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Abstract 
 

The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers 
using machine learning (ML). However, metagenomics-specific software is scarce and 
overoptimistic evaluation and limited cross-study generalization are prevailing issues. To 
address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative 
metagenomics. We demonstrate its capabilities in a meta-analysis of fecal metagenomic 
studies (10,803 samples). When naively transferred across studies, ML models lost 
accuracy and disease specificity, which could however be resolved by a novel training set 
augmentation strategy. This revealed some biomarkers to be disease-specific, others shared 
across multiple conditions. SIAMCAT is freely available from siamcat.embl.de. 
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Introduction 
 
The study of microbial communities through metagenomic sequencing has begun to uncover 
how communities are shaped by -- and interact with -- their environment, including the host 
organism in the case of gut microbes [1,2]. Especially within a disease context, differences in 
human gut microbiome compositions have been linked to many common disorders, for 
example colorectal cancer [3], inflammatory bowel disease [4,5] or arthritis [6,7]. As the 
microbiome is increasingly recognized as an important factor in health and disease, many 
possibilities for clinical applications are emerging for diagnosis [8,9], prognosis or prevention 
of disease [10]. 
 
The prospect of clinical applications also comes with an urgent need for methodological 
rigour in microbiome analyses in order to ensure the robustness of findings. It is necessary 
to assess the clinical value of biomarkers identified from the microbiome in an unbiased 
manner -- not only by their statistical significance, but more importantly also by their 
prediction accuracy on independent samples (allowing for external validation). Machine 
learning (ML) models -- ideally interpretable and parsimonious ones -- are crucial tools to 
identify and validate such microbiome signatures. Setting up ML workflows however poses 
difficulties for novices. In general it is challenging to assess their performance in an unbiased 
way, to apply them in cross-study comparisons, and to avoid confounding factors, for 
example when disease and treatment effects are intertwined [11]. For microbiome studies, 
additional issues arise from key characteristics of metagenomic data such as large technical 
and inter-individual variation [12], experimental bias [13], compositionality of relative 
abundances, zero-inflation, and non-Gaussian distribution, all of which necessitate data 
normalisation in order for ML algorithms to work well. 
 
While several statistical analysis tools have been developed specifically for microbiome data, 
they are generally limited to testing for differential abundance of microbial taxa between 
groups of samples and do not allow users to evaluate their predictivity as they do not 
comprise full ML workflows for biomarker discovery [14–16]. To overcome the limitations of 
testing-based approaches, several researchers have explicitly built ML classifiers to 
distinguish case and control samples [17–24]; however, the software resulting from these 
studies is generally not easily modified or transferred to other classification tasks or data 
types. To our knowledge, a powerful yet user-friendly computational ML toolkit tailored to the 
characteristics of microbiome data has not yet been published. 
 
Here, we present SIAMCAT (Statistical Inference of Associations between Microbial 
Composition And host phenoTypes), a comprehensive toolbox for comparative metagenome 
analysis using ML, statistical modeling, and advanced visualization approaches. It also 
includes functionality to identify and visually explore confounding factors. To demonstrate its 
versatile applications, we conducted a large-scale ML meta-analysis of 130 classification 
tasks from 50 gut metagenomic studies (see Table 1) that have been processed with a 
diverse set of taxonomic and functional profiling tools. Based on this large-scale application, 
we arrive at recommendations for sensible parameter choices for the ML algorithms and 
preprocessing strategies provided in SIAMCAT. Moreover, we illustrate how several 
common pitfalls of ML applications can be avoided using the statistically rigorous 
approaches implemented in SIAMCAT. When considering cross-study application of ML 
models, we note prevailing problems with type-I-error control (i.e. elevated false-positive 
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rate) as well as disease specificity for ML models naively transferred across data sets. To 
alleviate these issues, we propose a strategy based on sampling additional external controls 
during cross validation (which we call control augmentation). This enables cross-disease 
comparison of gut microbial biomarkers. Lastly, we showcase how SIAMCAT facilitates 
meta-analyses in an application to fecal shotgun metagenomic data from five independent 
studies of Crohn’s disease. SIAMCAT is implemented in the R programming language and 
freely available from siamcat.embl.de or Bioconductor. 
 
 

Table 1: Overview of diseases and datasets included in the ML meta-analysis 

Disease Disease 
abbr. 

Datasets Data type 

Ankylosing spondylitis AS [7] Shotgun 

Rheumatoid arthritis ART 
[25] 16S rRNA 

[6] Shotgun 

Type 1 diabetes T1D [26] 16S rRNA 

Crohn’s disease CD [5,27–30] Shotgun 

Ulcerative colitis UC [5,27,30] Shotgun 

Inflammatory bowel disease IBD [4,31–33] 16S rRNA 

Colorectal cancer CRC 
[8,34–39] Shotgun 

[8,40–42] 16S rRNA 

Advanced colorectal adenoma(s) ADA [8,34,38,39] Shotgun 

Atherosclerotic cardiovascular disease ACVD [43] Shotgun 

Hypertension 
Pre-hypertension 

HT 
pHT 

[44] Shotgun 

Clostridioides difficile infection CDI [45,46] 16S rRNA 

enteric diarrheal disease EDD [47] 16S rRNA 

HIV infection HIV [48–50] 16S rRNA 

Liver cirrhosis LIV 
[51] Shotgun 

[52] 16S rRNA 

Non-alcoholic fatty liver disease NAFLD 
[53,54] Shotgun 

[55,56] 16S rRNA 

Parkinsons’ disease PAR 
[57] Shotgun 

[58] 16S rRNA 

Autism spectrum disorder ASD [59,60] 16S rRNA 

Obesity OB 
[61] Shotgun 

[62–65] 16S rRNA 

Metabolic syndrome MS [66] Shotgun 

Type 2 diabetes T2D [67,68] Shotgun 

Impaired glucose tolerance IGT [67] Shotgun 

 

 
 
Results 
 
Machine learning and statistical analysis workflows implemented in SIAMCAT 
The SIAMCAT R package is a versatile toolbox for analysing microbiome data from case-
control studies. The default workflows abstract from and combine many of the complex steps 
that these workflows entail and that can be difficult to implement correctly for non-experts. 
To increase ease of use, SIAMCAT interfaces with the popular phyloseq package [69] and 
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design and parameter choices are carefully adapted to metagenomic data analysis. In 
addition to functions for statistical testing of associations, SIAMCAT workflows include ML 
procedures, including data preprocessing, model fitting, performance evaluation and 
visualization of the results and models (Figure 1a). Core ML functionality is based on the mlr 
package [70]. The input for SIAMCAT consists of a feature matrix (abundances of microbial 
taxa, genes or pathways across all samples), a group label (case-control information for all 
samples), and optional meta-variables (such as demographics, lifestyle, and clinical records 
of sample donors or technical parameters of data acquisition). 
To demonstrate the main workflow and primary outputs of the SIAMCAT package (see 
Methods and SIAMCAT vignettes), we analysed a representative dataset [27] consisting of 
128 fecal metagenomes from patients with ulcerative colitis (UC) and non-UC controls 
(Figure 1). UC is a subtype of inflammatory bowel disease (IBD), a chronic inflammatory 
condition of the gastrointestinal tract that has been associated with dramatic changes in the 
gut microbiome [5,71]. As input, we used species-level taxonomic profiles available through 
the curatedMetagenomicsData R package [72].  
After data preprocessing (unsupervised abundance and prevalence filtering, Figure 1a and 
Methods), univariate associations of single species with the disease are computed using the 
nonparametric Wilcoxon test (which has been shown for metagenomic data to reliably  
control the false discovery rate in contrast to many other tests proposed [73]) and results are 
visualized (using the check.associations function). The association plot displays the 
distribution of microbial relative abundance, the significance of the association, and a 
generalized fold change as a non-parametric measure of effect size [37] (Figure 1b).  
The central component of SIAMCAT consists of ML procedures, which include a selection of 
normalization methods (normalize.features), functionality to set up a cross validation scheme 
(create.data.split), and interfaces to different ML algorithms, such as LASSO, Elastic Net, 
and Random Forest (offered by the mlr package [70]) [74–76]. As part of the cross-validation 
procedure, models can be trained (train.model) and applied to make predictions 
(make.predictions) on samples not used for training. Based on these predictions, the 
performance of the model is assessed (evaluate.predictions) using the area under the 
receiver operating characteristic (ROC) curve (AUROC) (Figure 1d). SIAMCAT also 
provides diagnostic plots for the interpretation of ML models (model.interpretation.plot) which 
display the importance of individual features in the classification model, normalized feature 
distributions as heatmaps, next to sample meta-variables (optionally, see Figure 1 c,e). 
Expert users can readily customize and flexibly recombine the individual steps in the 
described workflow above. For example, filtering and normalization functions can be 
combined or omitted before ML models are trained or association statistics calculated. To 
demonstrate its versatility beyond the workflow presented in Figure 1a, we used SIAMCAT 
to reproduce two recent ML meta-analyses of metagenomic datasets [19,20]. By 
implementing the same workflows as described in the respective papers, we could generate 
models with very similar accuracy (within the 95% confidence interval) for all datasets 
analyzed (Supplementary Figure 1). 
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Figure 1. SIAMCAT statistical and machine learning approaches model differences between groups of 
microbiome samples. (a) Each step in the SIAMCAT workflow (green boxes) is implemented by a function in 
the R/Bioconductor package (see SIAMCAT vignettes). Functions producing graphical output (red boxes) are 
illustrated in (b)-(e) for an exemplary analysis using a data set from Nielsen et al. [27] which contains ulcerative 
colitis (UC) patients and non-UC controls. (b) Visualisation of the univariate association testing results. The left 
panel visualizes the distributions of microbial abundance data differing significantly between groups. Significance 
(after multiple testing correction) is displayed in the middle panel as horizontal bars. The right panel shows the 
generalized fold change as a nonparametric measure of effect size [37]. (c) SIAMCAT offers statistical tests and 
diagnostic visualisations to identify potential confounders by testing for associations between such meta-
variables as covariates and the disease label. The example shows a comparison of body mass index (BMI) 
between the study groups. The similar distributions between cases and controls suggests that BMI is unlikely to 
confound UC associations in this dataset. Boxes denote the IQR across all values with the median as a thick 
black line and the whiskers extending up to the most extreme points within 1.5-fold IQR. (d) The model 
evaluation function displays the cross validation error as a receiver operating characteristic (ROC) curve, with a 
95% confidence interval shaded in gray and the area under the receiver operating characteristic curve (AUROC) 
given below the curve. (e) SIAMCAT finally generates visualizations aiming to facilitate the interpretation of the 
machine learning models and their classification performance. This includes a barplot of feature importance (in 
the case of penalized logistic regression models, bar width corresponds to coefficient values) for the features that 
are included in the majority of models fitted during cross validation (percentages indicate the respective fraction 
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of models containing a feature). A heatmap displays their normalized values across all samples (as used for 
model fitting) along with the classification result (test predictions) and user-defined meta-variables (bottom). 

 
Confounder analysis using SIAMCAT 
As many biological and technical factors beyond the primary phenotype of interest can 
influence microbiome composition [1], microbiome association studies are often at a high 
risk of confounding, which can lead to spurious results [11,77–79]. To minimize this risk, 
SIAMCAT provides a function to optionally examine potential confounders among the 
provided meta-variables. In the example dataset from [27], control samples were obtained 
from both Spanish as well as Danish subjects, while UC samples were only taken from 
Spanish individuals (Figure 2a). Here, the meta-variable “country” could be viewed as a 
surrogate variable for other (often difficult-to-measure) factors, which can influence 
microbiome composition, such as diet, lifestyle, or technical differences between studies. 
The strong association of the “country” meta-variable with the disease status (SIAMCAT 
computes such associations using Fisher’s exact test or the Wilcoxon test for discrete and 
continuous meta-variables, respectively; see Figure 2a) hints at the possibility that 
associations computed with the full dataset could be confounded by the country of the 
sample donor. 
To quantify this confounding effect on individual microbial features, SIAMCAT additionally 
provides a plot for each meta-variable that shows the variance explained by the label in 
comparison with the variance explained by the meta-variable for each individual feature 
(Figure 2b, implemented in the check.confounder function). In our example case, several 
microbial species are strongly associated with both the disease phenotype (UC vs control) 
and the country, indicating that their association with the label might simply be an effect of 
technical and/or biological differences between samples taken and data processed in the 
different countries. 
To further investigate this confounder, we used SIAMCAT to compute statistical association 
for the full dataset (including the Danish control samples) and the reduced dataset 
containing only samples from Spanish individuals (using the check.association function). The 
finding that P-values were uncorrelated between the two datasets (Figure 2c) directly 
quantified the effect of confounding by country on the disease-association statistic. The 
potential severity of this problem is highlighted by a comparison of the relative abundance of 
Dorea formicigenerans across subjects: the differences between UC cases and controls are 
only significant when Danish control samples are included, but not when restricted to 
Spanish samples only (Figure 2d), exemplifying how confounders can lead to spurious 
associations. 
Finally, confounding factors can not only bias statistical association tests, but can also 
impact the performance of ML models. A model trained to distinguish UC patients from 
controls seemingly performs better if the Danish samples are included (AUROC of 0.84 
compared to 0.76 if only using Spanish samples), because the differences between controls 
and UC samples are artificially inflated by the differences between Danish and Spanish 
samples (Figure 2e). How these overall differences between samples taken in different 
countries can be exploited by ML models can also be directly quantified using SIAMCAT 
workflows. The resulting model trained to distinguish between control samples from the two 
countries can do so with almost perfect accuracy (AUROC of 0.96) (Figure 2f). This analysis 
demonstrates how confounding factors can lead to exaggerated performance estimates for 
ML models. 
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In summary, SIAMCAT can help to detect influential confounding factors that have the 
potential to bias statistical associations and ML model performance (see Supplementary 
Figure 2 for additional examples). 
 

 
Figure 2. Analysis of covariates that potentially confound microbiome-disease associations and 
classification models. The UC data set from Nielsen et al. [27] contains fecal metagenomes from subjects 
enrolled in two different countries and generated using different experimental protocols (data shown is from 
curatedMetagenomicData with CD cases and additional samples per subject removed). (a) Visualisations from 
the SIAMCAT confounder checks reveals that only control samples were taken from Denmark suggesting that 
any (biological or technical) differences between Danish and Spanish samples might confound a naive analysis 
for UC-associated differences in microbial abundances. (b) Analysis of variance (using ranked abundance data) 
shows many species to differ more by country than by disease, with several extreme cases highlighted. (c) When 
comparing (FDR-corrected) P-values obtained from SIAMCAT’s association testing function applied to the whole 
data set (y-axis) to those obtained for just the Danish samples (x-axis), only a very weak correlation is seen and 
strong confounding becomes apparent for several species including Dorea formicigenerans (highlighted). (d) 
Relative abundance differences for Dorea formicigenerans are significantly larger between countries than 
between Spanish UC cases and controls (P-values from Wilcoxon test). See Figure 1C for definition of boxplots. 
(e) Distinguishing UC patients from controls with the same workflow is possible with lower accuracy when only 
samples from Spain are used compared to the full dataset containing Danish and Spanish controls. This implies 
that in the latter case the machine learning model is confounded as it exploits the (stronger) country differences 
(see (c) and (f)), not only UC-associated microbiome changes. (f) This is confirmed by the result that control 
samples from Denmark and Spain can be very accurately distinguished with an AUROC of 0.96 (using SIAMCAT 
classification workflows). 

 
Advanced machine learning workflows 
When designing more complex ML workflows involving feature selection steps or 
applications to time series data, it becomes more challenging to set up cross validation 
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procedures correctly. Specifically, it is important to estimate how well a trained model would 
generalize to an independent test set, which is typically a main objective of microbial 
biomarker discovery. An incorrect ML procedure, in which information leaks from the test to 
the training set, can result in overly optimistic (i.e. overfitted) performance estimates. Two 
pitfalls that can lead to overfitting and poor generalization to other datasets (Figure 3a) are 
frequently encountered in ML analyses of microbiome and other biological data, even though 
the issues are well described in the statistics literature [80–82]. These issues, namely 
supervised feature filtering and naive splitting of dependent samples, can be exposed by 
testing model performance in an external validation set, which has not been used during 
cross validation at all (Figure 3b). 
The first issue arises when feature selection taking label information into account 
(supervised feature selection) is naively combined with subsequent cross validation on the 
same data [80]. This incorrect procedure selects features that are associated with the label 
(e.g. by testing for differential abundance) on the complete dataset leaving no data aside for 
an unbiased test error estimation of the whole ML procedure. To avoid overfitting, correct 
supervised feature selection should always be nested into cross validation (that is, the 
supervised feature selection has to be applied to each training fold of the cross validation 
separately). To illustrate the extent of overfitting resulting from the incorrect approach, we 
used two datasets of colorectal cancer (CRC) patients and controls and performed both the 
incorrect and correct way of supervised feature selection. As expected, the incorrect feature 
selection led to inflated performance estimates in cross validation but lower generalization to 
an external dataset, whereas the correct procedure gave a better estimate of the 
performance in the external test set; the fewer features were selected, the more the 
performance in the external datasets dropped (see Figure 3c). SIAMCAT readily provides 
implementations of the correct procedure and additionally takes care that the feature filtering 
and normalization of the whole data set are blind to the label (therefore called unsupervised), 
thereby preventing accidental implementation of the incorrect procedure.  
 

 
Figure 3. SIAMCAT aids in avoiding common pitfalls leading to poor generalisation of machine learning 
models. (a) Incorrectly set up machine learning workflows can lead to overoptimistic accuracy estimates 
(overfitting): the first issue arises from a naive combination of feature selection on the whole data set and 
subsequent cross validation on the very same data [82]. The second one arises when samples that were not 
taken independently (as is the case for replicates or samples taken at multiple time points from the same subject) 
are randomly partitioned in cross validation with the aim to assess the cross-subject generalisation error (see 
Main text). (b) External validation, for which SIAMCAT offers analysis workflows, can expose these issues. The 
individual steps in the workflow diagram correspond to SIAMCAT functions for fitting a machine learning model 
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and applying it to an external data set to assess its external validation accuracy (see SIAMCAT vignette: Holdout 
testing with SIAMCAT). (c) External validation shows overfitting to occur when feature selection and cross 
validation are combined incorrectly in a sequential manner, rather than correctly in a nested approach. The 
correct approach is characterized by a lower (but unbiased) cross-validation accuracy, but better generalisation 
accuracy to external data sets (see header for data sets used). The fewer features are selected, the more 
pronounced the issue becomes and in the other extreme case (‘all’), feature selection is effectively switched off. 
(d) When dependent observations (here by sampling the same individuals at multiple time points) are randomly 
assigned to cross-validation partitions, effectively the ability of the model to generalise across time points, but not 
across subjects is assessed. To correctly estimate generalisation accuracy across subjects, repeated 
measurements need to be blocked, all of them either into the training or test set. Again the correct procedure 
shows lower cross-validation accuracy, but higher external validation accuracy. 
 
The second issue tends to occur when samples are not independent [81]. For example, 
microbiome samples taken from the same individual at different time points are usually a lot 
more similar to each other than those from different individuals (see [12] and 
Supplementary Figure 3). If these dependent samples are randomly split in a standard 
cross validation procedure, so that some could end up in the training set and others in the 
test set, it is effectively estimated how well the model generalizes across time points (from 
the same individual) rather than across individuals. To avoid this, dependent measurements 
need to be blocked during cross validation, ensuring that measurements of the same 
individual are assigned to the same test set. How much the naive procedure can 
overestimate the performance in cross validation and underperform in external validation 
compared to the correctly blocked procedure is demonstrated here using the iHMP dataset, 
which contains several samples per subject [30]. Although the cross validation accuracy 
appears dramatically lower in the correct compared to the naive procedure, generalization to 
other datasets of the same disease is higher with the correctly blocked model (Figure 3d). 
SIAMCAT offers the possibility to block the cross validation according to meta-variables by 
simply providing an additional argument to the respective function call (see also SIAMCAT 
vignettes). 
 
Large-scale machine learning meta-analysis 
Previous studies that applied ML to microbiome data [17–20] have compared and discussed 
the performance of several learning algorithms. However, their recommendations were 
based on the analysis of a small number of data sets which were technically relatively 
homogeneous. To overcome this limitation and to demonstrate that SIAMCAT can readily be 
applied to various types of input data, we performed a large-scale ML meta-analysis of case-
control gut metagenomic datasets. We included taxonomic profiles obtained with the RDP 
taxonomic classifier [83] for 26 data sets based on 16S rRNA gene sequencing [20]; 
additionally, taxonomic profiles generated from 12 and 24 shotgun metagenomic data sets 
using either MetaPhlAn2 [84] or mOTUs2 [85], respectively, as well as functional profiles 
obtained with HUMAnN2 [86] or with eggNOG 4.5 [87] for the same set of shotgun 
metagenomic data were included (in total 130 classification tasks, see Table 1 and 
Supplementary Table 1 for information about included datasets). 
Focusing first on intra-study results, we found that given a sufficiently large input data set 
(with at least 100 samples), SIAMCAT models are generally able to distinguish reasonably 
well between cases and controls: the majority (58%) of these datasets in our analysis could 
be classified with an AUROC of 0.75 or higher - compared to only 36% of datasets with 
fewer than 100 samples (Figure 4a-c, Supplementary Figure 4 and 5 and Methods). Of 
note, accurate ML-based classification was possible even for datasets in which cases and 
controls could not easily be separated using beta-diversity analyses (Supplementary 
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Figure 6), indicating that a lack of separation in ordination analysis does not preclude ML-
based workflows to extract accurate microbiome signatures. In the datasets for which a 
direct comparison of mOTUs2 and MetaPhlAn2 profiles was possible, we did not find any 
consistent trend towards either profiling method (paired Wilcoxon P = 0.41, see 
Supplementary Figure 7). When comparing taxonomic and functional profiles derived from 
the same dataset, we found a high correlation between AUROC values (Pearson’s r = 0.92, 
P < 2*10-16), although on average taxonomic profiles performed slightly better than functional 
profiles (Supplementary Figure 7). Taken together this indicates that SIAMCAT can extract 
accurate microbiome signatures from a range of different input profiles commonly used in 
microbiome research. 
SIAMCAT provides various methods for data filtering and normalization and interfaces to 
several ML algorithms through mlr [70]. This made it easy to explore the space of possible 
workflow configurations in order to arrive at recommendations about sensible default 
parameters. To test the influence of different parameter choices within the complete data 
analysis pipeline, we performed an ANOVA analysis to quantify their relative importance on 
the resulting classification accuracy (Figure 4d and Methods). Whereas the choice of 
filtering method and feature selection regime has little influence on the results, the 
normalization method and ML algorithm explained more of the observed variance in 
classification accuracy. Analysis of the different normalization methods shows that most of 
the differences can be explained by a drop in performance for naively normalized data (only 
total sum scaling and no further normalization) in combination with LASSO or Elastic Net 
logistic regression (Supplementary Figure 8). In contrast, the Random Forest classifier 
depended much less on optimal data normalization. Lastly, we compared the best 
classification accuracy for each classification task across the different ML algorithms. 
Interestingly, in contrast to a previous report [19], this analysis indicates that on average 
Elastic Net logistic regression outperforms LASSO and Random Forest classifiers when 
considering the optimal choice of ML algorithm (P = 0.001 comparing Elastic Net to LASSO 
and P = 4*10-14 comparing it to Random Forest, Figure 4e). In summary, this large-scale 
analysis demonstrates the versatility of the ML workflows provided by SIAMCAT and 
validates its default parameters as well as the robustness of classification accuracy to 
deviations from these. 
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Figure 4. Large-scale application of the SIAMCAT machine learning workflow to human gut metagenomic 
disease association studies. (a) Application of SIAMCAT machine learning workflows to taxonomic profiles 
generated from fecal shotgun metagenomes using the mOTUs2 profiler. Cross-validation performance for 
discriminating between diseased patients and controls quantified by the area under the ROC curve (AUROC) is 
indicated by diamonds (95% confidence intervals denoted by horizontal lines) with sample size per dataset given 
as additional panel (cut at N = 250 and given by numbers instead). See Table 1 and Supplementary Table 1 for 
information about the included datasets and key for disease abbreviations. (b) Application of SIAMCAT machine 
learning workflows to functional profiles generated with eggNOG 4.5 for the same datasets as in (a) (see 
Supplementary Figures 4, 7 for additional types of, and comparison between taxonomic and functional input 
data). (c) Cross-validation accuracy of SIAMCAT machine learning workflows as applied to 16S rRNA gene 
amplicon data for human gut microbiome case-control studies [20] (see (a) for definitions). (d) Influence of 
different parameter choices on the resulting classification accuracy. After training a linear model to predict the 
AUROC values for each classification task, the variance explained by each parameter was assessed using an 
ANOVA (see Methods). See Figure 1 for definition of boxplots. (e) Performance comparison of machine learning 
algorithms on gut microbial disease association studies. For each machine learning algorithm, the best AUROC 
values for each task are shown as boxplots (defined as in (D)). Generally, the choice of algorithm only has a 
small effect on classification accuracy, but both the Elastic Net and LASSO performance gains are statistically 
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significant (paired Wilcoxon test: LASSO vs Elastic Net, P = 0.001; LASSO vs Random Forest, P = 1e-08; Elastic 
Net vs Random Forest, P = 4e-14).  
 
Cross-study evaluation of microbiome signatures is crucial to establish their validity across 
patient populations. However, such comparisons are potentially hindered by inter-study 
differences in sample handling and data generation, with technical variation observed to 
often dominate over biological factors of interest [88–90]. Additionally, biological and clinical 
factors can contribute to inter-study differences. These not only include influences of 
geography, ethnicity, demographics, and life-style, but also how clinical phenotypes are 
defined and controls selected for clinical studies [91]. 
Up to now it has not been systematically explored how well microbiome-based ML models 
transfer across a range of diseases. To close this gap, we used our large-scale ML meta-
analysis and trained ML models for each task using mOTUs2 taxonomic profiles as input 
(based on the previously established best-performing parameter set). We subsequently 
focused on models with reasonable cross-validation accuracy (AUROC>0.75) and applied 
these to all remaining datasets to make predictions.  
When evaluating cross-study application of ML models, we specifically focused on two 
questions (see Supplementary Figure 9 and Methods). First, we asked to which extent the 
separation between cases and controls (in terms of prediction scores) would be maintained  
when control samples of a different study are used. This can be measured via the AUROC, 
which we rescaled to range between 0 (indicating complete loss of discriminatory power on 
external data) and 1 (meaning that the ML model could be transferred to another dataset 
without loss of discrimination accuracy). Conveniently, this measure of cross-study portability 
can be assessed even on datasets for different diseases, since it is only based on external 
controls, not cases. Second, we asked how specific an ML model would be to the disease it 
was trained to recognize, or whether its false-positive rate would be elevated when 
presented with cases from a distinct condition. This is of interest in the context of an ongoing 
debate on whether there is a general gut microbial dysbiosis or distinct compositional 
changes associated with each disease [19,20,92]. Disease-specific classifiers would also be 
of clinical relevance when applied to a general population: due to large differences in 
disease prevalence, a model for CRC (a condition with low prevalence) misclassifying many 
type 2 diabetes (T2D) patients (high prevalence) would in the general population detect 
many more (false) T2D cases than CRC cases, and thus have very low precision for CRC. 
To quantify disease specificity of an ML model, we assessed how many samples from a 
distinct disease would be mispredicted as positive for the disease the ML model was trained 
on (at a cutoff adjusted to maintain a false-positive rate of 10% on the cross-validation set).  
Our evaluations showed low cross-study portability on the majority of external data sets 
(apparent also from a more than twofold increase in false positives on average) for most 
models, which suggests that ML model transfer is substantially impacted -- if not rendered 
impossible -- by biological and technical study heterogeneity (Supplementary Figure 10). 
Accordingly, (false-positive) predictions for other diseases were elevated for most models 
(by a factor of 2.8 on average), with the extreme case of the ankylosing spondylitis (AS) 
model predicting more than 90% of cases from other diseases to be AS positive (median 
across studies, Supplementary Figure 11). These evaluations indicate dramatic problems 
with specificity and cross-disease predictions when naively transferring microbiome ML 
models. 
In order to improve the cross-study portability of ML models, we devised a strategy we call 
control augmentation, in which randomly selected control samples from independent 
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microbiome population cohort studies [93–95] are added to the training set during model 
fitting (Fig 5a, see Methods). This was motivated by the hypothesis that additional variability 
from a greater control pool comprising heterogeneous samples from multiple studies would 
enable classifiers to more specifically recognize disease signals while at the same time 
minimizing overfitting on peculiarities of a single dataset. We indeed found that control 
augmentation greatly enhanced cross-study portability uniformly across all ML models (Fig 
5bc, Supplementary Figure 10). At the same time, cross-disease predictions decreased 
(Fig 5cd, Supplementary Figure 11) implying that control augmentation is an effective 
strategy to increase disease specificity of ML models. The control augmentation strategy did 
not strongly depend on the set of controls used. We found large (>250 samples) cohort 
studies to work well as a pool for control-augmentation (allowing us to add five times the 
amount of control samples to each dataset). However, augmentation with fewer controls or 
with other datasets improved cross-study portability and disease specificity to almost the 
same effect (Supplementary Figure 12).  
With cross-study portability greatly improved, we expect the remaining cross-disease 
predictions to be largely due to biological similarities between diseases rather than due to 
technical influences. In support of this, we show that CRC signatures have a tendency to 
cross-predict samples from patients with intestinal adenomas (ADA) or inflammatory bowel 
disease (CD), both of which are risk factors for CRC development [96]. Similarly, UC models 
cross-predict CD cases and vice versa, reflecting more general gut microbial changes, i.e. 
loss of beneficial commensal bacteria, that are shared across both types of inflammatory 
bowel disease [97]. In summary, we demonstrate that control augmentation is an effective 
strategy to broadly enable the validation of microbiome disease signatures across different 
studies, since it can overcome study-specific biases, which preclude the naive transfer of ML 
models. 
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Figure 5. Control augmentation improves ML model disease specificity and reveals shared and distinct 
predictors. (a) Schematic of the control augmentation procedure: Control samples from external cohort studies 
are added to the individual cross validation folds during model training. Trained models are applied to external 
studies (either of a different or the same disease) to determine cross-study portability (defined as maintenance of 
type-I-error control on external control samples) and cross-disease predictions (i.e. false detection of samples 
from a different disease). (b) Cross-study portability was compared between naive and control-augmented 
models showing consistent improvements due to control augmentation. (c) Boxplots depicting cross-study 
portability (left) and prediction rate for other diseases (right) of naive and control-augmented models. See Figure 
1 for definition of boxplots. (d) Heatmap showing prediction rates for other diseases (red colour scheme) and for 
the same disease (green colour scheme) for control-augmented models on all external datasets. True positive 
rates of the models from cross-validation on the original study are indicated by boxes around the tile. Prediction 
rates over 10% are labeled. (e) Principal coordinate (PCo) analysis between models based on Canberra distance 
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on model weights. Diamonds represent the mean per dataset in PCo space across cross-validation splits and 
lines show the standard deviation. (f) Visualization of main selected model weights (predictors corresponding to 
mOTUs, see Methods for definition of cutoffs) by genus and disease. Absolute model weights are shown as a dot 
plot on top, grouped by genus (including only genera with unambiguous NCBI taxonomy annotation). Below, the 
number of selected weights per genus is shown as a bar graph, colored by disease (see (e) for colour key). 
Genus labels at the bottom include the number of mOTUs with at least one selected weight followed by the 
number of mOTUs in the complete model weight matrix belonging to the respective genus. 
 
When comparing microbiome signatures across diseases in more detail, we also revisited 
the question of whether microbiome alterations are specific to a disease, or signs of a 
general dysbiotic state [20]. As many ML algorithms, in particular (generalised) linear 
models, such as LASSO or Elastic Net logistic regression models, allow for model 
introspection, microbiome biomarkers can easily be extracted and their weight in the model 
directly quantified by (normalized) coefficient values. The model weights of the control-
augmented models showed a clear clustering by disease in principal coordinate space 
revealing broad disease-similarity patterns in terms of microbiome predictors that may reflect 
etiological similarities (Fig 5e, not apparent from naively transferred ML models, 
Supplementary Figure 13). To obtain a more nuanced view of gut bacterial taxa underlying 
these disease similarities, we analysed individual mOTUs (grouped be genus membership) 
that were selected as predictors in disease models (Fig 5f, to minimize bias from multiple 
studies of the same disease, we used the mean model for each disease and extracted those 
features whose weights accounted for more than 50% of the model, see Methods for 
details). We found some disease-enriched predictors to be very specific for a single disease, 
such as Veillonella spp. for LIV, Bifidobacteria and Neisseria mOTUs for AS, or Gemella and 
Parvimonas mOTUs for CRC. In contrast, species from other genera, for example 
Lactobacillus, Bacteroides or Fusobacteria, appear predictive of several diseases, although 
species and subspecies belonging to these vary in terms of their disease specificity 
(Supplementary Figure 14). Regarding control-enriched predictors, species from some 
genera are frequently depleted across multiple diseases (Anaerostipes and Romboutisa) 
while some diseases are marked by broad depletion of beneficial microbes, e.g. CD 
(consistent with [97]). 
Overall, enabled by control augmentation as an effective strategy to improve cross-study 
portability of ML models, our cross-disease meta-analysis reveals both shared and disease-
specific predictors as a basis for further development of microbiome-based diagnostic 
biomarkers. 
 
Meta-analysis of Crohn’s disease gut microbiome studies 
Microbiome disease associations being reported at an ever-increasing pace have also 
provided opportunities for comparisons across multiple studies of the same disease to 
assess the robustness of associations and the generalisability of ML models [19,20,37,38]. 
To demonstrate SIAMCAT’s utility in single-disease meta-analyses, we analyzed five 
metagenomic datasets [5,27–30], all of which included samples from patients with Crohn’s 
disease (CD) as well as controls not suffering from inflammatory bowel diseases (IBD). Raw 
sequencing data consistently processed to obtain genus abundance profiles with mOTUs2 
[85]. 
Based on SIAMCAT’s check.associations function, we identified microbial genera that are 
significantly associated with CD in each study and visualized their agreement across studies 
(Figure 6a, left panel). In line with previous findings [4], the gut microbiome of CD patients is 
characterised by a loss of diversity and many beneficial taxa. Though our re-analysis of the 
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data from [30] could not identify any statistically significant genus-level associations, possibly 
due to the relatively small number of individuals or the choice of control samples obtained 
from patients with non-IBD gastrointestinal symptoms, the other four studies showed 
remarkable consistency among the taxa lost in CD patients, in particular for members of the 
Clostridiales order.  
We further investigated variation due to technical and biological differences between studies 
as a potential confounder using SIAMCAT’s check.confounder function following a 
previously validated approach [37]. For many genera, variation can largely be attributed to 
heterogeneity among studies; the top five associated genera (cf. Figure 6a), however, vary 
much more with disease status, suggesting that their association with CD is only minimally 
confounded by differences between studies (Figure 6b). 
Next, we systematically assessed cross-study generalisation of ML models trained to 
distinguish CD patients from controls using SIAMCAT workflows. To this end, we trained an 
Elastic Net model for each study independently and evaluated the performance of the 
trained models on the other datasets (Figure 6c and Methods). Most models maintained 
very high classification accuracy when applied to the other data sets for external validation 
(AUROC >0.9 in most cases); again with the exception of the model cross-validated on the 
data from [30], which exhibited substantially lower accuracy in both cross validation and 
external validation. 
We lastly assessed the importance of individual microbial predictors in the CD models. The 
LASSO, and to some extent also the Elastic Net, are sparse models, in which the number of 
influential predictors (with nonzero coefficients) is kept small. As a consequence, these ML 
methods tend to omit statistically significant features when they are correlated to each other 
in favor of a smaller subset of features with optimal predictive power. Nonetheless, in our 
meta-analysis of CD, the feature weights derived from multivariable modeling corresponded 
well to the univariate associations, and also showed some consistency across the four 
studies in which clear CD associations could be detected and an accurate ML model trained 
(Figure 6a, right panel). Taken together, these results demonstrate that SIAMCAT could be 
a tool of broad utility for consolidating microbiome-disease associations and biomarker 
discovery by leveraging the large amount of metagenomic data becoming available for ML-
based analyses. 
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Figure 6. Meta-analysis of CD studies based on fecal shotgun metagenomic data. 
(a) Genus-level univariate and multivariable associations with CD across the five included metagenomic studies. 
The heatmap on the left side shows the generalized fold change for genera with a single-feature AUROC higher 
than 0.75 or smaller than 0.25 in at least one of the studies. Associations with a false discovery rate (FDR) below 
0.1 are highlighted by a star. Statistical significance was tested using a Wilcoxon test and corrected for multiple 
testing using the Benjamini-Hochberg procedure. Genera are ordered according to the mean fold change across 
studies and genera belonging to the Clostridiales order are highlighted by grey boxes. The right side displays the 
median model weights for the same genera derived from Elastic Net models trained on the five different studies. 
For each dataset, the top 20 features (regarding their absolute weight) are indicated by their rank. (b) Variance 
explained by disease status (CD versus controls) is plotted against the variance explained by differences 
between studies for individual genera. The dot size is proportional to the mean abundance and genera included 
in (A) are highlighted in red or blue. (c) Classification accuracy as measured by AUROC is shown as a heatmap 
for Elastic Net models trained on genus-level abundances to distinguish controls from CD cases. The diagonal 
displays values resulting from cross validation (when the test and training set are the same) and off-diagonal 
boxes show the results from study-to-study transfer of models.  
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Discussion 
 
The rising interest in clinical microbiome studies and microbiome-derived diagnostic, 
prognostic, and therapeutic biomarkers also calls for more robust analysis procedures. An 
important step in that direction is the development of freely available, comprehensive, and 
extensively validated analysis workflows that make complex ML procedures available to non-
experts, ideally while safeguarding against statistical analysis pitfalls. Designed with these 
objectives in mind, SIAMCAT provides a modular analysis framework that builds on the 
existing R-based microbiome analysis environment: data integration from DADA2 [98] or 
phyloseq [69] is straightforward since SIAMCAT internally uses the phyloseq object. ML 
algorithms and procedures in SIAMCAT interface to the mlr package [70], a general-purpose 
ML library. Since the multitude of ML algorithms, workflow options, and design choices within 
such a general package can make setting up ML workflows for microbiome research 
challenging for non-experts, SIAMCAT mainly aims to enable novice ML users to apply 
robust and validated ML workflows to their data with preprocessing and normalization 
options tailored to the characteristics of microbiome data.  At the same time, SIAMCAT 
allows advanced users to flexibly set up and customize more complex ML procedures, 
including non-standard cross-validation splits for dependent measurements and supervised 
feature selection methods that are properly nested into cross validation (Figure 5). Further 
developments of the package are planned to accommodate the rapidly changing needs of 
the microbiome research community and updates will be published in accordance with the 
established Bioconductor release schedule. 
 
To showcase the power of ML workflows implemented in SIAMCAT, we performed a meta-
analysis of human gut metagenomic studies at considerably larger scale than previous 
efforts [17–22] (see Figure 4). It importantly encompassed a large number of diseases as 
well as different taxonomic and functional profiles as input that were derived from different 
metagenomic sequencing techniques (16S rRNA gene and shotgun metagenomics 
sequencing) and profiling tools. Consequently, these benchmarks are expected to yield 
much more robust and general results than those from previous studies [17–22]. In our 
exploration of more than 7.000 different parameter combinations per classification task (see 
Methods), we found the Elastic Net logistic regression algorithm to yield highest cross-
validation accuracies on average, albeit requiring the input data to be appropriately 
normalized (see Figure 4 and Supplementary Figure 8). Compared with the choice of 
normalisation method and classification algorithm, other parameters had a considerably 
lower influence on the resulting classification accuracy. SIAMCAT’s functionality to robustly 
fit statistical microbiome models and evaluate their performance will enable comparison to 
established diagnostic biomarkers [99] as an important prerequisite for further translation of 
microbiome research into the clinic. 
 
To help resolve the debate about spurious associations and reproducibility issues in 
microbiome research [100], meta-analyses are crucial for the validation of microbiome 
biomarkers [37,38]. However, we found that ML models have substantial problems with type-
I-error control (>2-fold increase in false-positive rate) and disease specificity (>2.5-fold 
elevated false-positive rate) when naively transferred across studies. We propose measures 
to detect these issues, which, if more widely adopted, could help to more precisely 
characterize them and their underlying causes. To address them, we introduce the control 
augmentation strategy, which greatly improved cross-study portability of ML models. Being a 
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first attempt to overcome study heterogeneity for improved cross-study model application, 
our work will hopefully stimulate further developments, which could easily be evaluated on 
the provided datasets. However, all such ML meta-analyses are limited by biological and 
clinical differences between studies [91], which can only be addressed by better reporting 
standards [101]. Within these limitations, our ML meta-analysis data sets could become a 
valuable community resource for method development, systematic assessment of disease 
similarities, and further exploration of globally applicable microbiome biomarkers including 
validation of their disease-specificity. 
 
Using model introspection after control-augmentation, we could revisit the question if 
microbiome alterations are specific to a given disease or more general hallmarks of a 
dysbiotic state [20]. In general, we found depletion of beneficial bacteria to be more often 
shared across several diseases (e.g. Anaerostipes or Romboutisa), in particular in (the 
subtypes of) IBD. Conversely, disease-enriched bacteria were more often specific for a given 
disease. This could mean that some disease-specific microbiome alterations may reflect 
pathogens or pathobionts acting either as etiological agents or exploiting specific disease-
related changes in the intestinal milieu. For example, Parvimonas spp. are predictive for 
colorectal cancer, which is consistent with mechanistic work in this area [102]. Similarly, a 
putative link between oral Veillonella spp. and liver cirrhosis severity has been reported in 
the context of proton-pump inhibitor therapy [103], potentially enabled by increased 
transmission from the oral to the gut microbiome [78]. Other taxa show a broader disease 
spectrum, such as Fusobacterium spp., which have been studied both in the context of CRC 
[104] as well as in IBD [105]. However, firmly establishing disease-specificity or disease 
spectra for microbial biomarkers will require large cohort studies and additional mechanistic 
work to elucidate the gut microbiome’s contribution to disease development at the molecular 
level. Nonetheless, our analyses suggest both shared and disease-specific gut microbial 
biomarkers to guide further investigations of specific hypotheses on their ecological roles.  
 
Although the analyses presented here are focused on human gut metagenomic datasets 
with disease prediction tasks, SIAMCAT is not restricted to these. It can also be applied to 
other tasks of interest in microbiome research, e.g. for investigating the effects of medication 
(see Supplementary Figure 2). Metagenomic or metatranscriptomic data from 
environmental samples can also be analysed using SIAMCAT, e.g. to understand 
associations between community composition or transcriptional activity of the ocean 
microbiome with physicochemical environmental properties (see Supplementary Figure 15 
for an example [106]) highlighting that SIAMCAT could be of broad utility in microbiome 
research.  
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Methods 
 
Implementation 
SIAMCAT is implemented as an R package with a modular architecture, allowing for flexible 
combination of different functions to build ML and statistical analysis workflows (see Code 
Box). The output of the functions (for example, the feature matrix after normalization) is 
stored in the SIAMCAT object, which is an extension of the phyloseq object that contains the 
raw feature abundances, meta-variables about the samples, and other optional information 
(for example, a taxonomy table or a phylogenetic tree) [69]. The label defining the sample 
groups for comparison is then derived from a user-specified meta-variable or an additional 
vector. ML models are trained using the mlr infrastructure as an interface to the 
implementations of different ML algorithms in other R packages [70]. SIAMCAT is available 
under the GNU General Public License, Version 3. 
 
Code Box 
Given two R objects called feat (relative abundance matrix) and meta (meta-variables 
about samples as a dataframe, containing a column called disease which encodes the 
label), the entire analysis can be conducted with a few commands (more extensive 
documentation can be found online in the SIAMCAT vignettes). 
 
sc.obj <- siamcat(feat=feat, meta=meta, label='disease') 
sc.obj <- filter.features(sc.obj, filter.method = 'abundance') 
sc.obj <- check.associations(sc.obj, 
    fn.plot = 'associations_plot.pdf')) # produces Fig. 1b 
check.confounders(sc.obj,  
    fn.plot = 'confounder_plot.pdf') # produces Fig. 1c 

sc.obj <- normalize.features(sc.obj, norm.method = 'log.std') 
sc.obj <- create.data.split(sc.obj) 
sc.obj <- train.model(sc.obj, method='lasso') 
sc.obj <- make.predictions(sc.obj) 
sc.obj <- evaluate.predictions(sc.obj) 
model.evaluation.plot(sc.obj,  
    fn.plot = 'evaluation.pdf') # produces Fig. 1d 
model.interpretation.plot(sc.obj, consens.thres = 0.8,  
    fn.plot = 'interpretation.pdf') # produces Fig. 1e 
 
 
Included datasets and microbiome profiling 
In this study, we analyzed taxonomic and functional profiles derived with different profiling 
tools from several metagenomic datasets (see Supplementary Table 1). Taxonomic profiles 
generated using the RDP classifier [83] on the basis of 16S rRNA gene sequencing data 
were downloaded from a recent meta-analysis by Duvallet et al. [20] and summarized at the 
genus level. MetaPhlAn2 [84] and HUMAnN2 [86] taxonomic and functional profiles were 
obtained from the curatedMetagenomicsData R package [72] for all human gut datasets 
within the package that contained at least 20 cases and 20 controls. MetaPhlAn2 profiles 
were filtered to contain only species-level microbial taxa.  
Additional datasets were profiled in-house with the following pipeline implemented in NGless 
[107]: after preprocessing with MOCAT2 [108] and filtering for human reads, taxonomic 
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profiles were generated using the mOTUsv2 profiler [85] and functional profiles were 
calculated by first mapping reads against the integrated gene catalogue [109] and then 
aggregating the results by eggNOG orthologous groups [87]. 
Additionally, genus-level taxonomic profiles from the TARA Oceans microbiome project [106] 
were used for two different classification tasks: to classify samples from polar and non-polar 
ocean regions and to classify samples based on their iron concentration at a depth of 5 
meters (high versus low iron content). 
 
Primary package outputs and confounder analysis 
To illustrate the main outputs of SIAMCAT, we analyzed the taxonomic profiles from a 
metagenomic study of IBD [27] included in the curatedMetagenomicsData R package [72]. 
For the analyses presented in Figure 1, we restricted the dataset to control samples from 
Spain and cases with UC, since the two IBD subtypes included in the dataset (ulcerative 
colitis and Crohn’s disease) are very different from one another in terms of the associated 
changes in gut microbiome composition. See the SIAMCAT vignettes for more information 
or the Code Box for an outline of the basic SIAMCAT workflow.  
To demonstrate how SIAMCAT can aid in confounder detection, we used the same dataset 
but this time included the Danish control samples in order to explore potential confounding 
by differences between samples collected and processed in these two countries. The 
analyses presented in Figure 2 have all been conducted with the respective functions of 
SIAMCAT (see SIAMCAT vignettes).  
 
Machine learning hyperparameter exploration 
To explore suitable hyperparameter combinations for ML workflows, we trained an ML model 
for each classification task and each hyperparameter combination. By hyperparameter we 
mean configuration parameters of the workflow, such as normalisation parameters, tuning 
parameters controlling regularisation strength or properties of external feature selection 
procedure in contrast to model parameters fitted during the actual training of the ML 
algorithms. Specifically, we varied the filtering method (no data filtering, prevalence filtering 
with 1%, 5%, 10% cutoffs, abundance filtering with 0.001, 0.0001, 0.0001 as cutoffs, and a 
combination of abundance and prevalence filtering), the normalization method (no 
normalization beyond the total sum scaling, log-transformation with standardization, rank-
transformation with standardization, and centered log ratio transformation), the ML algorithm 
(LASSO, Elastic Net, and Random Forest classifiers), and feature selection regimes (no 
feature selection, feature selection based on generalized fold change or based on single-
feature AUROC; cutoffs were 25, 50, 100, 200, and 400 features for taxonomic profiles and 
100, 500, 1000, and 2000 features for functional profiles). To cover the full hyperparameter 
space, we therefore trained 7.488 models for taxonomic and 3.168 models for functional 
datasets for each classification task. 
To determine the optimal AUROC across input types (shown in Figure 4), we calculated for 
each individual parameter combination the mean AUROC across all classification tasks with 
a specific type of input. Different feature filtering procedures could lead to cases in which the 
feature selection cutoffs were larger than the number of available features after filtering, 
therefore terminating the ML procedure. For that reason, we only considered those 
parameter combinations that did produce a result for all classification tasks with the specific 
type of input data. 
To compare the importance of feature filtering, feature selection, normalization method and 
ML algorithm on classification accuracy, we trained one linear model per classification task 
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predicting the AUROC values from those variables. We then partitioned the variance 
attributable to each of these variables by calculating type III sums of squares using the 
Anova function from the car package in R [110]. 
In order to contrast class separation of samples in distance space with the classification 
performance achieved by ML algorithms (see Supplementary Figure 6), we designed a 
distance-based measure of separation. For each dataset, we determined the distances 
between all pairs of samples within a class as well as all pairs of samples between classes 
and then calculated an AUROC value based on these two distributions. This distance-based 
measure effectively quantifies to what extent samples are closest to other samples from the 
same class (i.e. cluster together) and hence corresponds well to the visual separation of 
classes in ordination space (see Supplementary Figure 6). 
 
Model transfer, cross-study portability, and prediction rate for other diseases 
To assess cross-study portability and prediction rate for other diseases, ML models were 
applied to external datasets using the make.predictions function in SIAMCAT. In short, the 
function uses the normalization parameters of the discovery dataset to normalize the 
external data in a comparable way and then makes predictions by averaging the results of 
the application of all models of the repeated cross-validation folds to the normalized external 
data.  
Cross-study portability is then calculated by comparing the predictions for cases in the 
discovery datasets and controls in the external dataset. First, the AUROC between these 
two prediction vectors is calculated and values below 0.5 (when the predictions on controls 
in the external dataset are higher than predictions on cases in the discovery dataset) are set 
to 0.5. Cross-study portability is then defined as (|0.5 - AUROC|)*2 so that it afterwards 
ranges from 0 (no separation between cases and external controls or higher predictions on 
external controls) to 1 (perfect separation between cases and external controls). 
To calculate the prediction rate for other diseases (or the same disease) on external 
datasets, a cutoff on the (real-valued) predictions is chosen so that the false-positive rate 
(FPR) in the discovery dataset is 0.1. Based on this cutoff, the external predictions are 
evaluated as positive (diseased) or negative predictions and a detection rate corresponding 
to the fraction of positive predictions is determined. 
 
Training Elastic Net models with control augmentation 
To train models with the control augmentation strategy, we used the data from the following 
cohort microbiome studies as additional control samples: [93–95]. Repeated measurements 
for the same individual were removed in the case of Zeevi et al. For each training set in the 
repeated cross-validation, we increased the number of control samples 5-fold by randomly 
sampling the appropriate number of controls (in a balanced manner between datasets to 
avoid overrepresentation of the larger external cohorts). Before addition, the additional 
control samples were normalized using the normalization parameters of the discovery set. 
Due to the introduction of additional variability, the control-augmented Elastic Net models 
were trained with a pre-set alpha value of 0.5 to ensure stability of model size. 
To compare the predictors across different diseases, model weights of the control-
augmented models were transformed into relative weights by dividing by the sum of absolute 
coefficient values. Then, models from the same disease were averaged. Predictors (that is, 
mOTUs) were selected for display in Figure 5f, if they (i) cumulatively contributed more than 
50% of the mean relative disease model, (ii) their individual weights were bigger than 1%, 
and (iii) the genus annotation had an unambiguous NCBI taxonomy. 
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Illustration of common pitfalls in machine learning procedures 
To demonstrate how naive sequential application of supervised feature selection and cross 
validation might bias performance estimations, we trained LASSO ML models to distinguish 
colorectal cancer cases from controls based on MetaPhlAn2-derived species abundance 
profiles using the dataset with the handle ThomasAM_2018a [38] obtained through the 
curatedMetagenomicsData R package [72]. For the incorrect procedure of feature selection, 
single-feature AUROC values were calculated using the complete dataset (inverted for 
negatively associated features). Then, the features with the highest AUROC values were 
selected for model training (number depending on the cutoff). In contrast, the correct 
procedure implemented in SIAMCAT excludes the data in the test fold when calculating 
single-feature AUROC values; instead, AUROC values are calculated on the training fold 
only. To test generalization to external data, the models were then applied to another 
colorectal cancer metagenomic study [8] available through the curatedMetagenomicsData R 
package (also see the SIAMCAT vignette: Holdout testing). 
To illustrate the problem arising when combining naive cross validation with dependent data, 
we used the Crohn’s disease (CD) datasets used in the meta-analysis described below. We 
first subsampled the iHMP dataset [30] to five repeated measurements per subject, as some 
subjects had been sampled only five times and others more than 20 times. Then, we trained 
LASSO models using both a naive cross validation and a cross validation procedure in which 
samples from the same individual were always kept together in the same fold. External 
generalization was tested on the other four CD datasets described below. 
 
Meta-analysis of Crohn’s disease metagenomic studies 
For the meta-analysis of Crohn’s disease gut microbiome studies, we included five 
metagenomic datasets [5,27–30] that had been profiled with the mOTUs2 profiler [85] on 
genus level. While some datasets contained both UC and CD patients [5,27,30], other 
datasets contained only CD cases [28,29]. Therefore, we restricted all datasets to a 
comparison between only CD cases and control samples, since the two subtypes of IBD are 
very different from each other.  
For training of ML models, we blocked repeated measurements for the same individual when 
applicable [27,28,30]; specifically for the iHMP dataset [30], we also subsampled the dataset 
to five repeated measurements per individual to avoid biases associated with differences in 
the number of samples per individual. For external validation testing, we completely removed 
repeated measurements in order not to bias the estimation of classification accuracy. 
To compute association metrics and to train and evaluate ML models, each dataset was 
encapsulated in an individual SIAMCAT object. To produce the plot showing the variance 
explained by label versus the variance explained by study, all data were combined into a 
single SIAMCAT object. The code to reproduce the analysis can be found in the SIAMCAT 
vignettes.  
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