extent of phenotypic and genotypic parallel 190 

evolution within an Australian wildflower species complex, Senecio lautus. We use both 191 

broad- and narrow-sense measures and demonstrate the importance of quantifying parallelism 192 

at these different scales of divergence. 193 

The Senecio lautus species complex 194 

The Senecio lautus species complex contains a variety of ecotypes adapted to contrasting 195 

environments. The Dune and Headland ecotypes are of particular interest as they consist of 196 

multiple parapatric Dune-Headland population pairs along the Australian coastline that are 197 

often sister groups in the phylogeny (Roda et al., 2013a; Melo et al., 2019; James et al., 198 

2020). Despite the close geographic proximity between populations of a pair (i.e., ecotypes 199 

within each locality), there is little to no gene flow between them, suggesting a large number 200 
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of independent and repeated origins (James et al., 2020). There is a strong association 201 

between overall morphology and habitat in this coastal system: Dune plants, colonizing the 202 

sandy dunes, are erect with few branches, whereas Headland individuals grow on rocky 203 

headlands and are prostrate with many branches (Figure 2D). Populations maintain their 204 

phenotypes when grown in common garden conditions (Walter et al., 2016, 2018a; 205 

Wilkinson et al., 2020), suggesting that phenotypic plasticity within the system is weak. 206 

Previous work with S. lautus in common garden conditions has identified a suite of divergent 207 

traits between Dune and Headland populations, which include characteristics related to plant 208 

architecture and leaf morphology (Walter et al., 2018a). However, we lack a comprehensive 209 

characterization of how parallel the phenotypes and genotypes are within natural populations, 210 

and how this affects divergence at the level of the ecotype and replicate population pair. 211 

To assess the extent of phenotypic and genotypic parallelism in S. lautus, we used 22 212 

populations: nine replicate Dune-Headland pairs, two allopatric Dune populations, and two 213 

allopatric Headland populations. We first quantify how phenotypically distinct the Dune and 214 

Headland ecotypes are, and which replicate pairs are the most phenotypically similar. We 215 

then build on previous work (Roda et al., 2013b) to ask whether similar genetic mechanisms 216 

underlie these repeated phenotypes (i.e., repeated selection on the same nucleotide site, gene, 217 

or biological function). In addition, we ask whether the variation in the extent of parallelism 218 

can be attributed to non-stochastic factors, including levels of gene flow and within ecotypic 219 

environmental variation. 220 

Methods 221 

Phenotypic parallelism 222 

Sample collection. To quantify the extent of phenotypic parallelism within S. lautus, we 223 

measured a suite of plant architecture and leaf morphology traits from 20 Dune and Headland 224 

populations along the coast of Australia (nmean = 30 individuals, ntotal = 605; Figures 2A, 2B; 225 

Table S1). These populations include eight Dune-Headland pairs along a continuum from 226 

geographically parapatric to allopatric (four of which are sister taxa), as well as four 227 

allopatric populations that do not have a parapatric pair (as inferred from previous 228 

phylogenetic analyses; James et al., 2020). We sampled mature (flowering) plants evenly 229 

across the geographic range of each population, ensuring that each plant was more than one 230 

meter apart. We measured six plant architecture traits (vegetative height, widest width, 231 
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narrowest width, main stem angle, main stem diameter, and secondary branch angle) and 232 

eight leaf traits (area, perimeter, width, height, elongation, compactness, dissection and 233 

circularity; defined in Table S2). All plant architectural traits were measured in the field, and 234 

we sampled three secondary branch leaves per plant for leaf morphometric analysis in ImageJ 235 

v1.51 (Schneider et al., 2012). Leaves were scanned at 600 dpi on a CanoScan 9000F scanner 236 

and ImageJ was used to automatically extract leaf shape characteristics. Some of the same 237 

populations and traits have been previously measured in common garden conditions (Walter 238 

et al., 2018a). Overall, phenotypes in the wild are highly correlated with those measured 239 

under controlled conditions (Wilkinson et al., 2020). 240 

In ~11% of sampled plants, we were unable to measure all six plant architectural traits (such 241 

as main stem diameter and main stem angle). In these cases, we took the average of the 242 

population to impute the trait value for that individual. We ran the below analyses with and 243 

without these individuals and obtained consistent results. We report the analyses undertaken 244 

using the population means for the missing data. All phenotypic analyses were undertaken in 245 

R v3.4.2 (R Core Team, 2017). Traits were log transformed and standardized to have a mean 246 

of 0 and standard deviation of 1. We calculated pairwise correlations between all traits and 247 

removed five traits with high correlations across all populations (>0.8; Table S2). These 248 

correlated traits added minimal additional phenotypic information and are thus effectively 249 

redundant. 250 

Relative contributions of broad- and narrow-sense phenotypic parallelism 251 

We initially assessed the relative contributions of broad- and narrow-sense phenotypic 252 

parallelism within S. lautus. More specifically, we performed linear models at the 253 

multivariate level of the ecotype (MANOVA: traits = ecotype + pair + ecotype × pair), as 254 

well as the univariate level of each trait (ANOVA: trait = ecotype + pair + ecotype × pair) 255 

and extracted the partial effect sizes (partial h2; Langerhans & DeWitt, 2004) for each term in 256 

the ANOVAs, (and Wilk’s partial h2 for the MANOVA) using the etasq function in the 257 

heplots package (Fox et al., 2018) in R. As these models require population pairs, we 258 

excluded two Headland allopatric populations (H03 and H07) and two Dune allopatric 259 

populations (D09 and D35). The partial effect size of the ecotype term denotes how much of 260 

the phenotypic variation is explained by the overall differences between ecotypes, whereas 261 

the pair and interaction terms indicate how much variation is unique to replicate pairs. 262 

Therefore, when the effect size for the ecotype term is larger than the pair or interaction, this 263 
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indicates that broad-sense phenotypic parallelism might predominate over narrow-sense, 264 

although there still might be a strong influence of differences between replicate pairs. After 265 

assessing these relative contributions (at the level of the ecotype and trait), we further 266 

explored the detailed patterns of broad- and narrow-sense phenotypic parallelism within S. 267 

lautus. 268 

Broad-sense phenotypic parallelism 269 

Parallel ecotype. To ask whether ecotypes are phenotypically distinct within multivariate 270 

space, we performed a one-way MANOVA (MANOVA: traits = ecotype) across the 20 271 

Dune and Headland populations, where traits denotes the multivariate response variable of all 272 

traits, and ecotype is a fixed effect of Dune or Headland. We also split traits into a plant 273 

architectural and a leaf trait-set to ask whether phenotypic differences between ecotypes 274 

depend on the trait category. To ask whether we can predict the ecotype each individual 275 

belongs to, based on their phenotype, we performed K-means clustering with the Hartigan-276 

Wong algorithm (Hartigan & Wong, 1979). We used 25 random initial configurations and 277 

retained the run with the smallest sums of squares of the individuals to their assigned cluster 278 

center, and then calculated the proportion of individuals assigned to their correct ecotype. We 279 

also performed a linear discriminant analysis across all traits to ask which linear trait 280 

combination best explains the phenotypic differences between Dune and Headland ecotypes. 281 

Parallel trait. To ask which univariate traits are the most parallel between the Dune and 282 

Headland ecotypes we undertook three approaches: vote-counting, trait-by-trait linear 283 

models, and R2 analysis. As the vote-counting and linear model approaches require 284 

population pairs, we again excluded the four allopatric populations (H03, H07, D09 and 285 

D35). For vote-counting, we calculated the mean trait value for the Dune and Headland of 286 

each replicate pair and asked whether there was a consistent increase or decrease in the trait 287 

value for all replicate pairs (two-sided dependent-samples sign-tests). However, this vote-288 

counting approach ignores trait effect-size, and also has low statistical power when the 289 

sample size (number of replicate pairs) is small. Therefore, we also used trait-by-trait linear 290 

models (trait = ecotype + pair + ecotype × pair) to ask whether there was a significant main 291 

effect of ecotype for each trait. To also quantify the extent of phenotypic parallelism between 292 

ecotypes, we extracted the proportion of phenotypic variance explained by the ecotype term 293 

(R2) for each trait from one-way ANOVAs performed on the population means (see 294 

Langerhans, 2018). Following Langerhans (2018), we considered a trait strongly parallel 295 
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when R2 ³ 0.50, moderately parallel when 0.50 > R2 ³ 0.33, and weakly parallel when R2 < 296 

0.33. We then examined which traits were consistently viewed as parallel across each of the 297 

three approaches. 298 

Narrow-sense phenotypic parallelism 299 

Parallel pair. To quantify the specific phenotypic similarities and differences between 300 

replicate population pairs, we used Phenotypic Change Vector Analysis (PCVA; Collyer & 301 

Adams, 2007; Adams & Collyer, 2009; Collyer et al., 2015). Within multivariate phenotypic 302 

space, PCVA quantifies both 1) the amount of divergence, and 2) the contribution of traits to 303 

divergence between replicate pairs. The procedure is as follows: the phenotypic centroid 304 

(multivariate mean) is calculated per population. For each population pair, their centroids are 305 

connected with a vector. The length (L) of this vector quantifies how divergent the two 306 

populations are – the longer the length, the more divergent. The difference in length (DL) 307 

between vectors thus denotes the difference in the magnitude of divergence between two 308 

replicate population pairs. The two pairs are considered parallel with regards to the 309 

magnitude of their divergence if DL is not statistically different from zero (DL » 0; Bolnick et 310 

al., 2018). 311 

The contribution of traits to divergence is measured by the angle between vectors (q). A large 312 

angle between two pairs (q >> 0°) suggests the traits contributing to population divergence 313 

are quite different between the pairs. The contribution of traits is considered parallel when the 314 

angle is not statistically different from zero (q » 0°). Using R code modified from Collyer & 315 

Adams (2007), we calculated DL and q for all pairwise comparisons between replicate pairs 316 

and performed permutations to test for statistical significance (see Supplementary R code for 317 

details). To ensure this analysis was robust and not dominated by a single trait, we repeated 318 

the calculations of DL and q nine times with removing a single trait each time. We observed 319 

consistent results across all calculations, suggesting our results are not dominated by a single 320 

trait (results not shown). 321 

Genotypic parallelism 322 

Sequencing and bioinformatics. To quantify the extent of genotypic parallelism within S. 323 

lautus, we collected leaf samples from nine population pairs along the coast of Australia 324 

(nmean = 56, ntotal = 1009; Figures 2A, 2B; Table S1). DNA was extracted using a modified 325 
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CTAB protocol (Clarke, 2009). We created reduced representation (RAD) libraries by using 326 

a two-enzyme Genotyping-by-Sequencing (GBS) approach (modified from Poland et al., 327 

2012), with Pst1 and Msp1. We created seven equimolar pools (192 individuals per pool), 328 

which were size-selected on the BluePippin (2% DF Marker V1, 300-500bp; Sage Science). 329 

Pooled libraries were sent to Beijing Genomics Institute (BGI) for sequencing on seven lanes 330 

of the HiSeq4000, with 100bp paired-end sequencing. 331 

BGI removed forward barcodes and quality filtered the raw reads to remove reads containing 332 

Illumina adaptors, low quality reads (> 50% of bases < Q10), and reads with > 10% Ns. We 333 

trimmed reverse barcodes with TagCleaner standalone v0.12 (Schmieder et al., 2010). Reads 334 

were mapped to the S. lautus reference PacBio genome v1.0 (Wilkinson et al., 2020) with 335 

BWA-MEM v0.7.15 (Li & Durbin, 2009; Li, 2013). PicardTools v2.7.0 (Broad Institute, 336 

2019) was used to clean aligned reads and to add read groups (PCR duplicates were not 337 

marked for removal). We jointly called all variant and invariant sites for each population with 338 

FreeBayes v1.1.0 (Garrison & Marth, 2012). Using VCFtools v0.1.15 (Danecek et al., 2011), 339 

we retained sites if they were present in > 50% of individuals, had a minimum quality score 340 

of 30, and a minimum minor allele count of 1. We then filtered for a minimum depth of 3 for 341 

a genotype call. Individuals were removed if they contained > 40% missing data. We then 342 

filtered for a maximum mean depth of 100, and a minimum mean depth of 10. We filtered for 343 

missing data per population, removing sites if they contained > 50% of missing data within 344 

each population. We refiltered for an overall missing data of 20%. Indels were removed with 345 

vcflib (Garrison, 2016). We then filtered for population-specific Hardy Weinberg Equilibrium 346 

using the filter_hwe_by_pop.pl script within dDocent (Puritz et al., 2014). We filtered for an 347 

overall minor allele count of 5, retaining 9,686 variable sites across all populations. See 348 

James et al., (2020) for further details on DNA extraction, library preparation and 349 

bioinformatics. 350 

Broad-sense genotypic parallelism 351 

Parallel nucleotide site. We first assessed the relative contributions of broad- and narrow-352 

sense parallelism for each of the 9,686 sequenced SNPs across populations. More 353 

specifically, we first used PLINK v1.9 (Purcell et al., 2007) to normalize each SNP by 354 

conducting a PCA and extracting the first eigenvector. For each SNP we then performed 355 

linear models (ANOVA: SNP = ecotype + pair + ecotype × pair) and we extracted the 356 

partial effect sizes (partial h2) for each term in the model. As above, the partial effect size of 357 
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the ecotype term denotes how much of the variation for each SNP is explained by the overall 358 

differences between ecotypes, whereas the pair and interaction terms indicate how much 359 

variation is unique to replicate pairs. Therefore, when the effect size for the ecotype term is 360 

larger than the pair or interaction, this indicates that broad-sense predominates over narrow-361 

sense. To plot these data as a frequency distribution, we calculated each SNP’s distance from 362 

a 1:1 line by subtracting the effect size for either the pair or interaction term from the ecotype 363 

term in the model. Positive values indicate a larger contribution of broad- over narrow-sense 364 

parallelism, and vice versa for negative values. 365 

After assessing these relative contributions, we further explored the detailed patterns of 366 

broad-sense parallelism at the level of the nucleotide site. To this end, we combined a number 367 

of approaches to detect outliers between the Dune and Headland ecotypes. To ask which 368 

nucleotide sites distinguish the ecotypes (overall Dune vs Headland), we undertook two 369 

approaches: 1) detection of outliers comparing all Dune populations vs all Headland 370 

populations, and 2) detection of outliers separately for each Dune-Headland pair, and then 371 

asked whether there were concordant allele frequency differences across all pairs. 372 

Approach 1: To detect broad-sense outliers between the ecotypes, we undertook three outlier 373 

detection methods: the top 1% from the distribution of FST values, the top 1% from the 374 

distribution of cluster separation scores (CSS), and those SNPs identified by BayeScan (Foll 375 

& Gaggiotti, 2008). To remove low frequency variants (Bhatia et al., 2013), we filtered this 376 

dataset for MAF 0.05, retaining 9,269 SNPs. FST per SNP (Weir & Cockerham, 1984) was 377 

calculated within VCFtools (Danecek et al., 2011), and we selected the top 1% 378 

(corresponding to FST > 0.353, which also corresponds to an average change in allele 379 

frequency, Dp, of 0.47, SD = 0.080; Figure S1A). We calculated the cluster separation score 380 

(CSS; Jones et al., 2012) per SNP using a custom R script (see Supplementary R code for 381 

details). CSS is a genetic distance-based measure that quantifies the average divergence 382 

between Dune and Headland clusters, after accounting for the variance within each ecotype. 383 

It ranges between 0 and 1, with higher values indicating a more distinct separation between 384 

Dune and Headland ecotypes. We selected the top 1% of CSS (corresponding to CSS > 385 

0.523, an average Dp of 0.45, SD = 0.087; Figure S1B). We also detected outliers in 386 

BayeScan v2.1 (Foll & Gaggiotti, 2008). BayeScan implements a reversible-jump MCMC 387 

algorithm to estimate posterior odds comparing a model with and without selection for each 388 

SNP. We used default parameters with a prior odd of ten, meaning the neutral model is ten 389 
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times more likely than the model with selection (as recommended for datasets of our size; 390 

Foll & Gaggiotti, 2008). Results were robust to increasing the prior odds to 100 (data not 391 

shown). We categorized SNPs as highly differentiated if they contained a posterior 392 

probability > 0.91, corresponding to a Bayes Factor of > 10, and corresponding to an average 393 

Dp of 0.38, SD = 0.121. For approach 1, we classified SNPs as outliers if they were detected 394 

in at least two of the three methods (Figure S1C). 395 

Approach 2: To detect more subtle signals of broad-sense outliers between the ecotypes, we 396 

asked whether there were concordant allele frequency changes across replicate pairs. 397 

Specifically, we first detected outliers separately for each Dune-Headland pair (see methods 398 

below). If a nucleotide site was highly differentiated in at least one pair, we compared allele 399 

frequencies across all pairs for the site, and we asked whether the Dp for each replicate pair 400 

was in the same direction across all pairs (tested using two-sided dependent-samples sign-401 

tests in R). Our overall best candidates for broad-sense SNP parallelism are those that overlap 402 

between the two methods, i.e., they show high differentiation between ecotypes (approach 1), 403 

with concordant allele frequency changes across replicate pairs (approach 2). 404 

To ask whether the candidate outliers from any of the approaches above fall within genic or 405 

non-genic regions, we mapped a previously created S. lautus transcriptome (Liu, 2014) to the 406 

reference PacBio genome v1.0 (Wilkinson et al., 2020) with minimap2 v2.17 (Li, 2018) 407 

using default parameters. We considered each transcript a separate gene, which included all 408 

isoforms. As the transcriptome excludes introns, we still considered SNPs mapped to the 409 

reference genome that fall between two segments of the same transcript as a genic SNP. All 410 

other SNPs were considered non-genic, which are expected to include variants in regulatory 411 

and repetitive regions as well as in genic regions with unknown homologous genes in other 412 

plants. We excluded SNPs that had > 1 gene mapping to it. 413 

Parallel gene. We assessed the relative contributions of broad- and narrow-sense parallelism 414 

for each gene across populations. We again normalized the data, retaining the first 415 

eigenvector for each gene. For each gene we then performed linear models (ANOVA: gene = 416 

ecotype + pair + ecotype × pair) and we extracted the partial effect sizes (partial h2) for each 417 

term in the model. We again plotted this as a frequency distribution (see above for details). 418 

After assessing these relative contributions, we further explored the detailed patterns of broad 419 

parallelism at the level of the gene according to the outlier analysis above. More specifically, 420 

we considered a gene an outlier if it harbored at least one outlier SNP according to the two 421 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.02.05.936450doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936450
http://creativecommons.org/licenses/by-nc-nd/4.0/


above approaches (i.e., showed high differentiation between ecotypes (approach 1), with 422 

concordant allele frequency changes across replicate pairs (approach 2)). We asked whether 423 

the broad-sense nucleotide-site outliers were located across multiple genes or the same gene. 424 

To assign orthologous genes, we used BLASTx (Altschul et al., 1990) to obtain a RefSeq code 425 

(Pruitt, 2004) for each S. lautus gene. We searched the RefSeq protein database for 426 

Arabidopsis thaliana proteins that match our target genes using an E-value threshold of < 10-427 
6. We used the web-based version of DAVID v6.8 (Huang et al., 2009b; a) to obtain the 428 

predicted functional annotation of each S. lautus gene sequenced in this work. 429 

Enriched biological function. To ask whether the outliers were enriched for any functional 430 

categories, we used DAVID to conduct a gene-enrichment analysis using functional 431 

annotation clustering. Functional annotation clustering groups similar functional terms into 432 

clusters to avoid redundant annotations. We considered a cluster as enriched if at least one 433 

category within the cluster had a P-value < 0.05. This P-value is the EASE score, a modified 434 

Fisher Exact P-value. In addition, we applied more stringent criteria for selecting enriched 435 

clusters (Benjimani-adjusted P < 0.05 and False Discovery Rate < 1). The Arabidopsis 436 

thaliana genome was used as a genetic background.  437 

Narrow-sense genotypic parallelism 438 

Parallel nucleotide site. We asked which nucleotides sites are highly differentiated (i.e., 439 

outliers) in each replicate pair, and whether the same nucleotide sites are outliers across 440 

multiple pairs (i.e., across multiple localities). We first filtered each separate pair for MAF 441 

0.05, retaining between 5,513 and 8,875 SNPs per pair (mean = 7,461 SNPs; SD = 1,038). As 442 

above, we identified outliers for each replicate pair using a combination of FST, CSS, and 443 

BayeScan. Instead of selecting the top 1% of FST and CSS values (which is highly dependent 444 

on the number of sampled SNPs) we chose stringent cut-offs of FST and CSS > 0.95. Within 445 

BayeScan, we considered SNPs with a posterior probability > 0.91 as highly differentiated, 446 

which corresponds to a Bayes Factor > 10. We considered a SNP an outlier if it was detected 447 

in at least two of the approaches. We used custom R scripts to calculate the overlap of 448 

outliers across replicate pairs. To ask whether the outliers shared between pairs were greater 449 

than expected by chance, we used a hypergeometric distribution function, phyper, within R to 450 

evaluate the likelihood of sharing outliers between localities. 451 
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Parallel gene. As above, we considered a gene to be an outlier if it harbored at least one 452 

differentiated SNP, and used DAVID to obtain the functional annotation of each gene. We 453 

again used a hypergeometric distribution to ask whether shared outlier genes between 454 

localities were greater than expected by chance. 455 

Parallel biological function. For each replicate pair, we conducted a gene-enrichment 456 

analysis using functional annotation clustering in DAVID (as described above). For each pair 457 

we selected clusters containing at least one significantly enriched functional term (P-value < 458 

0.05. This P-value is the EASE score, a modified Fisher Exact P-value). We then compared 459 

these enriched clusters across pairs to ask whether any biological functions were repeatedly 460 

enriched across pairs. We used a two-sided dependent-samples sign-test to ask if the number 461 

of enriched pairs per predicted functional category differed from chance. We compared the 462 

distributions of the proportions of shared outlier nucleotide sites, outlier genes and enriched 463 

biological functions across pairs using a two-sided X2-test with continuity correction in R 464 

using the prop.test function. In addition, we applied more stringent criteria for selecting 465 

enriched clusters (Benjimani-adjusted P < 0.05 and FRD < 1), and also compared these 466 

clusters across replicate pairs. 467 

Variation in phenotypic parallelism 468 

We asked whether the variation in phenotypic parallelism within the system (i.e., differences 469 

in divergence (DL) and the contribution of traits (q) between replicate pairs) could be 470 

explained by demographic factors. All analyses were undertaken in R. Specifically, we used 471 

gene flow estimates from James et al., (2020) to ask whether gene flow constrains 472 

divergence, where we predict pairs with higher gene flow to be more phenotypically similar 473 

(linear model: phenotypic length (L) = gene flow; Table S3). As most pairs experience 474 

minimal gene flow and are effectively allopatric, we do not expect gene flow to be a major 475 

constraining force for most population pairs. We also used divergence time estimates from 476 

James et al., (2020) to ask whether older pairs show more phenotypic divergence than 477 

younger pairs as they have experienced more genetic drift over time (linear model: 478 

phenotypic length (L) = divergence time; Table S3). We also reasoned that populations 479 

adapting to more contrasting environments should have greater phenotypic differences (linear 480 

model: phenotypic length (L) = environmental distance; Table S3). We used environmental 481 

distances from previous work in S. lautus (see Roda et al., 2013b). In addition, we asked 482 

whether pairs that were more phenotypically similar (DL and q) shared more outlier 483 
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nucleotide sites, genes, and biological functions using Mantel tests (Mantel, 1967) with 999 484 

permutations. 485 

Results 486 

Relative contributions of broad- and narrow-sense phenotypic parallelism 487 

At the multivariate level of the ecotype (MANOVA: traits = ecotype + pair + ecotype × 488 

pair), the partial effect size of the ecotype term (Wilks partial h2 = 0.86) was larger than both 489 

the pair (Wilks partial h2 = 0.23; Figure S3) and the interaction term (Wilks partial h2 = 0.19; 490 

Figure 2C). At the univariate level of the trait, the ecotype effect size was larger than both the 491 

pair (Figure S3) and interaction term (Figure 2C) for most traits (i.e., more data points above 492 

the dotted line than below, see Table S4 for details). The larger effect sizes for the ecotype 493 

terms suggest that the phenotypic variation within the system is mainly explained by 494 

differences between ecotypes rather than replicate pairs, suggesting that broad-sense 495 

phenotypic differences between ecotypes might predominate over narrow-sense in S. lautus. 496 

Broad-sense phenotypic parallelism 497 

Parallel ecotype. We found striking differences between the mean Dune and Headland 498 

phenotypes for both plant architecture and leaf characteristics (illustrated in Figure 2D). In 499 

multivariate space, Dune and Headland ecotypes clearly clustered into two distinct groups 500 

(Figure 2E; Pillai’s Trace = 0.73, F1, 603 = 175.13, P < 2.2 x 10-16). This pattern held true 501 

when traits were separated into plant architecture (Figure S2A; Pillai’s Trace = 0.63, F1, 603 = 502 

202.42, P < 2.2 x 10-16) and leaf categories (Figure S2B; Pillai’s Trace = 0.61, F1, 603 = 503 

233.15, P < 2.2 x 10-16). Across all traits, K-means clustering analysis correctly assigned 95% 504 

of Dune individuals, and 87% of Headland individuals into the correct cluster, further 505 

suggesting the majority of individuals within an ecotype are more phenotypically similar than 506 

between ecotypes. When traits were split into plant architecture and leaf, these numbers were 507 

slightly reduced. For plant architecture traits alone, 91% of Dunes and 82% of Headlands 508 

were assigned to the correct cluster. For leaf traits, 93% of Dunes and 78% of Headlands 509 

were correctly assigned. 510 

We performed a linear discriminant analysis (LDA) on all traits to ask which linear 511 

combination of traits best explains the phenotypic differences between Dune and Headland 512 

ecotypes. The LDA was strongly loaded by leaf area and secondary branch angle, followed 513 
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by leaf dissection, leaf circularity, and widest width of the plant (Figure 3C). All traits were 514 

loaded in the same direction, except for widest width, leaf dissection, and leaf circularity. The 515 

LDA suggests that divergence between ecotypes is multivariate and has occurred on the 516 

majority of measured traits, and that a single trait does not dominate the phenotypic 517 

differences between ecotypes. 518 

Parallel trait. We first used vote-counting to quantify whether the traits in the Dune and 519 

Headland populations of each pair have evolved in the same direction. For all traits, at least 520 

six of the eight pairs evolved in parallel (Figure 3A). Four of the nine traits had all eight pairs 521 

evolving in the same direction (S-statistic = 8, P = 0.0078), and three traits had seven pairs 522 

evolving in the same direction (S-statistic = 7, P = 0.035). Trait-by-trait linear models 523 

revealed a significant main effect of ecotype for each trait (Table S4), suggesting there are 524 

differences between Dune and Headland populations for all traits. The proportion of 525 

phenotypic variance explained by the ecotype term (R2) for linear models with population 526 

means revealed six strongly parallel traits (R2 ³ 0.50), one moderately parallel trait (0.50 > R2 527 

³ 0.33), and two weakly parallel traits (R2 < 0.33; Figure 3B). Five traits (vegetative height, 528 

main stem diameter, secondary branch angle, leaf area and leaf elongation) were consistently 529 

identified as parallel across each of the three approaches, three traits (widest width, main 530 

stem angle and leaf circularity) were parallel using two of the approaches, and one trait (leaf 531 

dissection) was parallel using only one approach (see Table S5 for more details). 532 

Overall, we observed strong broad-sense phenotypic parallelism within S. lautus at the level 533 

of both the ecotype and trait. To address whether each replicate pair is phenotypically similar, 534 

we next asked whether the phenotypic differences between Dune and Headlands were 535 

consistent across replicate pairs. 536 

Narrow-sense phenotypic parallelism 537 

Parallel pair. We used Phenotypic Change Vector Analysis (PCVA) to ask how parallel 538 

each replicate pair is in terms of both the magnitude of divergence, and the contribution of 539 

traits to that divergence. Within multivariate phenotypic space, there were different levels of 540 

divergence (DL) between replicate pairs (Figures 4A, 4B). Considering all traits, the mean DL 541 

(±SE) between pairs was 1.7 ± 0.15. Out of the 28 pairwise comparisons, we only observed 542 

nine statistically parallel comparisons (i.e., DL » 0; 32.1% of pairwise comparisons; Table 543 

S6). Therefore, most population pairs have different amounts of divergence between the 544 
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Dune and Headland populations. When we separately analyzed traits as two categories (plant 545 

architecture and leaf shape), we captured a signal of parallel divergence across a greater 546 

number of replicate pairs (Figures S4, S5). We observed ten statistically parallel comparisons 547 

for plant architecture traits (mean DL 1.0 ± 0.12; Table S7), and thirteen statistically parallel 548 

comparisons for leaf traits (mean DL 0.93 ± 0.14; Table S8). 549 

The contribution of traits to divergence (q) was quite variable across pairs (Figures 4A, 4C). 550 

Out of the 28 pairwise comparisons, only one angle was parallel, i.e., q » 0° (3.6% of 551 

pairwise comparisons; Table S9), indicating that a different contribution of traits is involved 552 

in the divergence between most pairs. The mean angle (±SE) between population pairs was 553 

39.5 ± 2.1°; all angles were acute, with a maximum of 62.8°. When traits were split into plant 554 

architecture and leaf categories, we again captured a stronger signal of phenotypic parallelism 555 

for both categories. We observed nine statistically parallel angles for plant architecture traits 556 

(mean angle 29.8 ± 3.0°; Table S10) and four statistically parallel for leaf traits (42.6 ± 3.4°; 557 

Table S11). 558 

Overall, narrow-sense phenotypic parallelism (i.e., the similarities between replicate pairs) 559 

was weak within the system. Most pairs had different magnitudes of divergence (DL), with 560 

different contribution of traits to divergence (q). 561 

Broad-sense genotypic parallelism 562 

Parallel nucleotide site. The relative contributions of broad- and narrow-sense parallelism 563 

revealed that very few sampled SNPs explained more variance between ecotypes than 564 

between pairs (Figures 5A, 5C, S6A, S6C). Specifically, only 6.3% of sampled SNPs 565 

contained a partial effect size of the ecotype term that was larger than the interaction term 566 

(i.e., those above the dashed line in Figure 5A which are also > 0 in Figure 5C). This 567 

dramatically decreases to 0.68% when we only consider SNPs with partial effect sizes > 0.1. 568 

This indicates that parallel evolution at the level of the nucleotide site within the system is 569 

largely predominated by differences between replicate pairs, suggesting that adaptation in 570 

each pair is occurring via different SNPs. 571 

We identified 93 sites that were highly differentiated between Dune and Headland 572 

populations (~1% of sequenced SNPs). These SNPs were considered broad-sense outliers 573 

comparing all Dune vs all Headland populations (approach 1). Fifty-four of the 93 SNPs fall 574 
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within genic regions, whereas 39 are in non-genic regions. However, we must note our GBS 575 

data is biased towards genic regions (due to the enzymes preferentially cutting within gene-576 

rich regions). When considering outliers detected within each replicate pair that contained 577 

concordant allele frequency differences across pairs (approach 2), we detected 15 parallel 578 

nucleotide sites (0.16% of SNPs; Figure S7). These 15 SNPs had concordant allele frequency 579 

differences in either all nine (S-statistic = 9, P = 0.004), or eight (S-statistic = 8, P = 0.04) 580 

replicate pairs. Nine of these SNPs fall within genic regions, whereas six are in non-genic 581 

regions. Five SNPs were detected as outliers in both approaches (three genic, two non-genic; 582 

Figure 6A; red dots in Figure 5A). These five nucleotide sites are considered the best 583 

candidates for broad-sense parallelism as they show both high differentiation between 584 

ecotypes, with concordant allele frequency changes in each replicate pair. The average 585 

difference in allele frequency between Dune and Headlands for the three genic SNPs was 586 

0.55 (SD = 0.096), whereas the average for the two non-genic SNPs was 0.57 (SD = 0.107). 587 

See Figure S8 for a summary of broad-sense phenotypic parallelism at the level of the 588 

nucleotide site. 589 

Parallel gene. The relative contributions of broad- and narrow-sense parallelism at the level 590 

of the gene revealed that very few genes explained more variance between ecotypes than 591 

between pairs (Figures 5B, 5D, S6B, S6D). More specifically, only 6.3% of SNPs contained 592 

a partial effect size of the ecotype term that was larger than the interaction term (i.e., those 593 

above the dashed line in Figure 5A which are > 0 in Figure 5C). Although this number 594 

dramatically decreases to 1.4% when we only consider genes which have a partial effect sizes 595 

> 0.1. This indicates that differences between replicate pairs largely predominates parallel 596 

evolution at the level of the gene within the system, suggesting that adaptation in each pair is 597 

likely occurring at different genes. 598 

Of the five candidate outlier SNPs identified above using the outlier approach (i.e., those 599 

showing high differentiation between ecotypes in approach 1 and also concordant allele 600 

frequency chances across replicate pairs in approach 2), the three genic SNPs fall within three 601 

separate genes, two of which have homologs within Arabidopsis (Appendix S1; red dots in 602 

Figure 5B). These two genes encode a galactose oxidase/kelch repeat superfamily protein 603 

(AT5G04420; Figure 6A first panel) and a basic salivary proline-rich-like protein 604 

(AT5G14540; Figure 6A last panel). The proteins are both located in the cytosol and are both 605 

widely expressed in structures including the leaves, stem, reproductive organs, roots, and 606 
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seeds (Klepikova et al., 2016). Considering approach 1 and 2 separately, the 54 outlier genic 607 

SNPs detected in approach 1 fall in 49 separate genes, of which 48 have homologs within 608 

Arabidopsis. The majority of these genes have functions in the nucleus, cytoplasm, plasma 609 

membrane, mitochondria and chloroplast, and are involved in processes including ion 610 

transport, transcription, response to heat, response to water deprivation, DNA repair and 611 

embryo development (see Appendix S1 for details of each gene). For approach 2, the nine 612 

outlier genic SNPs from approach 2 fall in nine separate genes, of which seven have 613 

homologs within Arabidopsis. These genes have functions in the nucleus, cytoplasm, plasma 614 

membrane and mitochondria, and are involved in processes including ion transport, 615 

aminoacylation, embryo development and DNA repair (see Appendix S1 for details of each 616 

gene). See Figure S8 for a summary of broad-sense phenotypic parallelism at the level of the 617 

gene. 618 

Parallel biological function. Because we only sampled two candidate broad-sense outlier 619 

genes that had predicted proteins, we did not perform an enrichment analysis on them. 620 

However, we performed enrichment analysis on 1) the 54 genes from approach 1 (of which 621 

48 contained Arabidopsis protein homologs), and 2) the nine genes from approach 2 (of 622 

which seven contained Arabidopsis protein homologs). For approach one, the category of 623 

helicases (UniProtKB keywords) was significantly enriched (P = 0.0344; P-value is the 624 

EASE score, a modified Fisher Exact P-value). When using the more stringent approach by 625 

considering clusters to be enriched if Benjimani-adjusted P < 0.05 and FRD < 1, there were 626 

no enriched categories. The functions of the genes within this helicase category are involved 627 

in DNA replication, recombination and repair, and often associated with tolerance to drought 628 

and salinity in plants (Owttrim, 2006). There were no significantly enriched functions with 629 

approach 2.  630 

Narrow-sense genotypic parallelism 631 

Parallel nucleotide site. We detected highly differentiated nucleotide sites (i.e., outliers) 632 

between the Dune and Headland of each locality (i.e., for each replicate pair), and compared 633 

how many outlier SNPs were common between all pairwise comparisons of replicate pairs. 634 

On average, 157 outlier SNPs (SD = 74.5) were shared between two replicate pairs, and for 635 

each pairwise comparison the shared SNPs were greater than expected by chance (Table 636 

S12), This suggests some degree of narrow-sense parallelism at the level of the nucleotide 637 

site. We detected six nucleotide sites that were outliers in seven pairs (Figure 6B), however, 638 
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there were no outlier SNPs common to all nine pairs, suggesting that even though there are 639 

common outliers between individual pairs, this does not translate to common outliers across 640 

the system as a whole. This is because within narrow-sense genotypic parallelism, a parallel 641 

nucleotide site across all pairs has to be separately detected as an outlier in each replicate 642 

pair. Conversely, a broad-sense outlier may reflect strong ecotypic differentiation even if 643 

some nucleotide sites are not statistical outliers in every replicate pair. 644 

Parallel gene. We detected highly differentiated genes between the Dune and Headland of 645 

each locality (i.e., for each replicate pair), and compared how many of these outlier genes 646 

were common between all pairwise comparisons of replicate pairs. On average, 124 outlier 647 

genes (SD = 54.6) were shared between two replicate pairs. The shared outlier genes between 648 

all pairwise comparisons were greater than expected by chance, except for one comparison 649 

(D14-H15 vs D32-H12; Table S13). Thirty-nine genes were outliers in at least eight or nine 650 

replicate pairs (Figure 6B), of which 36 contained homologs in Arabidopsis. These genes 651 

have functions in the nucleus, cytoplasm, plasma membrane, chloroplast, vacuole and 652 

endoplasmic reticulum, and are involved in processes including ion transport, transcription, 653 

seed development, response to auxin, response to heat, response to salt stress, embryo 654 

development and cell growth (see Appendix S1 for details on each gene). 655 

Parallel biological function. For each replicate pair we conducted a gene-enrichment 656 

analysis using outlier genes to ask whether any biological functions were enriched and 657 

whether the same functions were repeatedly enriched across replicate pairs. Across all pairs 658 

there were 17 enriched functions (Figure 6C; Table S14). No function was repeatedly 659 

enriched in all nine replicate pairs, although two functions (chloroplast and nucleotide-660 

binding/ATP-binding; UniProtKB keywords) were enriched across eight replicate pairs, this 661 

being greater than expected by chance (S-statistic = 8, P = 0.04). 662 

Within the chloroplast category, the majority of outlier genes across pairs have functions in 663 

the chloroplast, cytosol, mitochondria, nucleus, vacuole and the cell wall, and are involved in 664 

processes including oxidation reduction, response to light, translation, proteolysis, protein 665 

phosphorylation and protein folding. See Appendix S2 for details on each gene within the 666 

chloroplast category and the number of replicate pairs the genes were detected as an outlier. 667 

This chloroplast category also contains three genes that encode for ABCB proteins 668 

(ABCB19, ABCB20, ABCB21, which are outliers in at least four replicate population pairs). 669 

ABCBs function in transporting the hormone auxin, which regulates plant growth and 670 
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development (Cho & Cho, 2013). Auxin plays a key role in a plants ability to respond to 671 

gravity (Strohm et al., 2012), and seems to be a largely responsible for the overall prostrate 672 

and erect phenotypes within the system (Wilkinson et al., 2020). Within the nucleotide-673 

binding/ATP-binding category, the majority of outlier genes across pairs have functions in the 674 

chloroplast, nucleus, plasma membrane, cytosol, mitochondria, cytoplasm, and are involved 675 

in processes including protein phosphorylation, protein folding, transcription, 676 

aminoacylation, ion transport, and response to stress. See Appendix S3 for details on each 677 

gene within the nucleotide/ATP-binding category and the number of replicate pairs the genes 678 

were detected as an outlier. 679 

Across the nine replicate pairs, the distribution of the proportion of shared outlier nucleotide 680 

sites was significantly different to the outlier genes (X2 = 279.65, df = 8, P < 2.2x10-16), and 681 

biological functions (X2 = 361.95, df = 8, P < 2.2x10-16). The distributions of the genes and 682 

biological functions were not significantly different across the nine replicate pairs (X2=14.52, 683 

df=8, P = 0.069). When using the more stringent approach by considering clusters to be 684 

enriched if Benjimani-adjusted P < 0.05 and the False Discovery Rate < 1, the two functional 685 

categories that were enriched across the most number of replicate pairs were still the 686 

chloroplast category and the nucleotide-binding/ATP-binding category (Table S15), 687 

suggesting these results are quite robust. 688 

Variation in phenotypic parallelism 689 

Gene flow did not constrain phenotypic divergence, as there was no relationship between 690 

levels of gene flow and the lengths of phenotypic vectors (L) between ecotypes within a 691 

locality for the Dune to Headland gene flow (F1,6 = 0.007, P = 0.934, R2 = 0.001), Headland 692 

to Dune gene flow (F1,6 = 1.17, P = 0.321, R2 = 0.163), or absolute gene flow (F1,6 = 0.061, P 693 

= 0.463, R2 = 0.092). There was also no relationship between divergence time between 694 

ecotypes and L within a locality (F1,6 = 0.321, P = 0.592, R2 = 0.051). Environmental distance 695 

did not relate to how phenotypically divergent (q) a population pair was (F1,3 = 0.046, P = 696 

0.843, R2 = 0.015), although we treat these data with caution due to low sample size of the 697 

environmental data (as environmental data were only available for five localities). Population 698 

pairs that were more phenotypically similar (i.e., smaller DL) did not share more outlier 699 

SNPs, genes or biological functions (Mantel test SNPs: r = -0.215, P = 0.894; Mantel test 700 

genes: r = -0.164, P = 0.835, Mantel test biological functions: r = -0.179, P = 0.837). 701 

Population pairs with similar contribution of traits to divergence (i.e., smaller q) also did not 702 
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share more outlier SNPs, genes, or biological functions (Mantel test SNPs: r = -0.493, P = 703 

0.989; Mantel test genes: r = -0.347, P = 0.865; Mantel test biological functions: r = -0.337, P 704 

= 0.93). 705 

Discussion 706 

We have developed an integrative framework to measure parallel evolution at the phenotypic 707 

and genotypic levels. Our approach aims to quantity the overall variation between ecotypes 708 

(broad-sense parallelism) as well as the variation between replicate population pairs (narrow-709 

sense parallelism). Applying our framework to Senecio lautus, we have demonstrated that the 710 

independent adaptation of populations to dune and headland environments has resulted in the 711 

repeated evolution of similar phenotypes. In each replicate population, these ecotypes have 712 

mainly diverged via different mutational changes in different genes, though some of these 713 

belong to the same predicted biological function. These results add further adding credence to 714 

the notion of independent ecotypic differentiation along the Australian coast. In particular, 715 

they are consistent with 1) the demographic history of the system detailed in James et al., 716 

(2020), which showed that the evolution of each population is highly independent due to 717 

strong isolation by distance, and 2) the observation of strong local adaptation measured in 718 

multiple reciprocal transplant experiments in the system (Melo et al., 2014; Richards et al., 719 

2016; Richards & Ortiz-Barrientos, 2016; Walter et al., 2016, 2018b; Wilkinson et al., 2020). 720 

Below we discuss the framework we proposed to understand parallel evolution in light of S. 721 

lautus and consider how the genetics and ecology of these coastal ecotypes impact the 722 

likelihood of phenotypic and genotypic parallelism. We finish by discussing when our 723 

framework should be used, address its potential caveats, and how it could contribute to future 724 

studies of parallel evolution in nature. 725 

Phenotypic parallelism 726 

In S. lautus, the phenotypic differences between ecotypes were greater than the variation 727 

arising from replicate pairs in both multivariate and univariate space. For instance, the partial 728 

effect size of the ecotype was 86% for multivariate phenotypic differences, whereas the 729 

partial effect size of replicate pairs was only 19%. This was also true for most traits when 730 

considered alone, where ecotypic differences explained most variation in vegetative height, 731 

the angle of secondary branches, and the size of leaves. These traits largely capture the 732 

overall growth habits of the two ecotypes: prostrate and erect. Partitioning variance between 733 
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ecotypes and replicate pairs can indicate the relative contributions of broad- versus narrow-734 

sense parallelism and in this case, it reveals broad-sense phenotypic parallelism is likely very 735 

strong in the S. lautus system. To see this in greater detail, we now discuss results from our 736 

other analyses of broad-sense parallelism in S. lautus and compare them to other systems of 737 

parallel evolution. 738 

Broad-sense phenotypic parallelism (i.e., the net contribution of all independent replicate 739 

populations within each ecotype to the overall phenotypic differences between ecotypes) was 740 

strong in the coastal Dune and Headland ecotypes. At the level of the ecotype we observed 741 

striking phenotypic differences between ecotypes in multivariate trait space, with little 742 

overlap between ecotypes. This strong broad-sense phenotypic parallelism is seen in other 743 

empirical parallel evolution systems such as lake-stream stickleback on Haida Gwaii in 744 

Canada (Deagle et al., 2012), and dwarf-normal lake whitefish (Laporte et al., 2015), where 745 

there is a clear phenotypic separation of ecotypes in the first two dimensions of multivariate 746 

space. In contrast, some systems of parallel evolution have lower broad-sense phenotypic 747 

parallelism, where there is overlap between ecotypes in phenotypic space. For instance, 748 

benthivorous-planktivorous Arctic charr (Jacobs et al., 2020), benthic-limnetic cichlid fishes 749 

(Elmer et al., 2014) and lake-stream stickleback on Vancouver Island in Canada (Stuart et al., 750 

2017) do not have each ecotype occupying a separate region in the first two dimensions of 751 

multivariate space, thus likely having lower broad-sense phenotypic parallelism. (Note that 752 

some overlap in multivariate variance can still lead to significant broad-sense parallelism.) 753 

Broad-sense phenotypic parallelism at the level of the trait was high in S. lautus. This was 754 

true for all measured traits, except for leaf dissections, which seem to vary more between 755 

replicate pairs than between ecotypes. This pattern is rather different to other systems where 756 

the contribution of traits to ecotypic differences has been calculated. For instance in 757 

stickleback ecotypes, Stuart et al., (2017) found that the variation in most traits is explained 758 

mainly by differences between replicate pairs rather than between ecotypes, suggesting little 759 

parallelism at the level of individual traits. This discrepancy might disappear if more traits are 760 

measured in S. lautus, but the phenotypic dimensionality of the system does not seem to be 761 

very high: of the 14 traits we measured, we discarded five highly correlated traits. In other 762 

studies of S. lautus where more traits have been measured (Walter et al., 2018a), strong 763 

genetic correlations exist amongst a variety of vegetative traits suggesting strong 764 

interdependence between morphological modules such as leaf and plant architecture. 765 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.02.05.936450doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.936450
http://creativecommons.org/licenses/by-nc-nd/4.0/


In contrast, narrow-sense phenotypic parallelism (i.e., the similarities between replicate 766 

population pairs, quantified with PCVA) in S. lautus was weak, with most pairs having 767 

different magnitudes of divergence (32.1% of pairwise comparisons were parallel, i.e., DL » 768 

0) and different contribution of traits to divergence (3.6% of pairwise comparisons were 769 

parallel, i.e., q » 0°). Although the PCVA approach is relatively new within studies of 770 

parallel evolution, a recent study in 16 lake-stream stickleback pairs discovered even less 771 

narrow-sense parallelism than S. lautus, with 27.5% of pairwise comparisons having parallel 772 

magnitudes of divergence, and only 0.83% of pairwise comparisons with parallel contribution 773 

of traits to divergence (Stuart et al., 2017). As more systems adopt the PCVA approach we 774 

will be able to directly compare the amount of parallelism between replicate populations 775 

across different study systems, although the creation of null distributions for the process 776 

remains unexplored. 777 

One interpretation for the strong broad-sense and weaker narrow-sense phenotypic 778 

parallelism in S. lautus comes when considering the nature of the phenotypic and fitness 779 

landscapes. Our current work has revealed that the Dunes and Headlands are quite 780 

phenotypically distinct, yet there are still phenotypic differences between the populations 781 

within each ecotype, which seem to be more pronounced in the Headlands (the phenotypic 782 

centroids of Dune populations cluster, but Headland populations are somewhat more 783 

scattered in multivariate space). Furthermore, previous reciprocal transplant experiments in S. 784 

lautus have demonstrated that ecotypes are locally adapted and exhibit a strong reduction in 785 

fitness when grown in foreign habitats (Melo et al., 2014; Richards et al., 2016; Richards & 786 

Ortiz-Barrientos, 2016; Walter et al., 2016, 2018b; Wilkinson et al., 2020). This suggests that 787 

Dune and Headland ecotypes reside on quite distinct regions of the fitness landscape. 788 

Previous work has also shown that Dune individuals are equally fit across other non-local 789 

sand dune habitats. This suggests that the fitness landscape for the Dunes might share a 790 

common optimum. On the other hand, Headland individuals have reduced fitness in non-local 791 

headland habitats (Walter et al., 2016), which implies some environmental heterogeneity 792 

within rock headlands (Roda et al., 2013b). Therefore, the fitness landscape for Headlands 793 

might be either more broad and rugged, or with multiple optima, with each Headland 794 

population residing on a different local optimum. Overall, these differences in phenotypic 795 

variance within each ecotype some may explain why narrow-sense phenotypic parallelism is 796 

low in S. lautus. 797 
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Finally, the nature of parallelism in a system can depend on the nature of selection driving 798 

adaptation and on whether selection drives the evolution of one or multiple traits. For 799 

instance, ecotypic description of systems, such as sticklebacks and cichlids, is often binary 800 

and relies on correlating a large environmental category to a general perception of the 801 

phenotypic differences between populations. In S. lautus, Dune and Headland ecotypes are 802 

qualitatively different in their growth habit, where Dune individuals grow erect and tall, and 803 

Headland individuals grow prostrate forming mats over the ground. However, many traits 804 

seem to contribute simultaneously to the qualitative descriptions of prostrate and erect 805 

(Walter et al., 2018a), suggesting that parallel evolution relies on coordinated trait evolution 806 

for size and for shape. In sticklebacks, on the other hand, only a few traits seem to be highly 807 

parallel across replicate pairs (Stuart et al., 2017). One simple explanation for these 808 

discrepancies is that parallel evolution may rely mostly on the origin of either complex or 809 

simple adaptations, and that it may involve either few genes of large effect (e.g., the Eda 810 

gene in sticklebacks; Colosimo et al., 2005) or many of small effect, which is likely common 811 

during polygenic adaptation (Yeaman, 2015). Our genotypic results help shed some light on 812 

these different explanations for patterns of phenotypic parallelism in S. lautus. 813 

Genotypic parallelism 814 

Within S. lautus, the relative contributions of broad- and narrow-sense genotypic parallelism 815 

revealed that very few nucleotide sites and genes explained more variance between ecotypes 816 

than between pairs. This suggests there is little broad-sense genotypic parallelism within the 817 

system, where divergence is explained by differences between replicate pairs at the level of 818 

the nucleotide site and gene. This is also evident when detecting outliers between the 819 

ecotypes (i.e., the genetic differences between all Dune vs all Headland individuals), where 820 

very few nucleotide sites and genes distinguished the ecotypes. Narrow-sense genotypic 821 

parallelism within the system (i.e., the genetic similarities between Dune-Headland replicate 822 

pairs) was strongest at the level of the biological function, although there was some sharing 823 

of common outlier nucleotide sites and genes across replicate population pairs. These results 824 

suggest that adaptation in S. lautus could be rather flexible and redundant at lower levels of 825 

organization (the nucleotide site and gene), and only parallel at the level of the biological 826 

function. Parallelism at the biological function level might be common within nature (e.g., 827 

Smith & Rausher, 2011; Kowalko et al., 2013; Roda et al., 2013b; Laporte et al., 2015; 828 

Perreault-Payette et al., 2017; Cassin‐Sackett et al., 2019) given that there are fewer 829 
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biological functions than there are genes or nucleotide sites (Tenaillon et al., 2012; Tiffin & 830 

Ross-Ibarra, 2014). In this regard, our study is rather conservative as we have only defined 831 

narrow-sense parallelism in function when the function was separately enriched in at least all 832 

nine, or eight population pairs. Even in those few enriched functions, the set of sequenced 833 

genes that were divergent in each population pair were often different (Tables S16, S17), 834 

further suggesting that adaptation in S. lautus might be quite robust and is possibly 835 

underpinned by polygenic adaptation and functional redundancy of alleles at different loci 836 

(Barghi et al., 2020). 837 

Recent studies in this system have demonstrated that hormone signaling, specifically the 838 

auxin pathway, is divergent between Dune and Headland populations (Roda et al., 2013b; 839 

Wilkinson et al., 2020). This indicates that integrated and modular phenotypes might be key 840 

to the patterns of parallel evolution we have observed at the genotypic level in this system. 841 

We therefore expected to find highly differentiated auxin-related genes within our current 842 

study. Consistent with this prediction, we detected divergent genes involved in the auxin 843 

pathway that are differentiated across multiple population pairs, including GH3.1 (Staswick 844 

et al., 2005), NPH4 (Harper et al., 2000) and genes from the ABCB family (Cho & Cho, 845 

2013), see Appendix S4 for more details. This gives further evidence that auxin may play a 846 

key role in creating the contrasting prostrate and erect phenotypes in S. lautus. Future studies 847 

on the molecular basis of adaptation should focus on the concomitant contribution of many 848 

genes to phenotypic variation and to their shared cellular and physiological roles, as it is 849 

likely that variation in regulatory networks might underlie a large fraction of the adaptive 850 

space in organisms (Boyle et al., 2017; VanWallendael et al., 2019). 851 

The demographic history of species can also alter the patterns of genotypic parallelism 852 

(Conte et al., 2012; Ord & Summers, 2015). The most trivial reason is the contribution of 853 

drift to diversity and divergence, particularly when populations are sufficiently small. In such 854 

scenarios, not surprisingly, many outlier loci can stochastically increase in frequency in each 855 

population pair, thus reducing levels of both broad- and narrow-sense genotypic parallelism. 856 

This is one argument for grouping outliers through their cellular and physiological function, 857 

as drift will be less likely to create functional similarities across population pairs. Future 858 

studies of parallelism should not only identify outlier loci that are unlikely to have drifted to 859 

fixation, but also ask if they have functional relationships amongst them. Although more 860 

challenging, identifying loci with concordant patterns of divergence, even if they are not 861 
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outliers per se, can also reveal sets of genes that contribute to consistent patterns of 862 

divergence across populations and that are thus likely to be responsible for polygenic 863 

signatures of adaptation (Berg & Coop, 2014; Tiffin & Ross-Ibarra, 2014; Barghi et al., 864 

2020). 865 

Broad- and narrow-sense parallel evolution framework 866 

Within the literature, the debate surrounding the term parallel evolution manifests because 867 

parallelism can arise at different scales of phenotypic and genotypic divergence, as well as 868 

different genetic levels of biological organization. Here, our framework proposes to 869 

categorize parallel evolution into the broad- and narrow-sense scales (at both the phenotypic 870 

and genotypic levels) to help quantify both the overall patterns between ecotypes, as well as 871 

the similarities of each replicate pair. We suggest that researchers need to be explicit when 872 

referring to either phenotypic or genotypic patterns of parallelism, whether these patterns 873 

exist across the system as a whole, or only between particular replicate pairs, and at what 874 

level of biological organization the genotypic parallelism occurs (i.e., nucleotide site, gene or 875 

biological function). 876 

A ‘perfectly’ parallel system at the level of the phenotype would contain distant phenotypic 877 

differences between ecotypes (i.e., strong broad-sense phenotypic parallelism), with replicate 878 

pairs that are effectively identical in their phenotypic differences (i.e., strong narrow-sense 879 

phenotypic parallelism). Such a system would imply that evolution is extremely repeatable 880 

and predicable at the level of the phenotype (Blount et al., 2018), where every instance of 881 

repeated evolution has resulted in the same phenotypic adaptations. However, this may be 882 

highly unlikely within natural systems due to a range of factors such as environmental 883 

heterogeneity within each habitat, the interplay between the genotype, phenotype and fitness 884 

landscapes, genetic constraints, and stochastic forces such as genetic drift (Lenormand et al., 885 

2009, 2016; Rosenblum et al., 2014; Fraïsse & Welch, 2019). 886 

A ‘perfectly’ parallel system at the level of the genotype would show the same nucleotide 887 

sites involved in adaptation across replicate pairs, with evidence that the mutation(s) have 888 

undergone repeated and independent selection in each population. Again, this may be highly 889 

unlikely within natural systems, especially in systems with phenotypic redundancy (with 890 

many phenotypic solutions to the same problem), and when adaptive traits are polygenic 891 

(Yeaman, 2015). Also, the likelihood of genetic parallelism at the nucleotide site is highly 892 
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dependent on the availability of adaptive mutations (Chevin et al., 2010; Ralph & Coop, 893 

2010; Stoltzfus & McCandlish, 2017; Bailey et al., 2018). Within genotypic parallelism, the 894 

nested levels of biological organization imply that parallelism at the lowest level (i.e., the 895 

nucleotide site) will translate to parallelism at the gene and biological function levels. We 896 

therefore must keep in mind that when parallelism occurs at a given level (i.e., the biological 897 

function), it will not necessarily occur at levels below (i.e., the gene and nucleotide site). 898 

The effects of sampling on parallelism 899 

The ability to detect genotypic parallelism is impacted by sampling. Obvious pitfalls exist for 900 

methods that do not sample the entire genome. For instance, reduced representation libraries 901 

sparsely sample the genome, and tend to be biased towards non-genic regions (Lowry et al., 902 

2017). Although we by-pass this problem to some extent as our enzyme cuts 903 

disproportionally gene rich regions of the genome (~60-70% of RAD loci map to the 904 

transcriptome of S. lautus), sequencing of reduced representation libraries will likely fail to 905 

sample many loci involved in adaptation (Tiffin & Ross-Ibarra, 2014; Lowry et al., 2017). 906 

Even sequencing of whole genomes might still fail to sample adaptive loci due to the lack of 907 

sequencing of important regions. In addition, the effects of recombination (Booker et al., 908 

2020), background selection, linkage and demography affects the distribution of FST 909 

throughout the genome and impacts our ability to detect regions involved in adaptation (see 910 

Hoban et al., 2016 for a review). 911 

Additionally, common FST -based approaches, including those used within this study can fail 912 

to detect other structural aspects of the genome that can be involved in adaptation 913 

(Wellenreuther et al., 2019), including copy number variation (Schrider et al., 2016; Nelson 914 

et al., 2019), local recombination rate variation (Reeve et al., 2016; Ortiz-Barrientos & 915 

James, 2017; Samuk et al., 2020), inversions (Kirkpatrick & Barton, 2006; Lowry & Willis, 916 

2010; Faria et al., 2019), and transposons (González & Petrov, 2009; Schrader & Schmitz, 917 

2019). Furthermore, the alleles contributing to adaptation are also difficult to detect if 918 

adaptation has proceeded by many alleles of small effect, which may be quite common in 919 

highly polygenic traits (Yeaman, 2015). In such systems, divergent loci are difficult to detect 920 

as they contain low FST, which further makes detecting genetic parallelism highly unlikely in 921 

these systems. Finally, traditional approaches that sample SNPs across the genome will fail to 922 

detect variation in gene expression levels, which may also be involved in adaptation during 923 

parallel evolution (e.g., Rivas et al., 2018; Verta & Jones, 2019). 924 
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The quantification of phenotypes may also experience sampling bias. We may be 925 

unknowingly biased towards measuring traits that are divergent between ecotypes, rather than 926 

the overall phenotype of an organism. We might also overlook parallelism in traits we did not 927 

measure, such as adaptive phenotypes like flowering time in plants (Blackman et al., 2011; 928 

Christie & Strauss, 2019), or disregard traits that would be difficult to measure (such as the 929 

root networks of plants), or physiological responses to a stimulus (such as tropisms in plants). 930 

Although these traits might be highly correlated to other measured traits, especially for highly 931 

modular phenotypes (Murren, 2012), this needs to be first demonstrated experimentally 932 

before deciding which traits to measure and which traits to disregard. We must therefore be 933 

aware that the likelihood of detecting parallelism is highly dependent on the type and number 934 

of traits measured in a system (Stayton, 2008), suggesting that further work needs to enrich 935 

current theories of multi-trait evolution so we can develop better null hypotheses for parallel 936 

evolution while accounting for correlations between traits, including those that are highly 937 

pleiotropic (Yeaman, 2015; De Lisle & Bolnick, 2020). 938 

The geometry and statistics of parallel evolution 939 

When quantifying narrow-sense phenotypic parallelism with vectors, the interpretation of 940 

phenotypic change in lengths (DL) and angles (q) between replicate population pairs should 941 

be treated with caution. This is due to how phenotypic similarities manifest both within each 942 

replicate pair and between ecotypes. Consider two replicate pairs where the populations 943 

within each pair are more phenotypically similar than the populations belonging to the same 944 

ecotype (i.e., they had different common ancestors; Bolnick et al., 2018). However, due to 945 

their phenotypic configuration in multivariate space, we may still measure the same change 946 

in length (DL » 0) and angle (q » 0°) between pairs. This is apparent in the work by Elmer et 947 

al., (2014), where they showed strong ecological parallelism in two replicate limnetic-benthic 948 

cichlid replicate pairs, despite the phenotypic differences being larger between pairs than 949 

between ecotypes within a pair. This highlights that systems with weak broad-sense 950 

phenotypic parallelism but strong narrow-sense, might be describing a type of parallel 951 

evolution where replicate populations have adapted to similar environmental challenges via 952 

different phenotypic changes but through functionally equivalent evolution. In our work we 953 

have found a striking case of strong phenotypic differences between Dune and Headland S. 954 

lautus ecotypes despite variable levels of narrow-sense parallelism. Further investigation of 955 
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other biological axes of organization will further complement our current view of this system, 956 

such as the contributions of physiology and network evolution to adaptation and divergence. 957 

Comparing levels of parallel evolution across systems 958 

To advance the field of parallel evolution, it is necessary to undertake statistical approaches 959 

that allow us to compare levels of parallelism across systems on a common scale. It would 960 

also be useful to have key criteria to define the amount of parallelism in a system. Rather 961 

than classifying evolution as ‘parallel’ or ‘non-parallel,’ we should strive to place each 962 

system on a continuum of parallelism, as suggested by the recent work by Bolnick et al., 963 

(2018) which discusses the (non)-parallel continuum. Our framework attempts to clarify the 964 

continuum of parallel evolution into broad- and narrow-sense scales at both the genotypic and 965 

phenotypic levels, thus paving the way for finding common ground in conceptualizing and 966 

measuring parallel evolution across systems. 967 

One potential way forward to compare between systems is to use variance partitioning 968 

methods (such as partial effect sizes; partial h2) to gain an overall understanding of the 969 

relative contributions of broad- and narrow-sense parallelism. This can be undertaken at the 970 

multivariate and univariate levels of the phenotype as well as the level of the SNP and gene 971 

for the genotype. We can then compare the distribution of effect sizes at these different levels 972 

across study systems. Systems that have more broad-sense parallelism will show a larger 973 

proportion of partial effect sizes (either at the phenotypic or genotypic level) where the 974 

variance is explained by differences between the ecotypes rather than replicate pairs. 975 

Researchers may also benefit from approaches such as the K-means clustering analysis, 976 

where we can directly compare the percentage of individuals correctly assigned to each 977 

ecotype (also see the work on exchangeability by Hendry et al., 2013). For instance, for a 978 

system with high broad-sense phenotypic parallelism at the level of the ecotype, we would be 979 

able to easily predict which ecotype all individuals belong, based on their phenotypic traits. 980 

Recent work by De Lisle & Bolnick (2020) advocates the use of theory from quantitative 981 

genetics to quantify the direction of evolutionary change in multivariate space across systems 982 

of parallel evolution. It has some advantages over the PCVA approach as rather than 983 

interpreting individual vectors and angles, it uses the full matrix of correlations between 984 

populations and asks which dimensions of multivariate space explain a significant amount of 985 

variance. One can then extract the loadings from these dimensions to quantify the 986 
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combination of traits that contribute to the divergence between populations. Parallelism can 987 

be assessed by asking whether the loadings are in the same direction across replicate 988 

populations. Similar quantitative genetics approaches (McGuigan, 2006) have been used in 989 

multiple systems to quantify phenotypic and genetic divergence between populations (e.g., 990 

McGuigan et al., 2005; Chenoweth et al., 2010). Within the S. lautus system, multivariate 991 

divergence between ecotypes and its association with the additive genetic variance 992 

underlying phenotypic traits suggests that Headland populations have strong phenotypic 993 

constraint arising from strong genetic correlations whereas Dune populations are freer to 994 

evolve across many axes of genetic variance (Walter et al., 2018a). This approach, now 995 

extended by De Lisle & Bolnick (2020) to also generate null hypotheses, promises to be a 996 

powerful approach to measure parallelism, but whether additive genetic variances can be 997 

measured in most systems remains a formidable challenge. Future work on null hypotheses 998 

should also strive to model the likelihood of phenotypic or genotypic parallelism while taking 999 

into account variance in factors such as gene flow, environmental heterogeneity, the 1000 

recombination landscape, and the genetic architecture of adaptive traits (e.g., Thompson et 1001 

al., 2019). 1002 

To further advance the field of parallel evolution, researchers must also strive to specifically 1003 

identify the causal genes for adaptation by directly linking them to adaptive phenotypes and 1004 

further demonstrating that these phenotypes confer a fitness advantage to native populations. 1005 

In systems where adaptation is governed by selection on the same nucleotide sites (e.g., 1006 

Colosimo et al., 2005), researchers must demonstrate whether the selected loci arose via 1007 

standing genetic variation or new mutations (Lee & Coop, 2017, 2019). The field of parallel 1008 

evolution also requires a more thorough understanding of how the demographic history of 1009 

populations impacts the likelihood of genotypic and phenotypic parallelism (e.g., Bohutínská 1010 

et al., 2020). Furthermore, understanding the contributions of phenotypic plasticity within 1011 

each system (by comparing natural populations to those reared in common garden conditions; 1012 

Oke et al., 2016) will help shed light on whether phenotypic parallelism is enhanced or 1013 

dampened by non-genetic changes. 1014 

We have outlined a framework to quantify both phenotypic and genotypic parallel evolution 1015 

within empirical systems. Applying this framework to S. lautus, we have demonstrated strong 1016 

phenotypic differences between the Dune and Headland ecotypes, although most replicate 1017 

pairs are slightly phenotypically different. Genotypic parallelism across pairs is mainly 1018 
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driven by mutations in different genes, some of which belong to similar biological functions. 1019 

Our work provides progress towards a common framework to measure and compare parallel 1020 

evolution across natural systems. 1021 
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Appendices 1039 

Appendix S1. Broad- and narrow-sense outlier genes between replicate population pairs 1040 

from coastal ecotypes of S. lautus 1041 

Functional annotation of the outlier genes within DAVID. Gene ontology is the DAVID 1042 

GOTERM_BP_DIRECT (denoted below with BP), where absent, the 1043 

GOTERM_CC_DIRECT was used (CC), and where absent, the GOTERM_MF_DIRECT 1044 
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(MF) was used. BS – A1 denotes genes detected as broad-sense outliers using approach 1 (see 1045 

methods). BS – A2 denotes genes detected as broad-sense outliers using approach 2. NS 1046 

denotes genes detected in the narrow-sense that are common to either all nine (9) or eight (8) 1047 

replicate pairs. 1048 

Appendix S2. Chloroplast outlier genes 1049 

Functional annotation of the outlier genes within the enriched biological function of 1050 

‘chloroplast’. Gene ontology is the DAVID GOTERM_BP_DIRECT (denoted below with 1051 

BP), and where absent, the GOTERM_CC_DIRECT was used (CC). Number of replicate 1052 

pairs denotes how many replicate pairs the gene was detected as an outlier. 1053 

Appendix S3. Nucleotide-binding/ATP-binding outlier genes 1054 

Functional annotation of the outlier genes within the enriched biological function of 1055 

‘nucleotide-binding/ATP-binding’. Gene ontology is the DAVID GOTERM_BP_DIRECT 1056 

(denoted below with BP), and where absent, the GOTERM_CC_DIRECT was used (CC). 1057 

Number of replicate pairs denotes how many replicate pairs the gene was detected as an 1058 

outlier. 1059 

Appendix S4. Auxin-related outlier genes 1060 

Functional annotation of the outlier genes associated with the auxin pathway. Gene ontology 1061 

is the DAVID GOTERM_BP_DIRECT. Number of replicate pairs denotes how many 1062 

replicate pairs the gene was detected as an outlier.  1063 
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Figures 

Figure 1. A framework to measure phenotypic and genotypic parallel evolution 

Parallel evolution can be broken down into two components: the phenotype and the genotype. 

These two components can be measured in the broad-sense (the overall differences between 

ecotypes), and the narrow-sense (the specific similarities between replicate pairs). Broad-

sense phenotypic parallelism can be measured at the level of the ecotype and trait, whereas 

narrow-sense phenotypic parallelism is measured at the level of the pair. Genotypic 

parallelism can be measured at different biological levels of organization in both the broad- 

and narrow-sense scales: the nucleotide site, gene, and biological function. 
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Figure 2. Broad-sense phenotypic parallelism in S. lautus: parallel ecotype 

(A) Sampling locations of the 22 Dune (orange) and Headland (green) Senecio lautus 

populations along the coast of Australia. (B) Maximum likelihood phylogeny of Dune and 

Headland populations implemented in IQ-TREE. Numbers on each node represent the SH-

alRT support (%), followed by the ultrafast bootstrap support (%). Modified with permission 

from James et al., (2020). The intermediate population (H12A) is not included within this 

study. (C) Partial effect sizes (partial h2) for the ecotype and the interaction (ecotype × pair) 

for the trait-by-trait linear models, each dot representing a single trait. The red dot represents 

Wilk’s partial effect size for all traits combined within the MANOVA. Dashed line is a 1:1 

ratio, where points above the line represent a larger contribution of broad- to narrow-sense 

divergence. See Table S4 for details. (D) Schematic diagram of Dune and Headland ecotypes 

based on mean trait values from linear discriminant analysis (LDA) shown in Figure 3C. (E) 

Principal component analysis of Dune and Headland phenotypes (five plant architecture and 

four leaf traits) across 20 populations. Ecotypes are delimited by 70% probability ellipses. 
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Figure 3. Broad-sense phenotypic parallelism in S. lautus: parallel trait 

(A) Vote-counting for five plant architecture and four leaf traits across eight replicate pairs. 

Dots represent the mean trait value for each population (N = 30). Lines connect the Dune 

(orange) populations to their Headland (green) pair. Dashed lines represent pairs whose 

Dune-Headland trait value is in the opposite direction from the majority of pairs. Asterisks 

denote significance (** S-statistic = 8, P = 0.0078; * S-statistic = 7, P = 0.035). (B) 

Frequency distribution of the ecotype R2 values (proportion of phenotypic variance explained 

by the ecotype term) for each trait from one-way ANOVAs performed on the population 

means. (C) Linear discriminant analysis of all traits between Dune and Headland ecotypes. 

  

Ve
ge

ta
tiv

e 
he

ig
ht

M
ai

n 
st

em
 d

ia
m

et
er

W
id

es
t w

id
th

Se
co

nd
ar

y 
br

an
ch

 a
ng

le

Le
af

 e
lo

ng
at

io
n

Le
af

 d
is

se
ct

io
ns

M
ai

n 
st

em
 a

ng
le

Le
af

 a
re

a
Le

af
 c

irc
ul

ar
ity

Dune Headland Dune Headland Dune Headland

A)
B)

C)

C
ou

nt

Ecotype R2

**

**

** **

Trait Category Trait LDA

Architecture

Vegetative height -0.26
Widest width 0.41
Main stem angle -0.15
Main stem diameter -0.36
Secondary branch angle -0.61

Leaf

Area -0.78
Elongation -0.01
Dissection 0.51
Circularity 0.45

**

*

*



Figure 4. Narrow-sense phenotypic parallelism in S. lautus: parallel pair 

(A) PC1 and PC2 for five plant architecture and four leaf traits across eight replicate Dune-

Headland pairs. Each dot represents the population centroid (multivariate phenotypic mean), 

± SE. The Dune (orange) and Headland (green) populations of a replicate pair are connected 

with a line. (B) Frequency distribution of the 28 pairwise phenotypic divergences (DL) 

between Dune-Headland replicate pairs (Table S6). (C) Frequency distribution of the 28 

pairwise contribution of traits (q) between Dune-Headland replicate pairs (Table S9). 

  

Co
un
t

∆L

Co
un
t

!

B) C)

A)



Figure 5. Relative contributions of broad- and narrow-sense genotypic parallelism in S. 

lautus 

Partial effect sizes (partial h2) for the ecotype and the interaction (ecotype × pair) for the 

linear models for nucleotide sites (A) genes (B). Each dot represents either a single SNP (A) 

or gene (B). Dashed line is a 1:1 ratio, where points above the line represent a larger 

contribution of broad- to narrow-sense parallelism. The red dots denote broad-sense outlier 

SNPs (A) and genes (B). Partial effect size frequency distributions for the nucleotide sites (C) 

and genes (D). Values above zero represent a larger contribution of broad- to narrow-sense 

parallelism. 
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Figure 6. Broad- and narrow-sense genotypic parallelism in S. lautus 

(A) Broad-sense parallel nucleotide sites showing high differentiation between the Dune-

Headland ecotypes as well as concordant allele frequency changes across replicate pairs. Dots 

represent the allele frequency value (of the reference allele) for each population. Lines 

connect the Dune (orange) populations to their Headland (green) pair. Dashed lines represent 

pairs whose Dune-Headland change in allele frequency is in the opposite direction from the 

majority of pairs. Dp denotes the overall change in allele frequency between the ecotypes. G 

denotes SNPs that occur within genic regions. (B) Proportion of outlier nucleotide sites, 

outlier genes, and enriched biological functions shared across the nine replicate pairs. (C) 

Enriched biological functions shared across five or more replicate population pairs. 
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Supplementary Tables and Figures 

Table S1. Senecio lautus sampling locations in this study 

Sampling locations of the 22 Senecio lautus Dune and Headland populations. Coordinates represent the mid-point of each population. N genetics 

and N phenotype represent the sample sizes used for the genotypic and phenotypic analysis respectively. Note: N genetics corresponds to the 

final number of individuals after removing those with low coverage. Pairs in bold are sister-taxa within the phylogeny. 

 
Clade Population code Location Ecotype Pair Coordinates N genetics N phenotype 

Eastern D00 QLD: Stradbroke Island Dune D00-H00 S27° 31.153' E153° 30.189' 62 30 
Eastern H00 QLD: Stradbroke Island Headland D00-H00 S27° 26.140' E153° 32.749' 63 30 
Eastern D02 QLD: Southport Dune D02-H04 S27° 56.846' E153° 25.736' 62 30 
Eastern H04 NSW: Byron Bay Headland D02-H04 S28° 38.060' E153° 38.268' 62 30 
Eastern D03 NSW: Cabarita Dune D03-H02 S28° 19.794' E153° 34.264' 61 30 
Eastern H02 NSW: Cabarita Headland D03-H02 S28° 21.013' E153° 34.676' 61 30 
Eastern D01 QLD: Lennox Head Dune D01-H01 S28° 46.858' E153° 35.655' 60 30 
Eastern H01 QLD: Lennox Head Headland D01-H01 S28° 48.813' E153° 36.313' 58 30 
Eastern D04 NSW: Coffs Harbour Dune D04-H05 S30° 18.946' E153° 08.142' 62 30 
Eastern H05 NSW: Coffs Harbour Headland D04-H05 S30° 18.741' E153° 08.676' 62 30 
Eastern D05 NSW: South West Rocks Dune D05-H06 S30° 53.027' E153° 04.037' 62 30 
Eastern H06 NSW: South West Rocks Headland D05-H06 S30° 52.710' E153° 04.549' 62 30 

Southern H07 NSW: Port Macquarie Headland - S31° 28.526' E152° 56.219 - 30 
Southern H03 NSW: Kiama Headland - S34° 40.301' E150° 51.704' - 29 
Southern D12 NSW: Bermagui Dune D12-H14 S36° 28.346' E150° 03.581' 62 31 
Southern H14 NSW: Green Cape Headland D12-H14 S37° 15.748' E150° 02.991' 62 30 
Southern D32 VIC: Cape Bridgewater Dune D32-H12 S38° 19.631' E141° 23.772' 62 30 
Southern H12 VIC: Cape Bridgewater Headland D32-H12 S38° 22.728' E141° 22.018' 63 30 
Southern D14 TAS: Port Arthur Dune D14-H15 S43° 10.550' E147° 51.267' 12 - 
Southern H15 TAS: Port Arthur Headland D14-H15 S43° 11.240' E147° 50.672' 11 - 
Western D35 WA: Isthmus Hill Dune - S35° 05.885' E117° 59.182' - 34 
Western D09 WA: Leeuwin-Naturaliste National Park Dune - S33° 46.239' E114° 59.541' - 31 



Table S2. Senecio lautus phenotypic traits 

Traits with asterisks were removed from the analysis due to high correlations (> 0.8). 
 

Trait category Trait Description 

P
la

n
t 

a
r
c
h
it

e
c
tu

r
e
 

Vegetative height Base of plant to highest vegetative leaf (not including flowers)  

Widest width Widest with of plant between vegetative leaves 

Narrowest width* Narrowest width of plant between vegetative leaves 

Main stem angle Angle of main stem measured from base of soil 

Main stem diameter Diameter of main stem measured 1cm above soil 

Secondary branch angle Average angle of secondary branches 

L
e
a
f
 

Area Leaf area 

Perimeter* Leaf perimeter 

Width* Leaf width 

Height* Leaf height 

Elongation Length to width ratio 

Compactness* Squared perimeter to area ratio 

Dissection  Perimeter to length ratio 

Circularity 4π (area/perimeter
2
) 

  



Table S3. Demographic and environmental data for S. lautus population pairs 

Rates of gene flow (2Nm, forward in time) and divergence times were calculated in 

fastsimcoal2 (see James et al., (2020) for details). 2Nm (D -> H): gene flow since secondary 

contact from the Dune to the Headland. 2Nm (H -> D): gene flow since secondary contact 

from the Headland to the Dune. 2Nm (ABS): absolute gene flow since secondary contact. See 

(Roda et al., 2013b) for details of the environmental distances.  

 

  

Pair 2Nm 
(D -> H) 

2Nm 
(H -> D) 

2Nm 
(ABS) 

Divergence 
time (years) 

Environmental 
distance 

D00-H00 0.2176 0.2830 0.065424 71945 3.23 

D02-H04 0.2697 0.1720 0.097695 82539 NA 

D03-H02 0.1590 0.4722 0.313209 44190 10.26 

D01-H01 0.6241 0.3671 0.256984 71918 13.68 

D04-H05 1.3942 1.5024 0.108212 30707 6.31 

D05-H06 0.4049 0.4325 0.027621 67927 NA 

D12-H14 0.2188 0.1787 0.040083 47929 5.14 

D32-H12 5.5694 5.2694 0.300057 38706 NA 



Table S4. Trait-by-trait linear models and partial effect sizes 

F-values and P-values for the ecotype (Ecotype F1,465; Ecotype P-value) and interaction (Ecotype x Pair F7,465; Ecotype × Pair P-value) for trait-

by-trait linear models (trait = ecotype + pair + ecotype × pair). Partial effect sizes (partial h2) for the Ecotype, Pair and Interaction (Ecotype × 

Pair) for each trait. 

 

  

Trait Category Trait Ecotype F1, 465 Ecotype P-value Ecotype × 
Pair F7, 465 

Ecotype × Pair 
P-value 

Ecotype 
partial h2 

Pair 
partial h2 

Ecotype × Pair 
partial h2 

Plant 
architecture 

Vegetative height 962.65 < 2.2 x 10-16 *** 17.63 < 2.2 x 10-16 *** 0.67 0.26 0.21 

Widest width 102.62 < 2.2 x 10-16 *** 8.14 2.3 x 10-9 *** 0.18 0.30 0.11 

Main stem angle 111.35 < 2.2 x 10-16 *** 7.20 3.4 x 10-8 *** 0.19 0.06 0.10 

Main stem diameter 133.75 < 2.2 x 10-16 *** 11.26 3.3 x 10-13 *** 0.22 0.07 0.14 

Secondary branch angle 566.05 < 2.2 x 10-16 *** 2.39 0.02092 * 0.55 0.08 0.03 

Leaf 

Area 889.52 < 2.2 x 10-16 *** 16.30 < 2.2 x 10-16 *** 0.66 0.26 0.20 

Elongation 398.11 < 2.2 x 10-16 *** 19.79 < 2.2 x 10-16 *** 0.46 0.26 0.23 

Dissection 84.64 < 2.2 x 10-16 *** 20.92 < 2.2 x 10-16 *** 0.15 0.25 0.24 

Circularity 356.68 < 2.2 x 10-16 *** 45.92 < 2.2 x 10-16 *** 0.43 0.46 0.41 



Table S5. Summary of parallel phenotypic traits in S. lautus 

Summary of the three approaches to measure phenotypic parallelism per trait (vote-counting, 

trait-by-trait linear models, and R2). ‘Yes’ denotes a trait was either statistically significant 

using the vote-counting approach (Vote-counting), had a significant ecotype term in the trait-

by-trait linear models (Linear models), or an R2 ³ 0.50 for one-way ANOVAs performed on 

the population means (Ecotype R2). See main text for details on each approach. Traits in bold 

are consistently viewed as parallel across each of the three approaches.  

 

  

Trait Category Trait Vote-counting Linear models Ecotype R2 

Plant 
architecture 

Vegetative height Yes Yes Yes 
Widest width Yes Yes No 
Main stem angle No Yes Yes 
Main stem diameter Yes Yes Yes 
Secondary branch angle Yes Yes Yes 

Leaf 

Area Yes Yes Yes 
Elongation Yes Yes Yes 
Dissection No Yes No 
Circularity Yes Yes No 



Table S6. Pairwise change in lengths (DL) for all traits in coastal ecotypes of S. lautus 

Values below the diagonal represent the change in lengths, above the diagonal are the P-

values. Shaded cells donate parallel pairs (P > 0.01, i.e., DL » 0°). 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D32-H12 
D00-H00 - 0.3239 0.0001 0.0001 0.0001 0.4949 0.0001 0.0001 
D01-H01 0.27 - 0.0001 0.0001 0.0001 0.0763 0.0001 0.0001 
D02-H04 2.45 2.72 - 0.0548 0.0002 0.0001 0.0001 0.5683 
D03-H02 1.86 2.13 0.59 - 0.0435 0.0001 0.0367 0.1627 
D04-H05 1.27 1.54 1.18 0.59 - 0.0003 0.8839 0.0003 
D05-H06 0.20 0.47 2.26 1.66 1.08 - 0.0007 0.0001 
D12-H14 1.24 1.51 1.22 0.62 0.04 1.04 - 0.0005 
D32-H12 2.29 2.56 0.16 0.43 1.02 2.10 1.05 - 

  



Table S7. Pairwise change in lengths (DL) for plant architecture traits in coastal 

ecotypes of S. lautus 

Values below the diagonal represent the change in lengths, above the diagonal are the P-

values. Shaded cells donate parallel pairs (P > 0.01, i.e., DL » 0°). 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D32-H12 
D00-H00 - 0.1366 0.0001 0.0001 0.0001 0.6428 0.0016 0.0008 
D01-H01 0.44 - 0.0001 0.0001 0.0001 0.0394 0.0002 0.0001 
D02-H04 1.55 1.99 - 0.0926 0.4009 0.0001 0.0477 0.1153 
D03-H02 2.08 2.52 0.53 - 0.0056 0.0001 0.0001 0.0017 
D04-H05 1.32 1.76 0.23 0.77 - 0.0001 0.1633 0.3648 
D05-H06 0.14 0.58 1.41 1.94 1.18 - 0.0070 0.0032 
D12-H14 0.94 1.38 0.61 1.14 0.37 0.80 - 0.6626 
D32-H12 1.07 1.52 0.48 1.01 0.24 0.94 0.13 - 

  



Table S8. Pairwise change in lengths (DL) for leaf traits in coastal ecotypes of S. lautus 

Values below the diagonal represent the change in lengths, above the diagonal are the P-

values. Shaded cells donate parallel pairs (P > 0.01, i.e., DL » 0°). 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D32-H12 
D00-H00 - 0.9650 0.0001 0.0740 0.0239 0.4917 0.0006 0.0001 
D01-H01 0.01 - 0.0001 0.1268 0.0509 0.5771 0.0046 0.0001 
D02-H04 1.90 1.89 - 0.0001 0.0001 0.0001 0.0015 0.4492 
D03-H02 0.34 0.34 1.56 - 0.6506 0.3263 0.0352 0.0001 
D04-H05 0.43 0.42 1.47 0.09 - 0.1646 0.0674 0.0001 
D05-H06 0.14 0.13 1.77 0.21 0.30 - 0.0052 0.0001 
D12-H14 0.81 0.80 1.10 0.46 0.37 0.67 - 0.0001 
D32-H12 2.08 2.07 0.17 1.73 1.64 1.94 1.27 - 

  



Table S9. Pairwise angles (q) for all traits in coastal ecotypes of S. lautus 

Values below the diagonal represent the angles (in degrees), above the diagonal are the P-

values. Shaded cells donate parallel pairs (P > 0.01, i.e., q » 0°). 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D32-H12 
D00-H00 - 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 
D01-H01 43.38 - 0.0001 0.0001 0.0001 0.0001 0.0018 0.0001 
D02-H04 43.73 49.83 - 0.0001 0.0001 0.0001 0.0001 0.0001 
D03-H02 31.00 50.52 40.33 - 0.0105 0.0001 0.0001 0.0001 
D04-H05 26.57 42.70 42.93 14.51 - 0.0001 0.0001 0.0001 
D05-H06 61.69 49.81 62.81 39.29 39.30 - 0.0001 0.0001 
D12-H14 50.10 35.99 34.81 34.08 35.69 35.34 - 0.0010 
D32-H12 50.27 34.82 45.36 33.59 33.74 24.43 20.14 - 

  



Table S10. Pairwise angles (q) for plant architecture traits in coastal ecotypes of S. 

lautus 

Values below the diagonal represent the angles (in degrees), above the diagonal are the P-

values. Shaded cells donate parallel pairs (P > 0.01, i.e., q » 0°). 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D32-H12 
D00-H00 - 0.0021 0.0025 0.0049 0.0022 0.0003 0.0013 0.0005 
D01-H01 49.70 - 0.0001 0.0001 0.0001 0.0005 0.0002 0.0001 
D02-H04 26.78 62.07 - 0.2492 0.0270 0.0002 0.0002 0.0161 
D03-H02 23.10 60.56 9.27 - 0.0395 0.0001 0.0009 0.0043 
D04-H05 27.06 50.46 15.63 13.48 - 0.0198 0.1135 0.5276 
D05-H06 43.11 50.21 30.17 30.37 18.95 - 0.0051 0.0835 
D12-H14 31.30 44.17 26.61 22.66 13.08 23.40 - 0.1199 
D32-H12 33.60 50.15 18.37 19.47 8.49 17.08 14.04 - 

  



Table S11. Pairwise angles (q) for leaf traits in coastal ecotypes of S. lautus 

Values below the diagonal represent the angles (in degrees), above the diagonal are the P-

values. Shaded cells donate parallel pairs (P > 0.01, i.e., q » 0°). 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D32-H12 
D00-H00 - 0.0014 0.0001 0.0001 0.0012 0.0001 0.0001 0.0001 
D01-H01 37.73 - 0.0001 0.1043 0.0172 0.0001 0.0531 0.0009 
D02-H04 54.25 40.54 - 0.0001 0.0001 0.0001 0.0001 0.0001 
D03-H02 31.56 19.33 58.04 - 0.0907 0.0001 0.0002 0.0001 
D04-H05 21.88 26.54 60.06 11.42 - 0.0001 0.0001 0.0001 
D05-H06 75.54 48.76 82.96 44.26 54.12 - 0.0001 0.0001 
D12-H14 63.73 26.53 40.49 42.27 51.98 43.90 - 0.0060 
D32-H12 58.83 24.12 56.47 29.60 40.89 26.79 20.31 - 



Table S12. Shared outlier nucleotide sites between replicate population pairs from coastal ecotypes of S. lautus 

Values below the diagonal represent the number of shared outlier nucleotide sites. Values above the diagonal are the P-values of the probability that the 

common nucleotide sites are shared by chance, calculated from the hypergeometric distribution. 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D14-H15 D32-H12 
D00-H00 - 3.75E-58 7.72E-54 3.98E-37 5.31E-51 8.48E-42 8.13E-50 2.74E-07 1.68E-32 
D01-H01 169 - 3.59E-58 9.08E-52 1.14E-62 1.52E-48 1.39E-51 4.07E-05 6.49E-33 
D02-H04 189 161 - 1.58E-49 3.52E-32 1.10E-53 1.20E-37 1.80E-03 3.40E-44 
D03-H02 178 164 187 - 8.27E-46 1.36E-46 3.76E-44 2.63E-05 6.47E-36 
D04-H05 195 174 155 192 - 5.31E-51 3.60E-44 1.07E-05 4.69E-34 
D05-H06 165 144 173 176 178 - 2.27E-58 1.15E-11 7.98E-49 
D12-H14 226 185 193 222 216 218 - 6.91E-10 7.40E-68 
D14-H15 31 21 21 28 28 35 41 - 1.13E-03 
D32-H12 207 164 215 220 210 214 311 30 - 
 



 

Table S13. Shared outlier genes between replicate population pairs from coastal ecotypes of S. lautus 

Values below the diagonal represent the number of shared outlier genes. Values above the diagonal are the P-values of the probability that the common 

genes are shared by chance, calculated from the hypergeometric distribution. 

 

 D00-H00 D01-H01 D02-H04 D03-H02 D04-H05 D05-H06 D12-H14 D14-H15 D32-H12 
D00-H00 - 2.10E-40 2.76E-53 1.54E-34 6.83E-33 2.47E-39 9.75E-24 2.05E-05 1.01E-19 
D01-H01 123 - 1.13E-52 1.18E-44 5.03E-45 2.07E-35 2.88E-29 7.56E-04 1.79E-22 
D02-H04 156 128 - 8.25E-47 2.06E-34 1.26E-42 5.36E-31 3.48E-05 1.15E-34 
D03-H02 137 122 142 - 1.11E-34 1.78E-35 2.78E-22 7.95E-05 1.16E-24 
D04-H05 141 127 133 136 - 6.85E-34 1.52E-20 2.30E-03 7.76E-20 
D05-H06 146 114 140 134 138 - 1.32E-32 1.25E-08 5.61E-24 
D12-H14 171 140 168 158 164 179 - 1.50E-03 2.34E-17 
D14-H15 32 22 29 29 27 37 40 - 0.10091 
D32-H12 168 133 177 166 167 170 231 35 - 
  



Table S14. Shared biological functions between replicate population pairs from coastal ecotypes of S. lautus 

Summary of the 17 enriched biological functions across the 9 replicate pairs inferred in DAVID. P-values represent the EASE score, a modified Fisher 

Exact P-value. ‘NA’ denotes the function was not enriched within the pair. 

 

Biological function D00-H00 D02-H04 D03-H02 D01-H01 D04-H05 D05-H06 D12-H14 D14-H15 D32-H12 

Chloroplast 7.25E-04 4.91E-05 1.08E-04 6.63E-03 8.56E-03 3.02E-02 3.57E-10 NA 4.79E-05 
Nucleotide/ATP-binding 1.12E-05 3.05E-03 7.00E-07 5.32E-04 7.74E-04 2.33E-02 7.87E-03 NA 3.77E-07 
Membrane 8.50E-04 NA NA 3.55E-05 1.22E-02 2.25E-02 1.67E-03 NA 9.48E-03 
Helicase 2.38E-03 NA 7.20E-03 NA 2.69E-02 1.62E-02 8.08E-04 NA 3.90E-02 
DNA repair/DNA damage NA 3.81E-02 4.32E-02 7.01E-04 4.65E-02 NA 1.42E-03 NA 3.31E-02 
Flowering NA NA 3.36E-04 5.95E-03 NA 3.60E-02 NA 2.79E-02 1.24E-02 
Protein-protein interactions NA NA NA 8.00E-03 1.90E-02 2.96E-02 NA 3.38E-02 1.32E-03 
Carbon metabolism 2.37E-02 NA NA 2.35E-02 4.40E-02 NA NA 5.93E-03 2.14E-02 
Zinc finger 2.47E-02 2.25E-02 NA NA NA 1.73E-02 2.28E-03 NA NA 
Nucleus NA 2.59E-02 1.34E-02 NA NA NA 4.36E-03 NA 4.44E-03 
ATPase dependent activity NA NA 4.08E-03 NA NA 4.02E-03 4.20E-04 3.55E-02 NA 
Catalytic activity NA NA 1.34E-02 NA NA 6.62E-03 5.54E-04 NA NA 
Stress response NA NA NA NA NA 3.18E-02 9.14E-03 NA NA 
Auxin pathway NA NA NA NA NA 1.16E-02 NA NA NA 
Amino acid transport NA NA NA NA NA NA NA NA 4.29E-03 
Glycoprotein 1.63E-02 NA NA NA NA NA NA NA NA 
Endoplasmic reticulum NA NA NA NA NA 3.80E-02 NA NA NA 

 



Table S15. Shared biological functions between replicate population pairs from coastal ecotypes of S. lautus using a more stringent approach 

Summary of the 5 enriched biological functions across the 9 replicate pairs inferred in DAVID. P-values represent the Benjamini-adjusted P-value. 

‘NA’ denotes the function was not enriched within the pair. 

 

Biological function D00-H00 D02-H04 D03-H02 D01-H01 D04-H05 D05-H06 D12-H14 D14-H15 D32-H12 

Nucleotide /ATP-binding 1.22E-03 NA 1.33E-04 NA NA NA 4.07E-08 NA 5.22E-05 
Chloroplast NA 6.12E-03 1.34E-02 NA NA NA NA NA 7.25E-03 
Transmembrane helix NA NA NA 6.20E-03 NA NA NA NA NA 
Flowering NA NA 1.27E-02 NA NA NA NA NA NA 
Ligase NA NA NA NA NA NA 2.01E-02 NA NA 

 

 



Figure S1. Patterns of Dune-Headland FST, CSS and Dp in S. lautus 

(A) Relationship between the change in allele frequency (Dp) and FST comparing all Dune vs all 

Headland individuals, each datapoint representing a SNP. Red denotes the top 1% FST values. (B) 

Relationship of Dp to the cluster separation score (CSS). Red denotes the top 1% CSS values. (C) 

Relationship of FST and CSS. Red denotes the SNPs considered as outliers, being detected as 

outliers in at least two of the following approaches: top 1% FST, top 1% CSS, and BayeScan 

posterior probability > 0.91. 
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Figure S2. Principal components analysis of plant architecture and leaf traits in coastal 

ecotypes of S. lautus 

Principal component analysis of Dune (orange) and Headland (green) phenotypes for (A) five plant 

architecture, and (B) four leaf traits across 20 populations. Ecotypes are delimited by 70% 

probability ellipses.  

B)

A)



Figure S3. Trait-by-trait effect sizes in coastal ecotypes of S. lautus 

Partial effect sizes (partial h2) for the ecotype and pair for the trait-by-trait linear models, each dot 

representing a single trait. The red represents the partial effect size for all traits combined within the 

MANOVA. Dashed line is a 1:1 ratio, where points above the line represent a larger contribution of 

broad- to narrow-sense divergence. See Table S4 for details. 

  



Figure S4. Phenotypic Change Vector Analysis for plant architecture traits in costal ecotypes 

from S. lautus 

(A) PC1 and PC2 for five plant architecture traits across eight replicate Dune-Headland pairs. Each 

dot represents the population centroid (multivariate phenotypic mean), ± SE. The Dune (orange) 

and Headland (green) populations of a replicate pair are connected with a line. (B) Frequency 

distribution of the 28 pairwise phenotypic divergences (DL) between Dune-Headland replicate pairs 

(Supplementary Table S7). (C) Frequency distribution of the 28 pairwise contribution of traits (q) 

between Dune-Headland replicate pairs (Supplementary Table S10). 
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Figure S5. Phenotypic Change Vector Analysis for leaf traits in costal ecotypes from S. lautus 

(A) PC1 and PC2 for four leaf traits across eight replicate Dune-Headland pairs. Each dot represents 

the population centroid (multivariate phenotypic mean), ± SE. The Dune (orange) and Headland 

(green) populations of a replicate pair are connected with a line. (B) Frequency distribution of the 

28 pairwise phenotypic divergences (DL) between Dune-Headland replicate pairs (Supplementary 

Table S8). (C) Frequency distribution of the 28 pairwise contribution of traits (q) between Dune-

Headland replicate pairs (Supplementary Table S11). 
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Figure S6. Relative contributions of broad- and narrow-sense genotypic parallelism 

Partial effect sizes (partial h2) for the ecotype and the pair for the linear models for nucleotide sites 

(A) genes (B). Each dot represents either a single SNP (A) or gene (B). Dashed line is a 1:1 ratio, 

where points above the line represent a larger contribution of broad- to narrow-sense parallelism. 

The red dotes denotes broad-sense outlier SNPs (A) and genes (B). Partial effect size frequency 

distributions for the nucleotide sites (C) and genes (D). Values above zero represent a larger 

contribution of broad- to narrow-sense parallelism. 
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Figure S7. Broad-sense parallel nucleotide sites with concordant allele frequency differences 

Broad-sense parallel nucleotide sites with concordant allele frequency differences (approach 2) in 

either all nine (S-statistic = 9, P = 0.004), or eight (S-statistic = 8, P = 0.04) replicate pairs. Dots 

represent the allele frequency value (of the reference allele) for each population. Lines connect the 

Dune (orange) populations to their Headland (green) pair. Dashed lines represent pairs whose Dune-

Headland change in allele frequency is in the opposite direction from the majority of pairs. G 

denotes SNPs that occur within genic regions. These genes are as follows (left to right, top to 

bottom): AT5G14540, NA, AT5G04420, CNGC1, OVA9, AT5G65740, EMB3144, HCT. Asterisks 

denote SNPs that were also detected as outliers within approach 1 (see Methods for details). 
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Figure S8. Broad-sense genotypic parallel evolution: nucleotide site and gene 

Summary of the broad-sense outlier nucleotide sites and genes across approach 1 (blue box), 

approach 2 (green box) and the best candidates (orange box). See main text for details of each 

approach.  
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Supplementary R code 

R code for Phenotypic Change Vector Analysis 

 
# The following function estimates vector lengths, contrast, angles, and 
# associated p values for differences between traits in multivariate space 
# between two pairs of populations. Code adapted from Collyer & Adams (2007) 
 
CollyerAdamsPCVA <- function(y.mat, x.mat, nPermutations = 9999) { 
# First step: finalise the two x matrices (full and reduced) 
x.mat.full<-x.mat 
x.mat.red<-x.mat.full[,-4] # This removes the coding for the interaction effect 
 
# Second step, estimate parameters for full and reduced models 
b.mat.full<-solve(  (t(x.mat.full)%*%x.mat.full)  ) %*% (t(x.mat.full)%*%y.mat) 
b.mat.red<-solve((t(x.mat.red)%*%x.mat.red))%*%(t(x.mat.red)%*%y.mat) 
 
# Third step, Estimate LS means 
 
# In this case, but not necessarily always, a = species and b = locality  
# Vectors will be calculated for 2 species, a1 (P. jordani) and a2 (P. teyahalee) 
# In our example the following dummy variables were used: 
# P. jordani = 1, P. teyahalee = -1, sympatry = 1, allopatry = -1 
# Thus, LS means could be calculated as follows: 
 
a1b1<-cbind(1,1,1,1) 
a1b2<-cbind(1,1,-1,-1) 
a2b1<-cbind(1,-1,1,-1) 
a2b2<-cbind(1,-1,-1,1) 
 
x.ls.full<-rbind(a1b1,a1b2,a2b1,a2b2) 
x.ls.red<-x.ls.full[,-4] 
 
obs.ls.full<-x.ls.full%*%b.mat.full  # Observed ls means (full model) 
obs.ls.red<-x.ls.red%*%b.mat.red     # Observed ls means (reduced model) 
 
# Fourth Step, vector and statistics calculations 
 
obs.a1.vect<-obs.ls.full[1,]-obs.ls.full[2,] # These are the phenotypic change vectors 
obs.a2.vect<-obs.ls.full[3,]-obs.ls.full[4,] 
 
obs.d.a1<-c(sqrt(t(obs.a1.vect)%*%obs.a1.vect)) # These are lengths of vectors 
obs.d.a2<-c(sqrt(t(obs.a2.vect)%*%obs.a2.vect)) 
 
obs.contrast<-abs(obs.d.a1-obs.d.a2) 
obs.angle<-c(acos(t((obs.a1.vect)/obs.d.a1)%*%((obs.a2.vect)/obs.d.a2))) 
obs.angle<-obs.angle*180/pi  # This step is only necessary to convert radians to degrees 
 
# Fifth Step, set-up permutation procedure 
 
y.hat<-x.mat.red%*%b.mat.red     # Predicted values from reduced model 
y.res<-y.mat-y.hat               # Resdiuals of reduced mode (these are the permuted units) 
 
# PERMUTATION PROCEDURE 
 
# Need to set-up distributions to be generated 
 
dist.d1<-NULL 
dist.d1<-rbind(dist.d1,obs.d.a1) # Observed value is first random value 
dist.d2<-NULL 
dist.d2<-rbind(dist.d2,obs.d.a2) # Observed value is first random value 
dist.contrast<-NULL 
dist.contrast<-rbind(dist.contrast,obs.contrast) # Observed value is first random value 
dist.angle<-NULL 
dist.angle<-rbind(dist.angle,obs.angle) # Observed value is first random value 
 
# In addition to saving random values, it is wise to save the outcome of comparisons 
# of observed and random values. 
# This can be done with logical statements (below). 
# Separate distributions are created for these comparisons. 
# The 'p' indicates that these distributions will be used  
# to calculate empirical probabilities. 
  
pdist.contrast<-NULL 



pdist.contrast<-rbind(pdist.contrast,1)  
pdist.angle<-NULL 
pdist.angle<-rbind(pdist.angle,1)  
 
for(i in 1:nPermutations){ 

y.res.rand <- y.res[sample(1:nrow(y.res)), ] 
 

# Create random values 
y.rand<-y.hat+y.res.rand 

 
# Estimate parameters 
b.mat.rand<-solve((t(x.mat.full)%*%x.mat.full))%*%(t(x.mat.full)%*%y.rand) 

 
# Calculate LS means 
rand.ls.full<-x.ls.full%*%b.mat.rand 

 
# Repeat fourth step for random data! 

 
rand.a1.vect<-rand.ls.full[1,]-rand.ls.full[2,] # These are the phenotypic change vectors 
rand.a2.vect<-rand.ls.full[3,]-rand.ls.full[4,] 

  
rand.d.a1<-c(sqrt(t(rand.a1.vect)%*%rand.a1.vect)) # These are lengths of vectors 
rand.d.a2<-c(sqrt(t(rand.a2.vect)%*%rand.a2.vect)) 

  
rand.contrast<-abs(rand.d.a1-rand.d.a2) 
rand.angle<-c(acos(t((rand.a1.vect)/rand.d.a1)%*%((rand.a2.vect)/rand.d.a2))) 
rand.angle<-rand.angle*180/pi  # This step is only necessary to convert radians to degrees 

 
# Append distributions 

 
dist.d1<-rbind(dist.d1,rand.d.a1) 
dist.d2<-rbind(dist.d2,rand.d.a2) 
dist.contrast<-rbind(dist.contrast,rand.contrast)  
dist.angle<-rbind(dist.angle,rand.angle)  

 
aa<-ifelse(rand.contrast>=obs.contrast,1,0) 
bb<-ifelse(rand.angle>=obs.angle,1,0) 

 
pdist.contrast<-rbind(pdist.contrast,aa)  
pdist.angle<-rbind(pdist.angle,bb)  

}  
 
# Empirical probabilities are calculated as follows 
 
 p.contrast<-sum(pdist.contrast)/(nPermutations+1) 
 p.angle<-sum(pdist.angle)/(nPermutations+1) 
 
 return(c(length.v1 = obs.d.a1, 
          length.v2 = obs.d.a2, 
          contrast = obs.contrast, 
          p.contrast = p.contrast, 
          angle = obs.angle, 
          p.angle = p.angle)) 
} 
 
 
# The following R code generates the required files to be used with the CollyerAdamsPCVA function 
 
# 'master.file' is the entire phenotyping file, first column the pair, second column the ecotype,third column the population ID, the other columns the 
phenotype data 
master.file <- read.delim ("path-to-file/allTraitsPairs", header = TRUE) 
 
# extract the unique elements of the first column (the pair) 
pairs <- unique(master.file$Pair) 
   
# create all possible pairwise comparisons 
pairwise <-combn(pairs, 2) 
 
# create empty data frame for the results 
results <- data.frame(pair1 = pairwise[1,],  
                      pair2 = pairwise[2,], 
                      length.v1 = NA, 
                      length.v2 = NA, 
                      contrast = NA, 
                      p.contrast = NA, 
                      angle = NA, 
                      p.angle = NA) 
 
for(i in 1:ncol(pairwise)) { 



# subset master file to generate proto-y.mat 
y.mat <- master.file[ master.file$Pair %in% pairwise[, i], ] 

 
# generate x.mat 
x.mat <- matrix(NA, nrow = nrow(y.mat), ncol = 4)  # empty matrix 
x.mat[,1] <- 1  # intercept 
x.mat[,3] <- 2 * (y.mat$Ecotype == "Dune") - 1  # 1 for dunes, -1 for headlands 
x.mat[,2] <- 2 * (y.mat$Pair == pairwise[1,i]) - 1  # 1 for pair 1, -1 for pair 2 
x.mat[,4] <- x.mat[,2] * x.mat[,3]  # interaction 

 
# modify y.mat to fit requirements 
y.mat <- as.matrix(y.mat[, -(1:3)]) 

 
# run CollyerAdamsPCVA function on the two matrices 
results[i, 3:ncol(results)] <- CollyerAdamsPCVA(y.mat, x.mat) 

} 
 
write.table(results,file="path-to-file/PCVA_results.txt",row.names=FALSE,col.names=TRUE,quote=FALSE) 
 
  



R code for cluster separation score (CSS) 

 
#Define the path 
path <- "/Users/maddiejames/Desktop/ESC/MDS/"  
#Get a list of the input files (all files within the path) 
allFiles <- list.files(path = path, pattern = "\\.mds$") 
#Create a dataframe to store the data 
CSSsnp <- data.frame(allFiles) 
names <- c("CSS") 
CSSsnp[ , names] <- NA 
#Open each file and calculate CSS 
for(k in 1:length(allFiles)) { 
  MDSall<-read.delim(paste0(path,allFiles[k]), header=T, sep="") 
  #Create the ecotype column 
  ecotype<-substr(MDSall$IID, start = 1, stop = 1) 
  MDSall<-cbind(Ecotype = ecotype, MDSall) 
  #Replace the D with Dune and H with Headland 
  MDSall$Ecotype <- gsub('D', 'Dune', MDSall$Ecotype) 
  MDSall$Ecotype <- gsub('H', 'Headland', MDSall$Ecotype) 
  #Subet the data into Dunes and Headlands 
  MDSdune <- MDSall[MDSall$Ecotype=='Dune', ] 
  MDSheadland <- MDSall[MDSall$Ecotype=='Headland', ] 
   
  #Calculate the number of Dune individuals 
  m <- nrow(MDSdune) 
  #Calculate the number of Headland individuals 
  n <-  nrow(MDSheadland) 
   
  #Calculate the between group distance 
  sumBetween <- 0 
  for(i in 1:m) { 
    for(j in 1:n) { 
      sumBetween <- sumBetween + abs(MDSdune$C1[i] - MDSheadland$C1[j]) 
    } 
  } 
   
  #Calculate the within Dune distance 
  sumWithinDune <- 0 
  for(i in 1:(m-1)) { 
    sumWithinDune <- sumWithinDune + abs(MDSdune$C1[i] - MDSdune$C1[i+1]) 
  } 
   
  #Calculate the within Headland distance 
  sumWithinHeadland <- 0 
  for(j in 1:(n-1)) { 
    sumWithinHeadland <- sumWithinHeadland + abs(MDSheadland$C1[j] - MDSheadland$C1[j+1]) 
  } 
   
  #Calculate the CSS 
  CSSsnp$CSS[k] <- sumBetween/(m*n) - (m+n)*(sumWithinDune/(m^2 * (m-1)) + sumWithinHeadland/(n^2 * (n-1))) 
} 
 
  #Print the results 
write.table(CSSsnp, file="/Users/maddiejames/Desktop/ESC/CSSsnp_ESC.txt", row.names = FALSE, col.names = TRUE, quote = FALSE) 

 


