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Abstract

Dimension reduction is widely used and often necessary to reduce high dimen-
sional data to a small number of underlying variables, making subsequent analyses
and their interpretation tractable. One popular technique is Exploratory Factor
Analysis (EFA), used by cognitive neuroscientists to reduce measurements from a
large number of brain regions to a tractable number of factors. However, dimen-
sion reduction often ignores relevant a priori knowledge about the structure of the
data. For example, it is well established that the brain is highly symmetric. In
this paper, we (a) show the adverse consequences of ignoring a priori structure in
factor analysis, (b) propose a technique to accommodate structure in EFA using
structured residuals (EFAST), and (c) apply this technique to three large and var-
ied brain imaging datasets, demonstrating the superior fit and interpretability of our
approach. We provide an R software package to enable researchers to apply EFAST
to other suitable datasets.

1 Introduction

Scientists in vastly different disciplines often face a similar problem: the challenges of
dimensionality. Data collection and acquisition may yield far more variables than can be
tractably analyzed, yet omitting large proportions of the data is equally undesirable. In
the fields of statistics and mathematics, there have been numerous developments that deal
with these challenges by means of dimension reduction. In such approaches, researchers
take a high dimensional dataset and reduce it to a (much) smaller number of dimensions,
often called factors or components, for further analysis.

A particularly popular dimension reduction technique is Exploratory Factor Analysis
(EFA). A precursor of modern EFA was invented by Spearman (Bartholomew, 1995), who
developed it to reduce performance scores on a large battery of cognitive ability tests into
one, or a small number, of ability factors. EFA models the observed covariance matrix of
a set of P variables by assuming there are M < P factors, which predict the values on
the observed variables. For example, an underlying fluid intelligence factor may partially
predict scores on a matrix reasoning test (Horn and Cattell, 1967).
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Many data reduction techniques exist beyond EFA, including principal components
analysis (PCA), Partial Least Squares (PLS), Independent Component Analysis (ICA),
and many more beyond our current scope (see Roweis and Ghahramani, 1999; Sorzano
et al., 2014). All of these techniques aim to approximate the observed data by means of a
lower-dimensional representation. These techniques, although powerful, share a particular
limitation, at least in their canonical implementations, namely that they cannot easily
integrate prior knowledge of (additional) covariance structure present in the data. In
other words, all observed covariation is modeled by the underlying factor structure.

Dimension reduction techniques have been used more recently in emerging fields such
as cognitive neuroscience. High dimensional individual differences in brain structure or
function (e.g., volume or activity measures across dozens of regions or even thousands of
voxels) are reduced to a smaller number of factors, which are then used, for instance, to
study morphological differences in schizophrenia (Tien et al., 1996), how cortical struc-
ture relates to behavioural measures (Colibazzi et al., 2008), and to examine age-related
differences in brain structure (de Mooij et al., 2018). However, one key challenge when
reducing the dimensionality of such structural (and functional) brain data is that of sym-
metry : Much like other body parts, contralateral (left/right) brain regions are highly
correlated due to developmental and genetic mechanisms which govern the gross mor-
phology of the brain. Ignoring this prior information will adversely affect the dimension
reduction step, leading to worse representation of the high-dimensional data by the ex-
tracted factors. Simple workarounds, such as averaging left and right into a single index
per region, have other drawbacks: they throw away information, preclude the discovery
of (predominantly) lateralized factors, and prevent the study of (a)symmetry as a topic
of interest in and of itself. We believe that many data reduction problems in social, cog-
nitive, and behavioural sciences have a similar structure: residual structure is known, but
precise theory about the underlying factor structure is not. (Asparouhov and Muthén,
2009). As such, although we focus on imaging data, our approach is likely more widely
applicable.

Other classes of techniques, developed largely within psychometrics, can naturally
accommodate such additional structure. These techniques started with multitrait - mul-
timethod (MTMM) matrices (Campbell and Fiske, 1959) and later confirmatory factor
analysis (CFA) with residual covariances (e.g., Kenny, 1976). MTMM is designed to
extract factors when these factors are measured in different ways: when measuring per-
sonality through a self-report questionnaire and behaviour ratings, there are factors that
explain correlation among items corresponding to a specific trait such as ’extraversion’,
and there are factors that explain additional correlation between items because they are
gathered using the same methods (self-report and behavioural ratings). Thus, MTMM
techniques separate the correlation matrix into two distinct, summative parts: correlation
due to the traits of central interest, and correlation due to the measurement methods.
However, MTMM requires a priori knowledge of the trait structure (e.g., the OCEAN
model of personality).

Here we propose a manner in which to instead conduct purely exploratory factor anal-
ysis (e.g. across many brain regions), whilst incorporating prior structure knowledge (e.g.
symmetry). Standard implementations of EFA, CFA, and MTMM are inadequate to esti-
mate factor structure under these circumstances, as they do not simultaneously allow for
exploration and the incorporation of residual structure. We improve upon these proce-
dures by developing a method called Exploratory factor analysis with structured residuals
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(EFAST). We show that EFAST outperforms EFA in empirically plausible scenarios,
and that ignoring the problem of structured residuals in these scenarios adversely affects
inferences.

Note that we are not the first to suggest using structured residuals in EFA to take into
account prior knowledge about structure in the observed variables. Adding covariances
among residuals is a common method to take into account features of the data-generating
process (e.g., Cole et al., 2007), and this has been possible in the context of EFA since the
release of the ESEM capability in MPlus (Asparouhov and Muthén, 2009) and in lavaan

(Rosseel, 2019). In the context of neuroscientific data, similar methods in accounting
for structure in dimension reduction have been researched by De Munck et al. (2002) in
source localization for EEG/MEG. Our goal for this paper is to provide a compelling
argument for the use of such structured residuals from the point of view of cognitive
neuroscience, as well as a user-friendly, open-source implementation of this method for
dimension reduction in real-world datasets.

This paper is structured as follows. First, we explain why using standard EFA or
CFA for brain imaging data may lead to undesirable results, and we develop EFAST
based on novel techniques from structural equation modeling (SEM). Then, we show that
EFAST performs well in simulations, demonstrating superior performance compared to
EFA in terms of factor recovery, factor covariance estimation, and the number of extracted
factors when dealing with symmetry. Third, we illustrate EFAST in a large neuroimaging
cohort (Cam-CAN; Shafto et al., 2014). We illustrate EFAST for three distinct datasets:
Grey matter volume, white matter microstructure and within-subject fMRI functional
connectivity. We show how EFAST outperforms EFA both conceptually and statistically
in all three datasets, showing the generality of our technique. We conclude with an
overview and suggestions for further research.

Accompanying this paper, we provide tools for researchers to use and expand upon
with their own datasets. These tools take the form of (a) an R package called efast and
a tutorial with example code (https://github.com/vankesteren/efast), and (b) syn-
thetic data and code to reproduce the empirical examples in Section 4 and the simulations
in Section 3 (https://github.com/vankesteren/efast_code).

2 Factor analysis with structured residuals

In this section, we compare and contrast existing approaches in their ability to perform
factor analysis in an exploratory way while at the same time accounting for residual
structure. We discuss new developments in the field of exploratory structural equation
modeling (ESEM) that enable simultaneous estimation of exploratory factors and struc-
tured residuals, after which we develop the EFAST model as an ESEM with a single
exploratory block. We will use brain morphology data with bilateral symmetry as our
working example throughout, although the principles here can be generalized to datasets
with similar properties.

EFA, as implemented in software programs such as SPSS, R, and Mplus, models
the observed correlation matrix through two summative components: the factor load-
ing matrix Λ, relating the predefined number M of factors to the observed variables,
and a diagonal residual variance matrix Θ, signifying the variance in the observed vari-
ables unexplained by the factors. Using maximum likelihood, principal axis factoring, or
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least squares (Harman and Jones, 1966), the factor loadings and residual variances are
estimated such that the implied correlation matrix Σ = ΛΛT + Θ best approximates
the observed correlation matrix S. After estimation, the factor loadings are rotated to
their final interpretable solution using objectives such as oblimin, varimax, or geomin
(Bernaards and Jennrich, 2005).

We illustrate the challenge and the rationale behind our approach in Figure 1. The
true correlation matrix is highlighted on the left, with correlations due to three factors
shown as diagonal blocks. However, there is also considerable off-diagonal structure: the
secondary diagonals show a symmetry pattern similar to that observed in real-world brain
structure data (Taylor et al., 2017). The top panel of the figure shows that a traditional
EFA approach will separate this data matrix into two components: (a) covariance due to
the hypothesized factor structure and (b) the diagonal residual matrix. The key challenge
is that EFA will attempt to approximate all the off-diagonal elements of the correlation
matrix through the factors, even if this adversely affects the recovery of the true factor
structure. Performing EFA with such a symmetry pattern may affect the factor solution
in a variety of ways. For instance, in this toy example, the EFA model requires more
than 12 factors to properly represent the data, instead of the three factors specified (see
Appendix A). In other words, in such cases it is essential to incorporate the known residual
structure via a set of additional assumptions.

ΛΨΛT Θ+

ΛΨΛT Θ+ Θstructure+

Exploratory factor analysis

Observed correlation

Confirmatory factor analysis with structured residuals

Figure 1: Example observed correlation matrix and its associated decompo-
sition according to EFA (top) and according to CFA (bottom) into a factor-
implied correlation component (ΛΨΛT ), residual variance component Θ,
and – in CFA with residual structure only – residual structure component.
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As an alternative to EFA, we may implement a Confirmatory Factor Analysis (CFA)
instead. In contrast to EFA, CFA imposes a priori constraints on the Λ matrix: some
observed variables do not load on some factors. Moreover, in contrast to standard EFA
approaches, residual structure can be easily implemented in CFA using standard SEM
software such as lavaan (Rosseel, 2012). In other words, CFA would allow us to tackle
the problem in Figure 1: We can allow for the residual structure known a priori to be
present in the data. By allowing for the residual structure in the data, a CFA yields
the implied matrices shown in the bottom panel of Figure 1, retrieving the correct factor
loadings, residual variance, and residual structure. However, this is only possible because
in this toy example we know the factor structure - In many empirical situations this is
precisely what we wish to discover. In the absence of theory about the underlying factors,
it is thus not possible to benefit from these features of CFA.

As such, we need an approach that can combine the strengths of EFA (estimating
the factor structure in the absence of strong a priori theory) with those from CFA (the
potential to allow for a priori residual structure). Here, we propose a hybrid between
the two, which we call exploratory factor analysis with structured residuals, or EFAST.
In order to implement and estimate these models, we make use of recent developments
in the field of structural equation modeling (SEM). In the next section, we explain how
these developments make EFAST estimation possible.

2.1 Exploratory SEM

Exploratory SEM (ESEM) is an extension to SEM which allows for blocks of exploratory
factor analysis within the framework of confirmatory SEM (Jöreskog, 1969; Brown, 2006;
Asparouhov and Muthén, 2009; Guàrdia-Olmos et al., 2009; Marsh et al., 2014; Rosseel,
2019). ESEM is a two-step procedure. In the first step, a regular SEM model is estimated,
where each of the EFA blocks have a diagonal latent covariance matrix Ψ and the Λ matrix
of each block is of transposed echelon form, meaning all elements above the diagonal are
constrained to 0. For a nine-variable, three-factor EFA block b the matrices would then
be:

Ψb =

1 0 0
0 1 0
0 0 1

 , Λb =



λ11 0 0
λ21 λ22 0
λ31 λ32 λ33
λ41 λ42 λ43
λ51 λ52 λ53
λ61 λ62 λ63
λ71 λ72 λ73
λ81 λ82 λ83
λ91 λ92 λ93


This means there are M2

b constraints for each EFA block b. This is the same number
of constraints as conventional EFA (Asparouhov and Muthén, 2009). The second step
in ESEM is to rotate the solution using a rotation matrix H. Just as in regular EFA,
this rotation matrix is constructed using objectives such as geomin or oblimin. In ESEM,
the rotation affects the factor loadings and latent covariances of the EFA blocks, but also
almost all other parameters in the model (Asparouhov and Muthén (2009) provide an
overview of how rotation changes these parameter estimates). Despite these changes, a
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key property of ESEM is that different rotation solutions lead to the same overall model
fit.

ESEM has long been available only in Mplus (Muthén and Muthén, 1998; Asparouhov
and Muthén, 2009). More recently, it has become available in open sourced R packages
psych (for specific models, Revelle, 2018) as well as lavaan (since version 0.6-4, Rosseel,
2019) – a comprehensive package for structural equation modeling. An example of a basic
EFA model using lavaan syntax with 3 latent variables and 9 observed variables is the
following:

efa("block1")*F1 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

efa("block1")*F2 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

efa("block1")*F3 =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9

In effect, this model specifies three latent variables (F1, F2, and F3) which are each
indicated by all 9 observed variables (x1 to x9). The efa("block1") part is a modifier
for this model which imposes the constraints on Ψ and Λ mentioned above. For a more
detailed explanation of the lavaan syntax, see Rosseel (2012). Figure 2 shows a compar-
ison of the factor loadings obtained using conventional factor analysis (factanal() in R)
and lavaan’s efa() modifier. As shown, the solution obtained is exactly the same, with
perfect correlation among the loadings for each of the factors.
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Figure 2: Exploratory factor analysis of 9 variables in the Holzinger and
Swineford (1939) dataset. On the y-axis are the estimated factor loadings
using the oblimin rotation functionality in lavaan version 0.6-4, and the
loadings on the x-axis are derived from factanal with oblimin rotation from
the GPArotation package (Bernaards and Jennrich, 2005). The loadings are
all on the diagonal with a correlation of 1, meaning the solutions obtained
from these different methods are equal.

With this tool as the basis for model estimation, the next section provides a detailed
development of the construction of EFAST models.
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2.2 EFAST models

We propose using EFA with corrections for contralateral covariance within the ESEM
framework. The corrections we propose are the same as in MTMM models or CFA with
residual covariance. In EFAST the method factors use CFA, and the remaining corre-
lations are explained by EFA. Thus, unlike standard MTMM methods, EFAST contains
exploratory factor analysis on the trait side, as the factor structure of the traits is un-
known beforehand: the goal of the analysis is to extract an underlying low-dimensional
set of features which explain the observed correlations as well as possible. For our run-
ning example of brain imaging data with contralateral symmetry, we consider each ROI a
“method” factor, loading on only two regions. Note that in the context of brain imaging,
Lövdén et al. (2013, Figure 1, model A) have had similar ideas, but their factor analysis
operates on the level of left-right combined ROIs rather than individual ROIs.

The EFAST model has M exploratory factors in a single EFA block, and one method
factor per homologous ROI pair, each with loadings constrained to 1 and its own variance
estimated. The estimated variance of the method factors then represents the amount of
covariance due to symmetry – over and above the covariance represented by the traits.
In Figure 3, the model is displayed graphically for a simplified example with 6 ROIs in
each hemisphere.

���

LH
ROI1

LH
ROI2

LH
ROI3

LH
ROI4

LH
ROI5

LH
ROI6

RH
ROI1

RH
ROI2

RH
ROI3

RH
ROI4

RH
ROI5

RH
ROI6

ROI1

F1 F2 FM

ROI2 ROI3 ROI4 ROI5 ROI6

1 1 1 1 1 1 1 11111

Figure 3: EFAST model with morphology of 6 regions of interest measured
in the left hemisphere (LH) and right hemisphere (RH). The dashed lines
indicate fixed loadings, the two-headed arrows indicate variance/covariance
parameters. The method factors are constrained to be orthogonal, and the
loadings of the M traits are estimated in an exploratory way.

An alternative parametrization for this model is also available. Specifically, we can use
the correlations between the residuals of the observed variables instead of method factors
with freely estimated variances. In the SEM framework, this would amount to moving the
symmetry structure from the factor-explained matrix (ΛΨΛT ) to the residual covariance
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matrix Θ. This model is exactly equivalent, meaning the same correlation matrix decom-
position, the same factor structure, and the same model fit will be obtained. However,
we favour the method factor parametrization as it is closer to MTMM-style models, it
is easier to extract potentially relevant metrics such as a ‘lateralisation coefficient’, and
easier to extend to other data situations where multiple indicators load on each method
factor.

To implement the EFAST model we use the package lavaan, which allows for easy
scaling of the input data, different estimation methods, missing data handling through
full information maximum likelihood, and more. Estimation of the model in Figure 3
can be done with a variety of methods. Here we use the default maximum likelihood
estimation method as implemented in lavaan. Accompanying this paper, we are making
available a convenient R package called efast that can fit EFAST models for datasets
with residual structure due to symmetry. For more implementation details, the package
and its documentation can be found at https://github.com/vankesteren/efast.

In the next section, we show how our implementation of EFAST compares to regular
EFA in terms of factor loading estimation, factor covariance estimation, as well as the
estimated number of factors.

3 Simulations

In this section, we use simulated data to examine different properties of EFAST models
when compared to regular EFA in controlled conditions. The purpose of this simulation
is not an exhaustive investigation, but rather a pragmatically focused study of data
properties (neuro)scientists wishing to use this technique are likely to encounter. First, we
explain how data were simulated to follow a specific correlation structure, approximating
observed empirical data such as that in the Cam-CAN study (Section 4, Figure 10).
Then, we investigate the effects of structured residuals on the extracted factors from
EFA and EFAST: in several different conditions, we investigate how the estimation of
factor loadings, the covariances between factors, and the number of factors changes with
increasing symmetry.

3.1 Data generation

Data were generated following a controlled population correlation matrix Σtrue. This
matrix represents the true correlation between measurements of brain structure in 17 left-
hemisphere and 17 right-hemisphere regions of interest. An example correlation matrix
from our data-generating mechanism is shown in Figure 4.

Σtrue was constructed through the summation of three separate matrices, as in the
lower panel of Figure 1:

1. The factor component Σfactor is constructed as ΛΨΛT , where the underlying factor
covariance matrix Ψ can be either an identity matrix (orthogonal factors) or a
matrix with nonzero off-diagonal elements (oblique factors). There are four true
underlying factors in this simulation. One of the factors is completely lateralized
(top left, highlighted in green), meaning that it loads only on ROIs in the left
hemisphere. An additional illustration of this left-hemisphere factor is shown in
Figure 5. The remaining 3 factors have both left- and right-hemisphere indicators.
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2. The structure component matrix is a matrix with all 0 elements except on the sec-
ondary diagonal, i.e., the diagonal elements of the bottom left and top right quad-
rant are nonzero. The values of these secondary diagonals determine the strength
of the symmetry.

3. The residual variance component matrix is a diagonal matrix where the elements
are chosen such that the diagonal of Σtrue is 1.
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Residual variance
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Figure 4: Example covariance matrix of the data-generating mechanism used
in the simulations. This matrix results from simulated data of 650 brain im-
ages, with a factor loading of .595 for the lateralized factor, a loading of .7
for the remaining factors, a factor correlation of .5, and a symmetry cor-
relation of .2. The first 17 variables indicate regions of interest (ROIs) in
the left hemisphere, and the remaining variables indicate their contralateral
homologues. Note the secondary diagonals, indicating contralateral symme-
try, and the block of 8 variables in the top left resulting from the lateralized
factor.

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2020. ; https://doi.org/10.1101/2020.02.06.933689doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.933689
http://creativecommons.org/licenses/by/4.0/


left

right

lateral medial
side

he
m
is
ph
er
e

Figure 5: Example lateralized factor (the first factor in the simulation).
Grey matter volume in 8 left-hemisphere regions of interest are predicted by
the value on this factor.

For Sections 3.2 and 3.3, data were generated with a sample size of 650, a latent
correlation of either 0 or 0.5, bilateral factor loadings of 0.5 or 0.7, lateral factor loadings
of .425 or .595, and contralateral homology correlations of either 0 (pure EFA), 0.2 (minor
symmetry), or 0.4 (major symmetry). These conditions were chosen to be plausible
scenarios, similar to the observed data from Section 4. In each condition, 120 datasets
were generated on which EFA and EFAST models with 4 factors were estimated. Thus, in
each analysis the true number of factors is correctly specified before estimation. Section
3.4 explores different criteria for the choice of number of factors in the case of contralateral
symmetry.

3.2 Effect of structured residuals on factor loadings

In this section, we compare estimated factor loadings from EFA and EFAST to the true
factor loadings from the simulation’s data generating process. For each condition, 120
datasets were generated, to which both EFA and EFAST models were fit. The factor
loading matrix for each model was then extracted, the columns reordered to best fit the
true matrix, and the mean absolute error of the factor loadings per factor was calculated.

The results of these analyses are shown in 6. As hypothesized, allowing structured
residuals affects how well the factor loadings are estimated from the datasets. Notably,
as shown in 6 when performing regular EFA, the estimation error of the factor loadings
increases when the symmetry becomes stronger, whereas the factor loading estimation
error for the EFAST model remains at the level of regular EFA when there is no symmetry.
Moreover, this effect is more pronounced in the lateralized factor as EFA tries to capture
the symmetry within its factors: the lateralized factor becomes bilateral, leading to a
larger error relative to the factors which are already bilateral, and an incorrect inference
regarding the nature of the thus estimated factor. Although Figure 6 shows only the
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condition with factor loadings of 0.5 and factor covariance of 0.5, the pattern is similar
for different factor loading strengths and with no factor covariance (see Appendix B).
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Figure 6: Mean absolute error for factor loadings of EFA versus EFAST mod-
els with increasing amounts of contralateral symmetry correlation. This plot
comes from the condition where the covariance of the latent variables is 0.5,
and the factor loadings are 0.5. The plot shows that for both bilateral and
lateralised factors, EFA starts to exhibit more error as symmetry increases,
more so for the lateral factor, whereas EFAST performance is nominal over
these conditions. Error bars indicate 95% Wald-type confidence intervals.

Results from this section suggest that for the purpose of factor loading estimation, EFA
and EFAST perform equally well in the case where a model without residual structure is
the true underlying model, but EFAST outperforms EFA when residual structure in the
observed data becomes stronger. In other words, implementing EFAST in the absence
of residual structure does not seem to have negative consequences for estimation error,
suggesting it may also be a useful default if a specific residual structure is thought, but
not known, to exist. This is in line with Cole et al. (2007), who argue that in many
situations including correlated residuals does not have adverse effects, but omitting them
does.

3.3 Effect of structured residuals on factor covariances

Here, we compare how well EFA and EFAST retrieve the true factor covariance values. For
both methods, we used geomin rotation with an epsilon value of 0.01 as implemented in
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lavaan 0.6.4 (Rosseel, 2019). The matrix product of the obtained rotation matrix H then
represents the estimated factor covariance structure of the EFA factors: ΨEFA = HTH
(Asparouhov and Muthén, 2009, eq. 22).

The mean of the off-diagonal elements of the ΨEFA matrix were then compared to
the true value of 0.5 for increasing symmetry strength. The results are shown graphically
in Figure 7. Here, it can be seen that with this rotation method the latent covariance is
underestimated in all cases, although less so with stronger factor loadings. Furthermore,
EFA performs worse as the symmetry increases, whereas the performance of EFAST
remains stable regardless of the degree of contralateral homology, again suggesting no
adverse effects to implementing EFAST in the absence of contralateral correlations. In
the case of uncorrelated factors (not shown), the two methods perform similarly well.
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Figure 7: Latent covariance estimates for different levels of contralateral
homology correlation. The true underlying latent covariance is 0.5; both
methods underestimate the latent covariance but EFA becomes more bi-
ased as symmetry increases. Error bars indicate 95% Wald-type confidence
intervals.

The results from this section shows that in addition to better factor recovery for
EFAST, the recovery of factor covariance is also improved relative to EFA. Again, even
when the data-generating mechanism does not contain symmetry, EFAST performs at
least at the level of the EFA model. Note that the overall model fit in terms of AIC or
BIC in this situation is better for the EFA model, as it has fewer parameters.
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3.4 Effect of structured residuals on model fit

In the above analyses, the number of factors was specified correctly for each model es-
timation (using either EFA or EFAST). However, in empirical applications the number
of factors will rarely be known beforehand, so has to be decided on the basis of some
criterion. A common approach to extracting the number of factors, aside from computa-
tionally expensive strategies such as parallel analysis (Horn, 1965), is model comparison
through information criteria such as the AIC or BIC (e.g. (Vrieze, 2012). In this proce-
dure, models with increasing numbers of factors are estimated, and the best fitting model
in terms of these criteria is chosen.

In this simulation, we generated 100 datasets as in Figure 4 – i.e., strong loadings and
medium symmetry – and we fit EFA and EFAST models with 2 to 10 factors. Across
these solutions we then compute the information criteria of interest. Here we choose
the two most common information criteria (the AIC and BIC) as well as the sample-size
adjusted BIC (SSABIC), as this is the default in the ESEM function of the psych package
(Revelle, 2018). The results of this procedure are shown in Figure 8. Each point indicates
a fitted model. The means of the information criteria are indicated by the solid lines.

AIC BIC SSABIC

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
59000

60000

61000

Number of factors

Cr
ite
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Model
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EFAST

Figure 8: AIC and BIC values for increasing number of factors with EFA and
EFAST models. Lines indicate expectations: the vertices are at the mean
values for these criteria. The true number of factors is 4 (dashed vertical
line).

The plot in Figure 8 shows that across all factor solutions, EFAST shows better fit
than EFA, suggesting the improvement in model fit outweighs the additionally estimated
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parameters. In addition, the AIC tends to overextract factors, the BIC slightly underex-
tracts, and the SSABIC shows the best extraction performance (see also Appendix C).
In practice, therefore, we suggest using SSABIC when determining the number of factors
and model fit is of primary concern. Note that a researcher may also wish to determine
the number of factors based on other considerations, such as usability in further analysis,
estimation tractability, or theory.

4 EFAST in practice: Modeling brain imaging data

In the field of cognitive neuroscience, a large body of work has demonstrated close ties
between individual differences in brain structure and concurrent individual differences in
cognitive performance such as intelligence tasks (e.g. van Basten et al., 2015). Moreover,
different aspects of brain structure can be sensitive to clinical and pre-clinical conditions
such as grey matter for multiple sclerosis (Eshaghi et al., 2018), white matter hyperinten-
sities for cardiovascular factors (Fuhrmann et al., 2019) and white matter microstructure
for conditions such as ALS (Bede et al., 2015), Huntingtons (Rosas et al., 2010) and many
other conditions.

However, one perennial challenge in imaging is how to deal with the dimensionality
of imaging data. Depending on the spatial resolution, a brain image can be divided
into as many as as 100,000 individual regions, or voxels, rendering mass univariate ap-
proaches vulnerable to issues of multiple comparison. An alternative approach is to focus
on anatomically defined sections called regions of interest or ROI’s. However, this only
solves the challenge of dimensionality in part, by grouping adjacent voxels into meaningful
regions. An emerging approach is therefore to take a covariance approach to such regions,
by studying how neural measures in different regions covary across populations. This of-
fers a promising strategy to reduce the high dimensional differences in brain structure into
a tractable number of components, or factors, not limited by spatial adjacency. However,
standard techniques such as EFA or PCA do not easily allow for the integration of a fun-
damental biological fact: That there exists strong contralateral symmetry between brain
regions, such that any given region (e.g. the left lingual gyrus) is generally most similar
to the same region on the other side of the brain. Here, we show how we can combine the
strengths of exploratory data reduction with the integration of a priori knowledge about
the brain into a more sensible, anatomically plausible factor structure which can either
be pursued as an object of intrinsic interest or used as the basis for further investigations
(e.g. which brain factors are most strongly associated with phenotypic outcomes).

4.1 Empirical example: Grey matter volume

4.1.1 Data description

The data we use is drawn from the Cambridge Centre for Ageing and Neuroscience (Taylor
et al., 2017; Shafto et al., 2014). Cam-CAN is a community derived lifespan sample
(ages 18-88) of healthy individuals. Notably, the raw data from the Cam-CAN cohort
is freely available through our data portal https://camcan-archive.mrc-cbu.cam.ac.
uk/dataaccess/. The sample we discuss here is based on 647 individuals. For the
purposes of this project we use morphometric brain measures derived from the T1 scans.
Specifically, we used the Mindboggle pipeline (Klein et al., 2017) to estimate region based
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grey matter volume, using the underlying freesurfer processing pipeline. To delineate the
regions, we here use the Desikan-Killiany-Tourville atlas for determining the ROIs (Klein
and Tourville, 2012) as illustrated in Figure 9.
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Figure 9: Desikan–Killiany–Tourville atlas used in the empirical illustration,
as included in the ggseg package (Mowinckel and Vidal-Piñeiro, 2019).

We focus only on grey matter (not white matter) and only on cortical regions (not
subcortical or miscellaneous regions such as ventricles) with the above atlas, for a total
of 68 brain regions. The correlation matrix of regional volume metrics is shown in Figure
10, where the first 34 variables are regions of interest (ROIs) in the left hemisphere, and
the last 34 variables are ROIs in the right hemisphere. The presence of higher covariance
due to contralateral homology is clearly visible in the darker secondary diagonal ‘stripes’
which show the higher covariance between the left/right version of each anatomical region.
This is because the ROIs have the same order in both hemispheres, meaning that variable
1 and 34 are homologues, and 2 and 35, and so forth. Our goal is to reduce this high-
dimensional matrix into a tractable set of ‘brain factors’, which we may then use in further
analyses, such as differences in age sensitivity, in a way that respects known anatomical
constraints.
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Figure 10: Correlation plot of cortical grey matter volume in 647 T1 weighted
images of the Cam-CAN sample, estimated through Mindboggle in 34 brain
regions in each hemisphere according to DKT segmentation. Darker blue
indicates stronger positive correlation. Secondary diagonal lines are visible
indicating correlation due to contralateral homology.

The default estimation using EFA will attempt to account for the strong covariance
among homologous regions seen in this data, meaning it is unlikely for, say, the left insula
and the right insula to load on different factors, and/or for a factor to be characterized
only/mostly by regions in one hemisphere. To illustrate this phenomenon, we first run a
six-factor, geomin-rotated EFA for the above data. The factor loadings for each ROI in
the left and right hemispheres are plotted in Figure 11. A strong factor loading for a ROI
in the left hemisphere is likely to have a strong factor loading in the right hemisphere due
to the homologous correlation, as shown by the strong correlations for each of the factors.
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Figure 11: Left-right hemisphere factor loading correlations. The correla-
tions between the loadings are high, indicating a strong similarity between
the loadings in the left and right hemispheres.

In EFA, the resulting factors thus inevitably capture correlation due to contralateral
symmetry, inflating or deflating factor loadings due to these contralateral residual correla-
tions. Most problematically from a substantive neuroscientific standpoint, this distortion
means it is effectively impossible to discover lateralized factors, i.e. patterns of covariance
among regions expressed only, or dominantly, in one hemisphere. This is undesirable,
as there is both suggestive and conclusive evidence that some neuroscientific mechanisms
may display asymmetry. For instance, typical language ability is associated with an asym-
metry in focal brain regions (e.g., Gauger et al., 1997; Bishop, 2013), whereas structural
differences in the right hemisphere may be more strongly associated with face perception
mechanisms (Frässle et al., 2016). Developmentally, there is evidence that the degree
of asymmetry changes may lead to changes in asymmetry (e.g. (Plessen et al., 2014).
Within a SEM context, recent work shows that model fit of a hypothesized covariance
structure may differ substantially between the right and left hemispheres despite when
focusing on the same brain regions (Meyer et al., 2019). The ignorance of traditional
techniques for the residual structure may cause lateralized covariance factors to appear
symmetrical instead, or to not be observed at all.

4.1.2 Results

In this section, we compare the model fit and factor solutions of EFA and EFAST for the
Cam-CAN data, and we show how EFAST decomposes the correlation matrix in Figure
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10 into factor, structure, and residual variance components. The full annotated analysis
script to reproduce these results is available as supplementary material to this manuscript.
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Figure 12: AIC and BIC for the with increasing numbers of EFA factors.
Semitransparent points indicate models which are inadmissible either due to
nonconvergence or convergence to a solution with problems (e.g., Heywood
cases). In these cases we plot the information criteria based on the log-
likehood computed at the time the estimation terminated.

The model estimation, shown in Figure 12, demonstrates that using common infor-
mation criteria, the EFAST model performs considerably better than standard EFA. The
BIC criterion, combined with the convergence of the models to an admissible solution,
suggests that 6 factors is optimal for this dataset. While both AIC and SSABIC show
that more factors may be needed to properly represent the data, we see that this quickly
leads to nonconvergence. We here consider 6 factors to be a tractable number for further
analysis. First and foremost, this 6-factor solution shows a much better model solution
under EFAST (BIC ≈ 87500) than under EFA (BIC ≈ 90000), emphasizing the empirical
benefits of appropriately modeling known biological constraints. Additionally, statistical
model comparison through a likelihood ratio test shows that the EFAST model fits signif-
icantly better (see Table 1). Other fit measures such as CFI, RMSEA, and SRMR paint
a similar story. The full factor loading matrix for both EFAST and EFA are shown in
Appendix C.

CFI RMSEA SRMR χ2 Df ∆χ2 ∆Df Pr(> χ2)

EFAST 0.912 0.057 0.209 5762.676 1851
EFA 0.843 0.075 0.342 8818.146 1885 3055.471 34 < .001

Table 1: Comparing the fit of the EFAST and EFA models with 6 factors,
using a likelihood ratio test and several fit criteria.

The EFAST model decomposes the observed correlation matrix from Figure 10 into
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the three components displayed in Figure 13. The most notable observation here is the
separation of symmetry structure (last panel) and latent factor-implied structure (first
panel): the factor solution (first panel) does not attempt to explain the symmetry struc-
ture seen in the data (i.e. the characteristic diagonal streaks are no longer present). This
indicates that the EFAST model correctly separates symmetry covariance from underlying
trait covariance in real-world data.

Figure 13: Extracted correlation matrix components using a 6-factor EFAST
model with unconstrained correlations. From left to right: factor-implied
correlations, residual variance, and structure matrix.

We also extracted the estimated factor covariance, shown as a network plot in Figure
14. For EFA, some latent variables show very strong covariance, clustering them to-
gether due to the contralateral symmetry. This effect is not visible in the EFAST model,
which shows a more well-separated latent covariance structure. This suggests that one
consequence of a poorly specified EFA can be the considerable overestimation of factor
covariance, which in turn adversely affects the opportunities to understand distinct causes
or consequences of individual differences in these factors.
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Figure 14: Network plots of the latent covariance for EFA (panel A) and
EFAST (panel B).

4.2 Empirical example: White matter microstructure

4.2.1 Data description

Our second empirical example uses white matter structural covariance networks. We use
42 tracts from the ICBM-DTI-81 atlas (Mori et al., 2008), including only those tracts with
atlas-separated left/right tracts (i.e. excluding divisions of the corpus callosum – For a full
list, see appendix). As anatomical metric we use tract-based mean fractional anisotropy, a
summary metric sensitive (but not specific) to several microstructural properties ((Jones
et al., 2013). For more details regarding the analysis pipeline, see (Kievit et al., 2016).
The same tracts and data were previously analysed in (Jacobucci et al., 2019).
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Figure 15: Correlation matrix for Cam-CAN white matter tractography data
(fractional anisotropy).

4.2.2 Results

We chose 6 factors for the EFAST and EFA models based on the SSABIC in combi-
nation with the convergence limitations. In Table 2, the two models are compared on
various characteristics. From the likelihood ratio test, we can see that the EFAST model
represents the white matter data significantly better (χ2(21) = 3632.586, p < .001),
and inspecting the SSABIC values (EFA = 59120, EFAST = 55727) leads to the same
conclusion. In addition, the CFI, RMSEA, indicate better fit for the EFAST model, too.

CFI RMSEA SRMR Df χ2 ∆χ2 ∆Df Pr(> χ2)

EFAST 0.899 0.081 0.205 603 3137.462
EFA 0.756 0.123 0.198 624 6770.048 3632.586 21 < .001

Table 2: Comparing the fit of the EFAST and EFA models with 6 factors for
the white matter data, using a likelihood ratio test and several fit criteria.

The only index which indicates slightly poorer fit is the SRMR. The difference is very
small in this case, but nonetheless it is relevant to show where these differences lie. A
visual representation of the root square residual (observed - implied) correlations – which
form the basis of the SRMR fit index – can be found in Figure 16. The figure shows
that EFAST is able to represent the symmetry better: it has almost no residuals on the
secondary diagonals. The remaining residuals are very similar, though slightly higher,
leading to a higher SRMR.
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EFA EFAST

Figure 16: Visual representation of the root square residual (observed -
implied) correlations, which form the basis of the SRMR fit index.

4.3 Empirical example: Resting state Functional connectivity

4.3.1 Data description

Our previous examples correlation matrices capturing between- individual similarities
across regions. However, the same techniques can be implemented at the within-subject
level given suitable data. One such measure is functional connectivity which reflects
the temporal connectivity between regions during rest or a given task, and captures the
purported strength of interactions, or communications, between regions (Van Den Heuvel
and Pol, 2010). Here we use functional connectivity matrices from 5 participants in the
Cam-CAN study measured during an eyes-closed resting state block. We focus on 90
cortical and sub-cortical regions from the AAL-atlas (Tzourio-Mazoyer et al., 2002). The
methodology to compute the connectivity metrics is outlined in (Geerligs et al., 2017),
and the data reported here have been used in (Lehmann et al., 2019).
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Figure 17: Correlation matrix for the first participant in the Cam-CAN
resting state functional connectivity dataset.

4.3.2 Results

For this example, data from the first participant was used to perform the model fit
assessments. We performed a similar routine as with the previous empirical datasets for
determining the number of factors: we fit the EFAST and EFA models for 2-16 factors
and compare their information criteria. All of the models converged, and the optimal
model based on the BIC is a 13-factor EFAST model.

The 13-factor EFAST model was then compared to the 13-factor EFA model on various
fit indices. The results of this comparison can be found in Table 3. Across the board,
the EFAST model has better fit, as the EFAST CFI, RMSEA, SRMR and χ2 fit indices
outperform those for the EFA model, demonstrating that accounting for the bilateral
symmetry in dimension reduction through factor analysis leads to better fitting model of
the data.

This approach also allows for comparing the factor loadings for the different partic-
ipants. For illustration, the plot in Figure 18 shows the profile of factor loadings for
the first three factors (columns) across the five participants (rows). These profile plots
can be a starting point for comparison of the connectivity structure across participants,
where higher correlation among participants means a more similar connectivity structure,
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CFI RMSEA SRMR Df χ2 ∆χ2 ∆Df Pr(> χ2)

EFAST 0.836 0.093 0.253 2868.000 9350.278
EFA 0.774 0.108 0.272 2913.000 11828.126 2477.848 45.000 0.000

Table 3: Comparing the fit of the EFAST and EFA models with 13 factors
for the functional resting state data, using a likelihood ratio test and several
fit criteria.

while taking into account the symmetry in the brain. For example, for Factor 1, partici-
pant 3 has a quite different functional connectivity factor loading profile than the other
participants.
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Figure 18: Comparison of factor loading profiles for the first three factors
(columns) across five participants (rows).

5 Model-based lateralization index

In Section 3 we showed how the EFAST approach yields a more veridical representation
of the factor structure than EFA. However, using EFAST yields an additional benefit:
our model allows for estimating the extent of symmetry in each ROI, while taking into
account the overall factor structure. This enables researchers to use this component of
the analysis for further study. The (lack of) symmetry may be of intrinsic interest, such
as in language development research (Schuler et al., 2018), intelligence in elderly (Moodie
et al., 2019), and age-related changes in cortical thickness asymmetry (Zhou et al., 2013;
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Plessen et al., 2014). In the efast package, we have implemented a specific form of
lateralization which is based on a variance decomposition in the ROIs. Our lateralization
index (LI) represents the proportion of residual variance (given the trait factors) in an
ROI that cannot be explained by symmetry. The index value is 0 if the bilateral ROIs
are fully symmetric (conditional on the trait factors), and 1 if there is no symmetry.

The LI for each ROI in the grey matter volume example is shown in Figure 19. Here,
we can see that there is high lateralization in the superior temporal sulcus and medial
orbitofrontal cortex, but high symmetry in the lateral orbitofrontal cortex and the insula.
In Figure 20, we additionally show in the white matter example that LI can naturally be
supplemented by standard errors and confidence intervals. Thus, the EFAST procedure
not only improves the factor solution under plausible circumstances for such datasets, but
in doing so yields an intrinsically interesting metric of symmetry.

lateral medial

0.4
0.5
0.6
0.7
0.8

Lateralization

Figure 19: Amount of grey matter volume asymmetry per ROI. Dark blue
areas are highly symmetric given the previously estimated 6-factor solution,
and bright yellow areas are highly asymmetric. Such plots can be made and
compared for different groups and statistically investigated for differences in
symmetry for a common factor solution. A lateralization index (LI) of 0.8
means that 20% of the residual variance in grey matter volume in can be
explained by symmetry.
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Figure 20: White matter lateralization index for a selected set of regions
given the previously estimated 6-factor solution. Lower values means that
bilateral ROIs are more symmetric conditional on the trait factors, higher
values that they are less so. The line ranges indicate 95% confidence in-
tervals, computed as LI ± 1.96 × SELI , where the standard error SELI is
computed using the delta method.

6 Summary and discussion

In this paper, we have developed and implemented EFAST, a method for performing
dimension reduction on data with residual structure. We show how this new method out-
performs standard EFA across three separate datasets, by taking into account hemispheric
symmetry. We have argued through both simulations and real-world data analysis that
our method is an improvement in the dimension reduction step of such high-dimensional,
structured data, yielding a more veridical factor solution. Such a factor solution can
be the basis for further analysis, such as an extension of the factor model to prediction
of continuous phenotype variables such as intelligence scores, or the comparison among
different age groups. These extensions will be improved by building on a factor solution
appropriately which takes into account the symmetry of the brain.

Care is needed in the interpretation of the factor solution as underlying dimensions,
as the empirical application has shown that the absolute level of fit for both the EFA and
EFAST models is not optimal. In addition, estimation of more complex factor models
may lead to nonconvergence or inadmissible solutions. Such problems would need to be
further investigated, potentially leading to more stable estimation, for example through
a form of principal axis factoring, or potentially through penalization of SEM (Jacobucci
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et al., 2019; van Kesteren and Oberski, 2019). However, these limitations hold equally
for EFA, and when comparing both methods it is clear from the results in this paper
that the inclusion of structured residuals greatly improves the representation of the high-
dimensional raw data by the low-dimensional factors. In summary, this relatively simple
but versatile extension of classical EFA may be of considerable value to applied researchers
with data that posses similar qualities to those outlined above. We hope our tool will
allow those researchers to easily and flexibly specify and fit such models.
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A Symmetry pattern recovery with default EFA
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Figure 21: Predicted correlation matrix for EFA models with M factors for the example observed
correlation matrix of Section 2, Figure 1. Proper recovery of the observed pattern happens around 12
factors (bottom left frame).
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B Comparing EFA and EFAST in factor loading estimation error
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Figure 22: Factor loading median absolute error over different conditions of factor loading and factor
correlation strength (top-to-bottom, see labels on the right) and different factors (left-to-right, see
labels on top).
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C Information criterion factor extraction performance
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Figure 23: Number of extracted factors using the AIC (left panel), BIC (middle panel), and sample-
size adjusted BIC (right panel) criterion. AIC works well for the EFAST method but not for the EFA
method. BIC slightly underextracts for both methods. SSABIC shows excellent performance for both
methods. The true number of factors is 4 (dashed line), for which this result holds; different simulation
situations may show different factor extraction patterns.
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D Factor loadings for empirical application

EFAST EFA
F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

lh bankssts 0.38 0.6 0.79
lh caudalanteriorcingulate -0.4 0.55

lh caudalmiddlefrontal 0.73 0.74
lh cuneus 0.91 0.87

lh entorhinal 0.31
lh fusiform 0.4 0.38

lh inferiorparietal 0.69 0.67
lh inferiortemporal 0.4 0.54
lh isthmuscingulate 0.44
lh lateraloccipital 0.45 0.37 0.46

lh lateralorbitofrontal 0.78 0.71
lh lingual 0.71 0.7

lh medialorbitofrontal 0.65 0.63
lh middletemporal 0.31 0.66 0.81

lh parahippocampal 0.37
lh paracentral 0.83 0.73

lh parsopercularis 0.79 0.72
lh parsorbitalis 0.61 0.63

lh parstriangularis 0.84 0.89
lh pericalcarine 0.91 0.91
lh postcentral 0.8 0.37 0.33

lh posteriorcingulate 0.72 0.52
lh precentral -0.3 0.87 -0.34 0.72
lh precuneus 0.76 0.74

lh rostralanteriorcingulate 0.59 0.49
lh rostralmiddlefrontal 0.78 0.82

lh superiorfrontal 0.88 0.93
lh superiorparietal 0.72 0.77

lh superiortemporal 0.77 0.52 0.41
lh supramarginal 0.77 0.32

lh frontalpole 0.32 0.51
lh temporalpole 0.39 0.34

lh transversetemporal 0.72 0.43 0.53
lh insula 0.78 0.7

rh bankssts 0.71 0.69
rh caudalanteriorcingulate 0.73 0.48

rh caudalmiddlefrontal 0.76 0.74
rh cuneus 0.71 0.72

rh entorhinal 0.34 0.34
rh fusiform 0.5 0.4

rh inferiorparietal 0.31 0.7 0.67
rh inferiortemporal 0.31 0.38 0.58
rh isthmuscingulate 0.45
rh lateraloccipital 0.47 0.37 0.47

rh lateralorbitofrontal 0.73 0.72
rh lingual 0.66 0.68

rh medialorbitofrontal 0.74 0.67
rh middletemporal 0.66 0.75

rh parahippocampal 0.39
rh paracentral 0.83 0.65

rh parsopercularis 0.76 0.68
rh parsorbitalis 0.62 0.82

rh parstriangularis 0.71 0.8
rh pericalcarine 0.77 0.82
rh postcentral 0.77 0.31 0.35

rh posteriorcingulate 0.57 0.44
rh precentral 0.96 -0.31 0.83
rh precuneus 0.76 0.72

rh rostralanteriorcingulate 0.44 0.51
rh rostralmiddlefrontal 0.7 0.68

rh superiorfrontal 0.95 0.81
rh superiorparietal 0.82 0.71

rh superiortemporal 0.91 0.39 0.46
rh supramarginal 0.82 0.36 0.43

rh frontalpole
rh temporalpole 0.34

rh transversetemporal 0.78 0.39 0.43
rh insula 0.73 0.69

Table 4: Factor loadings for 6-factor model fitted using EFAST and EFA on the Cam-CAN volume
data. Loadings with an absolute value below 0.3 are not shown.
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