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ABSTRACT 

Clean freshwater lies at the heart of human society and monitoring its quality is paramount. In addition to chemical 

controls, traditional microbiological water tests focus on the detection of specific bacterial pathogens. The direct 

tracing of all aquatic DNA poses a more profound alternative. Yet, this has hitherto been underused due to 

challenges in cost and logistics. Here we present a simple, fast, inexpensive and comprehensive freshwater 

diagnostics workflow centred around portable nanopore DNA sequencing. Using defined bacterial compositions 

and spatiotemporal microbiota from surface water of an example river in Cambridge (UK), our study shows how 

nanopore sequencing can be readily integrated for the assessment of aquatic bacterial diversity and pollution. We 

provide a computational benchmark that features more than ten taxonomic classification tools to derive guidelines 

for bacterial DNA analyses with nanopore data. Through complementary physicochemical measurements, we find 

that nanopore metagenomics can depict fine temporal gradients along the main hydrological axis of an urban-rural 

interface and yield high-resolution pathogen maps that address concerns of public health. 

 

INTRODUCTION 

The global assurance of safe drinking water and basic sanitation has been recognised as a United Nations 

Millennium Development Goal1, particularly in light of the pressures of rising urbanisation, agricultural 

intensification and climate change2,3. These trends enforce an increasing demand for freshwater monitoring 

frameworks that combine cost effectiveness, fast technology deployability and data transparency4,5. 

Environmental metagenomics, the tracing of organisms present in a substrate through high-throughput DNA 

sequencing, yields informative measures of relative taxonomic species occurrence and functional diversity6-8. 

Microbial metagenomics studies overcome enrichment biases common to traditional culturing approaches6; 

however, they usually depend on expensive and stationary equipment, highly specialised operational training and 

substantial time lags between sample preparation, raw data generation and access. 

 

In recent years, these challenges have been revisited with the prospect of ‘portable’ DNA analysis. The main 

driver of this is the portable, smartphone-sized MinION device from Oxford Nanopore Technologies (ONT), 

which enables real-time DNA sequencing using nanopores9. Nanopore read lengths can be comparably long 

(currently up to ~2*106 bases10), which is enabled by continuous electrical sensing of sequential nucleotides along 

single DNA strands. In connection with a laptop or cloud access for the translation of raw voltage signal into 

nucleotides (basecalling), nanopore sequencing can be used to rapidly monitor long DNA sequences in remote 
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locations. Although there are still common concerns about the technology's base-level accuracy, mobile MinION 

setups have already proven powerful for real-time tracing of bacterial and viral pathogen outbreaks11-16. 

 

Here we report a simple, low-cost workflow to assess microbial freshwater communities with nanopore DNA 

sequencing. Our benchmark involves the design and optimisation of essential experimental steps for multiplexed 

MinION usage in the context of local environments, together with an evaluation of computational methods for the 

bacterial classification of nanopore sequencing reads from metagenomic libraries. To showcase the resolution of 

sequencing-based aquatic monitoring in a spatiotemporal setting, we combine DNA analyses with 

physicochemical measurements of surface water samples collected at nine locations within a confined ~12 

kilometre reach of the River Cam passing through the city of Cambridge (UK) in April, June and August 2018. 

 

RESULTS 

 

Experimental design and computational workflows 

Nanopore full-length (V1-V9) 16S ribosomal RNA (rRNA) gene sequencing was performed on all location-

barcoded freshwater samples at each of the three time points (Figure 1; Supplementary Table 1a). Samples were 

complemented with a negative control (deionised water) and a mock community control composed of eight 

bacterial species in known mixture proportions (Materials and Methods). 

 

To obtain valid taxonomic assignments from freshwater sequencing profiles using nanopore sequencing, 13 

different classification tools were compared through several performance metrics (Supplementary Figure 1, 

Materials and Methods). Root mean square errors (RMSE) between observed and expected bacteria of the mock 

community differed slightly across all classifiers. An Enterobacteriaceae overrepresentation was observed across 

all replicates and classification methods, pointing towards a consistent Escherichia coli amplification bias 

potentially caused by skewed taxonomic specificities of the selected 16S primer pair (27f and 1492r)17. Robust 

quantifications were obtained by Minimap218 alignments against the SILVA 132 database19, for which 99.68 % 

of classified reads aligned to the expected mock community taxa. Minimap2 classifications reached the second 

lowest RMSE (excluding Enterobacteriaceae), and relative quantifications were highly consistent between mock 

community replicates. Benchmarking of the classification tools on one aquatic sample further confirmed 

Minimap2’s reliable performance, although other tools such as SPINGO20, MAPseq21, or IDTAXA22 also 
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produced highly concordant results despite considerable variations in processing speed and memory usage (data 

not shown). 

 

Diversity analysis and river core microbiome 

Using Minimap2 classifications within our bioinformatics consensus workflow (Supplementary Figure 2, 

Materials and Methods), we then inspected sequencing profiles of three independent MinION runs for a total of 

30 river DNA isolates and six controls. This yielded ~8.3 million sequences with exclusive barcode assignments 

(Figure 2a, Supplementary Table 2). Overall, 55.9 % (n = 4,644,194) of raw reads could be taxonomically assigned 

to the family level (Figure 2b). To account for variations in sample sequencing depth, rarefaction with a cut-off 

at 37,000 reads was applied across all samples. While preserving ~90 % of the original family level taxon richness 

(Mantel test, R = 0.814, p = 2.1*10-4; Supplementary Figure 3), this conservative thresholding resulted in the 

exclusion of 14 samples, mostly from June, for subsequent high-resolution analyses. The 16 remaining surface 

water samples revealed moderate levels of microbial heterogeneity (Figure 2b, Supplementary Figure 3): 

microbial family alpha diversity ranged between 0.46 (June-6) and 0.92 (April-7) (Simpson index), indicating 

partially low-level evenness with a few taxonomic families that account for the majority of the metagenomic 

signal. Hierarchical clustering of taxon profiles showed a dominant core microbiome across all aquatic samples 

(clusters C2 and C4, Figure 2c). The most common bacterial families observed were Burkholderiaceae (40.0 %), 

Spirosomaceae (17.7 %), and NS11-12 marine group (12.5 %), followed by Arcobacteraceae (4.8 %), 

Sphingomonadaceae (2.9 %) and Rhodobacteraceae (2.5 %) (Figure 2d). Members of these families are 

commonly associated with freshwater environments; for example, Burkholderiaceae reads mostly originate from 

aquatic genera such as Limnohabitans, Rhodoferax or Aquabacterium, which further validates the suitability of 

this environmental nanopore sequencing workflow. 

 

Hierarchical clustering additionally showed that two biological replicates collected at the same location and time 

point (April samples 9.1 and 9.2), grouped with high concordance; this indicates that moderate spatiotemporal 

trends are discernible within a highly localised context. Besides the dominant core microbiome, microbial profiles 

showed a marked arrangement of time dependence, with water samples from April grouping more distantly to 

those from June and August (Figure 2c). Principal component analysis (PCA) (Figure 3a, Supplementary Figure 

4) revealed that the strongest differential abundances along the chronological axis of variation (PC3) derived from 
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the higher abundance of Carnobacteriaceae and Saprospiraceae in April (Figure 3b). These families are known 

for their occurrence in waters with lower temperature23 or high organic biomass availability24,25, respectively. 

 

Hydrochemistry and seasonal profile of the River Cam 

While a seasonal difference in bacterial composition can be expected due to increasing water temperatures in the 

summer months, additional changes may have also been caused by alterations in river hydrochemistry and flow 

rate (Supplementary Figures 5 and 6, Supplementary Table 1c). To assess this effect in detail, we measured the 

pH and a range of major and trace cations in all river water samples using inductively coupled plasma-optical 

emission spectroscopy (ICP-OES), as well as major anions using ion chromatography (Supplementary Figure 5, 

Materials and Methods). Similarly to the bacterial composition dynamics, we observed significant temporal 

variation in water chemistry, superimposed on a spatial gradient of generally increasing sodium and chloride 

concentrations along the river reach. This spatially consistent effect is likely attributed to wastewater and 

agricultural discharge inputs26 in and around Cambridge city. A comparison of the major element chemistry in the 

Cam River transect with the world’s 60 largest rivers further corroborates the potential impact of anthropogenic 

pollution in this fluvial ecosystem27 (Supplementary Figure 5, Materials and Methods). 

 

Maps of potential bacterial pathogens at species-level resolution 

In line with these physicochemical trends, we next determined the spatiotemporal enrichment of potentially 

functionally important bacterial taxa through nanopore sequencing. We retrieved 58 potentially pathogenic 

bacterial genera through careful integration of species known to affect human health28,29, and also 13 wastewater-

associated30 bacterial genera. Of these, 21 potentially pathogenic and eight wastewater-associated genera were 

detected across all of the river samples (Figure 3c; Materials and Methods). Many of these signals were stronger 

downstream of urban river sections, within the mooring zone for recreational and residential barges (location 7) 

and in the vicinity of sewage outflow from a nearby wastewater treatment plant (location 8). The most prolific 

candidate pathogen genus observed across all locations was Arcobacter, which features multiple species 

implicated in acute gastrointestinal infections31. 

 

In general, much of the taxonomic variation across all samples was caused by the isolate of April-7 

(Supplementary Figure 4a-b; PC1 explains 27.6 % of the overall variance in bacterial composition). This was 

characterised by an unusual dominance of Caedibacteraceae, Halomonadaceae and others (Supplementary Figure 
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4c). Isolate April-8 also showed a highly distinct bacterial composition, with some families nearly exclusively 

occurring in this sample (outlier analysis, Materials and Methods). The most predominant bacteria in this sewage 

pipe outflow are typically found in wastewater sludge or have been shown to contribute to nutrient pollution from 

effluents of wastewater plants, such as Haliangiaceae, Nitospiraceae, Rhodocyclaceae, and Saprospiracea30,32 

(Figure 3c). 

 

Using multiple sequence alignments between nanopore reads and pathogenic species references, we further 

resolved the phylogenies of three common potentially pathogenic genera occurring in our river samples, 

Pseudomonas, Legionella and Salmonella (Supplementary Figure 7, Materials and Methods). While Legionella 

and Salmonella diversities only presented negligible levels of known harmful species, a cluster of sequencing 

reads in downstream sections indicated a low abundance of the opportunistic, environmental pathogen 

Pseudomonas aeruginosa (Supplementary Figure 7). 

 

We also found varying relative abundances of the Leptospira genus, which was recently described to be enriched 

in wastewater effluents in Germany33 (Figure 3c). This taxonomic group contains several potentially pathogenic 

species capable of causing life-threatening leptospirosis through waterborne infections34. Yet, the genus also 

features close-related saprophytic and “intermediate” taxa35. To resolve its complex phylogeny in the River Cam 

surface, we aligned Leptospiraceae reads from all samples together with various reference sequences assigned to 

pre-classified pathogenic, saprophytic and other environmental Leptospira species35 (Figure 3d; Materials and 

Methods). Despite the presence of nanopore homopolymer sequencing errors (Supplementary Figure 8) and 

correspondingly inflated divergence between reads, we could pinpoint spatial clusters and a distinctly higher 

similarity between our Leptospiraceae amplicons and saprophytic rather than pathogenic Leptospira species. 

These findings were subsequently validated by targeted, Leptospira species-specific qPCR (Materials and 

Methods), confirming that the current nanopore sequencing quality is sufficiently high to yield indicative results 

for bacterial monitoring workflows at the bacterial species level. 

 

DISCUSSION 

Using a low-cost, easily adaptable and scalable framework, we provide the first detailed nanopore sequencing 

atlas of bacterial microbiota along a river reach. Beyond the core microbiome of an exemplary fluvial ecosystem, 

our results suggest that it is possible to robustly assess time changes in accessory bacterial composition in the 
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context of supporting physical (temperature, flow rate) and hydrochemical (pH, inorganic solutes) parameters. 

We show that nanopore sequencing can identify human pathogen community shifts along rural-to-urban 

transitions within a river reach, as illustrated by downstream increases in the abundance of pathogen candidates. 

 

Furthermore, our assessment of popular bioinformatics workflows for taxonomic classification highlights current 

challenges with error-prone nanopore sequences. We observed differences in terms of taxonomic quantifications, 

read misclassification rates and consensus agreements between the 13 tested computational methods. In this 

benchmark, using the SILVA 132 reference database, one of the most balanced performances was achieved with 

Minimap2 alignments. As nanopore sequencing quality continues to increase through refined pore chemistries 

and consensus sequencing workflows36,37, future bacterial taxonomic classifications are likely to improve as well.  

 

We show that nanopore amplicon sequencing data can resolve the core microbiome of a freshwater body, as well 

as its temporal and spatial fluctuations. Asides common freshwater bacteria, we find that the differential 

abundances of Carnobacteriaceae and Saprospiraceae most strongly contribute to seasonal loadings in the Cam 

River. As Carnobacteriaceae have been associated with cold environments23, and we found these to be more 

abundant in colder April samples (mean 11.3 °C, vs. 15.8 °C in June and 19.1 °C in August), this might further 

establish the impact of water temperature on the variation of bacterial composition. Saprospiraceae are frequently 

observed in wastewater treatment systems30,32, where they likely play a role in heterotrophic polymeric 

degradation24,25. The majority of our Saprospiraceae reads (~67.33 %) could indeed be assigned to sewage effluent 

(outlier sample April-8, Figure 3a), which suggests that this particular sample augments the observed time pattern. 

 

Most routine freshwater surveillance frameworks focus on semi-quantitative diagnostics of only a limited number 

of target taxa, such as pathogenic Salmonella, Legionella and faecal coliforms38. While common culture-based, 

immunological or PCR-based approaches can assist stakeholders with limited assessments of local water 

quality39,40, we show that portable nanopore metagenomics offers the promise of more comprehensive microbial 

pathogen examinations at similar expense. Our analyses highlight that the combination of full-length 16S rRNA 

gene amplification and nanopore sequencing can complement hydrochemical controls in pinpointing potentially 

contaminated sites, some of which had been previously highlighted for their pathogen diversity and abundance of 

antimicrobial resistance genes41,42. Nanopore sequencing allowed for the reliable distinction of closely related 

pathogenic and non-pathogenic bacterial species of the common Salomella, Legionella, Pseudomonas and 
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Leptospira, and future bioinformatics efforts might focus on the automatisation of such assessments across more 

diverse genera of interest. 

 

A number of experimental intricacies should be addressed towards future nanopore freshwater sequencing studies, 

mostly by scrutinising water DNA extraction yields, PCR biases and molar imbalances in barcode multiplexing 

(Figure 2a, Supplementary Figure 8). Yet, our results show that it would be theoretically feasible to obtain 

meaningful river microbiota from >100 barcoded samples on a single nanopore flow cell, thereby enabling water 

monitoring projects involving large collections at a sub-£20 cost per sample (Supplementary Table 3). Barcoded 

shotgun nanopore sequencing protocols may pose a viable alternative strategy to bypass pitfalls often observed in 

amplicon-based workflows, namely taxon-specific primer biases17, 16S rDNA copy number fluctuations between 

species43 and the omission of functionally relevant sequence elements. This could moreover also allow for the 

monitoring of eukaryotic microorganisms and viruses, when combined with sampling protocol adjustments. 

 

Since the commercial launch of the MinION in 2015, a wide set of nanopore sequencing applications like rRNA 

gene44-47 and shotgun metagenomics48-50 have attracted the interest of a growing user community. Although it is 

to be expected that short-read metagenomics technology continues to provide valuable environmental insights, as 

shown through recent cataloguing efforts for world’s ocean51 and soil52 microbiomes, these traditional platforms 

are cumbersome for monitoring remote environments or low-resource settings. The MinION technology is 

considerably less challenging to transport, operate and maintain, and our results how that spatiotemporal nanopore 

sequencing could be readily adapted for multiplexed bacterial pathogen tracing in epidemic contexts. We reason 

that the low investment costs (Supplementary Table 3), the convenience of MinION handling and data analysis 

will allow for such endeavours to become increasingly accessible to citizens and public health organisations 

around the world, ultimately democratising the opportunities and benefits of DNA sequencing. 
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Figure 1: Freshwater microbiome study design and experimental workflow. (a) Schematic map of Cambridge 

(UK) illustrating sampling locations (colour-coded) along the Cam River. Latitude and longitude geographic 

coordinates are expressed as decimal fractions referring to the global positioning system. (b) Experimental 

workflow to monitor bacterial communities from freshwater samples using nanopore sequencing (Materials and 

Methods).  
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Figure 2: Bacterial diversity of the River Cam. (a) Nanopore sequencing output summary. Values within pie 

charts depict total numbers of classified nanopore sequences per time point. Percentages illustrate representational 

fractions of locations and control barcodes (negative control and mock community). (b) Read depth and bacterial 

classification summary. Upper bar plot shows the total number of reads, the number of reads classified to any 

taxonomic level, to bacterial family level or above, to the ten most abundant bacterial families across all samples 

or other families. Rarefaction cut-off displayed at 37,000 reads (dashed line). Lower bar plot features fractions of 

the ten most abundant bacterial families across all samples with more than 100 reads. Colours in bars for samples 

with less than 37,000 reads are set to transparent. (c) Hierarchical clustering of all bacterial family abundances in 
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freshwater samples after rarefaction, together with the mock community control. Four major clusters of bacterial 

families occur, with two of these (C2 and C4) corresponding to the core microbiome of ubiquitously abundant 

families, one (C3) to the main mock community families and one (C1) to the majority of rarer accessory taxa. (d) 

Detailed river core microbiome. Violin plots (log10) summarise fractional representation of bacterial families from 

clusters C2 and C4 across the three sampling time points, sorted by median total abundance. Vertical dashed line 

depicts 0.1 % proportion. 
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Figure 3: Rare taxa and potential pathogens of the River Cam. (a) Principal component analysis indicating 

community dissimilarities along the main time (PC3) and spatial (PC4) axes of variation. Numbers and coloured 

dots indicate locations for each time point. (b) Contribution of individual bacterial families to the PCs in (a). (c) 

Diversity, abundance and distribution of potentially pathogenic bacteria and wastewater treatment related bacteria, 

at genus level resolution. Species from subsets of genera are categorised as waterborne bacterial pathogens (WB), 

drinking water pathogens (DWP), potential drinking water pathogens (pDWP), human pathogens (HP) and core 
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genera from wastewater treatment plants (WW). Circle sizes represent overall read size fractions, while circle 

colours (sigma scheme) represent the deviation from the observed mean relative abundance within each genus. 

(d) Phylogenetic tree illustrating the multiple sequence alignment of all river nanopore reads classified as 

Leptospira, together with known Leptospira reference sequences ranging from pathogenic to saprophytic 

species35. Branch length tree scale indicates misalignment rates and thus, indirectly, sequencing error rate. 
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Supplementary Figure 1: Benchmarking of classification tools with nanopore full-length 16S reads. (a) 

Schematic of mock community quantification performance testing. (b) Observed vs. expected read fraction of 

bacterial families present in 10,000 nanopore reads randomly drawn from mock community sequencing data. 

Example representation of Minimap2 (kmer length 12) quantifications with (upper) and without (lower) 

Enterobacteriaceae (Materials and Methods). (c) Mock community classification output summary for 13 

classification tools tested against the 10,000 nanopore reads. Root mean squared errors observed and expected 

bacterial read fractions are provided with (RMSE) and without Enterobacteriaceae (RMSE reduced). (d) 

Classification output summary for 10,000 reads randomly drawn from an example freshwater sample (Materials 

and Methods). 'Overlapping' fractions (red) represent agreements of a classification tool with the majority of tested 

methods on the same reads, while 'non-overlapping' fractions (light blue) represent disagreements. Green sets 

highlight rare taxon assignments not featured in any of the 10,000 majority classifications, while dark blue bars 

show unclassified read fractions. (d) Top 10 represented bacterial taxon families across all 13 classifiers based on 

the 10,000 reads used in (c). 
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Supplementary Figure 2: Bioinformatics consensus workflow. Essential data processing steps, from nanopore 

sequencing to spatiotemporal bacterial composition analysis (Materials and Methods). After full-length 16S rDNA 

sequencing with the MinION (R9.4 flow cell), local basecalling of the raw fast5 files was performed using 

Guppy53. Output fastq files were filtered for length and quality (Materials and Methods), and reads assigned to 

their location barcode using Porechop. We then used Minimap218 and the SILVA 132 database19 for taxonomic 

classifications. Rarefaction reduced each sample to the same number of reads (37,000), allowing for a robust 

comparison of bacterial composition across samples in various downstream analyses. 
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Supplementary Figure 3: Impact of rarefaction on diversity estimation. (a) Example rarefaction curve for 

bacterial family classifications of the 'April-1' sample. The chosen cut-off preserves most (~90 %) of the original 

family taxon richness (vertical line). (b) Difference between original and rarefied family richness at 37,000 reads 

across all freshwater sequencing runs with quantitative sequencing outputs above the chosen cut-off. Boxplots 

feature 100 independent rarefactions per sample. Error bars represent Q1 – 1.5*IQR (lower), and Q3 + 1.5*IQR 

(upper), respectively; Q1: first quartile, Q3: third quartile, IQR: interquartile range. (c) Diversity visualisation of 

the ten most abundant bacterial families across all samples with sequencing outputs >37,000 reads, through 400 

“unordered bubbles”. Taxonomic proportions and colours are in accordance with Figure 2b. Shannon (H) and 

Simpson (D) indices for all samples indicate marginal differences between pairs of original and rarefied sets. 
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Supplementary Figure 4: Principal component analysis of river bacterial family compositions. (a-b) PCA 

with two independent rarefaction sets to 37,000 reads in all freshwater sequencing samples. Numbers and coloured 

dots indicate locations for each time point. The first and second principal components (PC1 and PC2, combined 

variance: ~41 %) robustly capture outlier samples 'April-7' along PC1 and 'April-2', 'August-4' and 'April-8' along 

PC2. (c-d) Fractional loads of the ten bacterial families most strongly contributing to changes along PC1 (c) and 

along PC2 (d). Error bars represent standard deviation of these families to the respective PC across four 

independent rarefactions. Subsequent principal components (PC3 and PC4) are less outlier-driven and depict 

spatial and temporal metagenomic trends within the River Cam. 
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Supplementary Figure 5: Geological and hydrochemical profile of the River Cam and its basin. (a) Outline 

of the Cam River catchment surrounding Cambridge (UK), and its corresponding lithology. Overlay of bedrock 

geology and superficial deposits (British Geological Survey data: DiGMapGB-50, 1:50,000 scale) is shown as 

visualised by GeoIndex. Bedrock is mostly composed of subtypes of Cretaceous limestone (chalk), gault (clay, 

sand) and mudstone. (b) Principal component analysis of measured pH and 13 inorganic solute concentrations of 

this study's 30 river surface water samples. PC1 (~49 % variance) displays a strong, continuous temporal shift in 
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hydrochemistry. (c) Parameter contributions to PC1 in (b), highlighting a reduction in water hardness (Ca2+, Mg2+) 

and increase in pH towards the summer months (June and August). (d) Mixing diagram with Na+-normalised 

molar ratios, representing inorganic chemistry loads of world's 60 largest rivers27; open circles represent polluted 

rivers with total dissolved solid (TDS) concentrations >500 mg l-1. Cam River ratios are superimposed as ellipses 

from ten samples per month (50 % confidence, respectively). Separate data points for all samples from August 

are also shown and colour-coded, indicating the downstream-to-upstream trend of Na+ increase (also observed in 

April and June). End-member signatures show typical chemistry of small rivers draining these lithologies 

exclusively (carbonate, silicate and evaporite). 
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Supplementary Figure 6: Cambridge weather and Cam River flow rate. (a) Daily air temperature [°C], (b) 

daily sunshine [hours], and (c) daily rainfall [mm] of Cambridge in 2018 (black trend line) vs. 1998-2017 (blue 

background trend lines). (d) Cam River gauged daily flow [m3s-1] in 2018 (black trend line) vs. 1968-2017 (blue 

background trend lines). Data was compiled from public repositories 

https://www.cl.cam.ac.uk/research/dtg/weather/ and https://nrfa.ceh.ac.uk/. Gauged daily flow measurements at 

Jesus Lock, Cambridge (between sampling locations 5 and 6; NRFA #33016) were discontinued in 1983. Yet, 

contemporary flow rates can be modelled with high accuracy (Pearson's R = 0.9, R2 = 0.8) through linear data 

integration of three upstream stations already in operation since before 1983: Rhee at Wimpole (NRFA #33027, 

70.2 % model weight), Granta at Stapleford (NRFA #33053, 19.6 % model weight) and Cam at Dernford (NRFA 

#33024, 10.3 % model weight). 
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Supplementary Figure 7: Phylogenetic clustering of candidate pathogenic bacterial genera in the river 

Cam. Phylogenetic trees illustrating multiple sequence alignments of exemplary River Cam nanopore reads 

classified as (a) Legionella, (b) Salmonella or (c) Pseudomonas, together with known reference species sequences 

ranging from pathogenic to saprophytic taxa within the genes (Table S7b-d). Reads highlighted in light violet 

background display close clustering with pathogenic isolates of (b) Salmonella spp. and (c) Pseudomonas 

aeruginosa. 
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Supplementary Figure 8: Key challenges of environmental monitoring with nanopore sequencing. (a-b) 

Correlation analysis between DNA extraction yield, 16S amplification yield and raw sequencing output 

(Supplementary Table 2). (a) DNA concentrations (x-axis) obtained from 30 freshwater samples after extraction 

with the DNeasy PowerWater Kit (Materials and Methods) are compared against the DNA concentration of the 

same samples after full-length 16S PCR amplification (y-axis), as measured by Qubit dsDNA HS. Fitted linear 

model displays the 95 % confidence interval (R = Pearson correlation coefficient). (b) The DNA concentration 

obtained for each sample after full-length 16S PCR amplification (x-axis) is compared against the final number 

of demultiplexed nanopore sequencing reads. Logarithmic fit with 95 % confidence interval indicates that samples 

with a minimum input concentration measurement of ~5 ng/µl yielded sequencing outputs sufficient to pass the 

rarefaction threshold of 37,000 reads. (c) Multiple sequence alignment of an example set of related nanopore 16S 

sequences, displaying increased indel rates at homopolymer reference sites (underlined). 
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MATERIALS AND METHODS 

 

1.1 Freshwater Sampling 

We monitored nine distinct locations along a 11.62 km reach of the River Cam, featuring sites upstream, 

downstream and within the urban belt of the city of Cambridge, UK. Measurements were taken at three time 

points, in two-month intervals between April and August 2018 (Figure 1, Supplementary Table 1a). To warrant 

river base flow conditions and minimise rain-derived biases, a minimum dry weather time span of 48h was 

maintained prior to sampling54. One litre of surface water was collected in autoclaved DURAN bottles (Thermo 

Fisher Scientific, Waltham, MA, USA), and cooled to 4 °C within three hours. Two bottles of water were collected 

consecutively for each time point, serving as biological replicates of location 9 (samples 9.1 and 9.2). 

 

1.2 Physical and Chemical Metadata 

We assessed various chemical, geological and physical properties of the River Cam (Supplementary Figures 5 

and 6, Supplementary Tables 1b and 1c). 

 

In situ water temperature was measured immediately after sampling. To this end, we linked a DS18B20 digital 

temperature sensor to a portable custom-built, grid mounted Arduino nano v3.0 system. The pH was later recorded 

under temperature-controlled laboratory conditions, using a pH edge electrode (HI-11311, Hanna Instruments, 

Woodsocket, RI, USA). 

 

To assess the dissolved ion concentrations in all collected water samples, we aerated the samples for 30 seconds 

and filtered them individually through a 0.22 µM pore-sized Millex-GP polyethersulfone syringe filter 

(MilliporeSigma, Burlington, MA, USA). Samples were then acidified to pH ~2, by adding 20 µL of 7M distilled 

HNO3 per 3 mL sample. Inductively coupled plasma-optical emission spectroscopy (ICP-OES, Agilent 5100 

SVDV; Agilent Technologies, Santa Clara, CA, USA) was used to analyse the dissolved cations Na+, K+, Ca2+, 

Mg2+, Ba2+, Li+, as well as Si and SO42- (as total S) (Supplementary Table 1b). International water reference 

materials (SLRS-5 and SPS-SW2) were interspersed with the samples, reproducing certified values within 10 % 

for all analysed elements. Chloride concentrations were separately measured on 1 mL of non-acidified aliquots of 

the same samples, using a Dionex ICS-3000 ion chromatograph (Thermo Fisher Scientific, Waltham, MA, USA) 

(Supplementary Table 1b). Long-term repeat measurements of a USGS natural river water standard T-143 
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indicated precision of more than 4 % for Cl. However, the high Cl- concentrations of the samples in this study 

were not fully bracketed by the calibration curve and we therefore assigned a more conservative uncertainty of 10 

% to Cl concentrations. 

 

High calcium and magnesium concentrations were recorded across all samples, in line with hard groundwater and 

natural weathering of the Cretaceous limestone bedrock underlying the river catchment (Supplementary Figure 

5). There are no known evaporite salt deposits in the river catchment, and therefore the high dissolved Na+, K+ 

and Cl- concentrations in the Cam are likely derived from anthropogenic inputs26 (Supplementary Figure 5). We 

calculated bicarbonate concentrations through a charge balance equation (concentrations in mol/L): 

 

conc (HCO3-) = conc (Li+) + conc (Na+) + conc (K+) + 2*conc (Mg2+) + 2*conc (Ca2+) - conc (Cl-) - 2*conc (S2-) 

 

The total dissolved solid (TDS) concentration across the 30 freshwater samples had a mean of 458 mg/L (range 

325 - 605 mg/L) which is relatively high compared to most rivers, due to 1.) substantial solute load in the Chalk 

groundwater (particularly Ca2+, Mg2+, and HCO3-) and 2.) likely anthropogenic contamination (particularly Na+, 

Cl-, and SO42-). The TDS range and the major ion signature of the Cam is similar to other anthropogenically 

heavily-impacted rivers27, exhibiting enrichment in Na+ (Supplementary Figure 5). 

 

Overall, ion profiles clustered substantially between the three time points, indicating characteristic temporal shifts 

in water chemistry. PC1 of a PCA on the solute concentrations [µmol/L] shows a strong time effect, separating 

spring (April) from summer (June, August) samples (Supplementary Figure 5b). We highlighted the 10 most 

important features (i.e., features with the largest weights) and their contributions to PC1 (Supplementary Figure 

5c). 

 

We integrated sensor data sets on mean daily air temperature, sunshine hours and total rainfall from a public, 

Cambridge-based weather station (Supplementary Figure 6a-c; Supplementary Table 1c). Similarly, mean gauged 

daily Cam water discharge [m3s-1] was retrieved through publicly available records from three upstream gauging 

stations connected to the UK National River Flow Archive (https://nrfa.ceh.ac.uk/), together with historic 

measurements from 1968 onwards (Supplementary Figure 6d) 
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1.3 DNA Extraction 

Within 24 hours of sampling, 400 mL of chilled freshwater from each site was filtered through an individual 0.22 

µm pore-sized nitrocellulose filter (MilliporeSigma, Burlington, MA, USA) placed on a Nalgene polysulfone 

bottle top filtration holder (Thermo Fisher Scientific) at -30 mbar vacuum pressure. Additionally, 400 mL de-

ionised (DI) water was also filtered. We then performed DNA extractions with a modified DNeasy PowerWater 

protocol (Qiagen, Hilden, Germany). Briefly, filters were cut into small slices with sterile scissors and transferred 

to 2 mL Eppendorf tubes containing lysis beads. Homogenization buffer PW1 was added, and the tubes subjected 

to ten minutes of vigorous shaking at 30 Hz in a TissueLyser II machine (Qiagen). After subsequent DNA binding 

and washing steps in accordance with the manufacturer's protocol, elution was done in 50 µL EB. We used Qubit 

dsDNA HS Assay (Thermo Fisher Scientific) to determine water DNA isolate concentrations (Supplementary 

Table 2a). 

 

1.4 Bacterial Full-Length 16S rDNA Sequence Amplification 

DNA extracts from each sampling batch and DI water control were separately amplified with V1-V9 full-length 

(~1.45 kbp) 16S rDNA gene primers, and respectively multiplexed with an additional sample with a defined 

bacterial mixture composition of eight species (Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica, 

Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Listeria monocytogenes, Bacillus 

subtilis; D6305, Zymo Research, Irvine, CA, USA) (Supplementary Figure 1b-c), which was previously assessed 

using nanopore shotgun metagenomics48. We used common primer binding sequences17 27f and 1492r, both 

coupled to unique 24 bp barcodes and a nanopore motor protein tether sequence (Supplementary Table 4). Full-

length 16S PCRs were performed with the following conditions: 

 

30.8 µL DI water 

6.0 µL barcoded primer pair (10 µM) 

5.0 µL PCR-buffer with MgCl2 (10x) 

5.0 µL dNTP mix (10x) 

3.0 µL freshwater DNA extract 

0.2 µL Taq (Qiagen) 

 

94 °C - 2 minutes 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.936302doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.936302
http://creativecommons.org/licenses/by-nd/4.0/


 
 

94 °C - 30 seconds, 60 °C - 30 seconds, 72 °C - 45 seconds (35 cycles) 

72 °C - 5 minutes 

 

1.5 Nanopore Library Preparation 

Amplicons were purified from reaction mixes with a QIAquick purification kit (Qiagen). Two rounds of alcoholic 

washing and two additional minutes of drying at room temperature were then performed, prior to elution in 30 µL 

10 mM Tris-HCl pH 8.0 with 50 mM NaCl. After concentration measurements with Qubit dsDNA HS, twelve 

barcoded extracts of a given batch were pooled in equimolar ratios, to approximately 300 ng DNA total 

(Supplementary Table S2b). We used KAPA Pure Beads (KAPA Biosystems, Wilmington, MA, USA) to 

concentrate full-length 16S products in 21 µL DI water. Multiplexed nanopore ligation sequencing libraries were 

then made by following the SQK-LSK109 protocol (Oxford Nanopore Technologies, Oxford, UK). 

  

1.6 Nanopore Sequencing 

R9.4 MinION flow cells (Oxford Nanopore Technologies) were loaded with 75 µl of ligation library. The MinION 

instrument was run for approximately 48 hours, until no further sequencing reads were collected. Fast5 files were 

basecalled using Guppy (version 3.15) and output DNA sequence reads with Q>7 were saved in fastq files. 

Various output metrics per library and barcode are summarised in Supplementary Table 2c. 

 

1.7 Leptospira Validation 

In collaboration with Public Health England, raw Cam River water DNA isolates from each location and time 

point were subjected to the UK reference service for leptospiral testing. This is based on quantitative real-time 

PCR (qPCR) of 16S rDNA and LipL32, implemented as a TaqMan assay for the detection and differentiation of 

pathogenic and non-pathogenic Leptospira spp. from human serum. Briefly, the assay consists of a two-

component PCR; the first component is a duplex assay that targets the gene encoding the outer membrane 

lipoprotein LipL32, which is reported to be strongly associated with the pathogenic phenotype. The second 

reaction is a triplex assay targeting a well conserved region within the 16S rRNA gene (rrn) in Leptospira spp. 

Three different genomic variations correlate with pathogenic (PATH probe), intermediate (i.e., those with 

uncertain pathogenicity in humans; INTER probe) and non-pathogenic Leptospira spp. (ENVIRO probe), 

respectively.  
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2. DNA Sequence Processing Workflow 

Data processing and read classification was developed using the Snakemake workflow management system55 and 

is available on Github - together with all necessary downstream analysis scripts to reproduce the results of this 

manuscript (https://github.com/d-j-k/puntseq). De-multiplexed and processed reads, separated by month and 

location, are available through the European Nucleotide Archive (PRJEB34900). 

 

2.1 Read Data Processing 

Reads were demultiplexed and adapters trimmed using Porechop (version 0.2.4, 

https://github.com/rrwick/porechop). The only non-default parameter changed was ‘--check_reads’ (set to 

50,000), to increase the subset of reads to search for adapter sets. Next, we removed all reads shorter than 1.4 kbp 

and longer than 1.6 kbp with Nanofilt (version 2.5.0). 

  

We gathered read statistics such as quality scores and read lengths using NanoStat (version 1.1.2, 

https://github.com/wdecoster/nanostat), and used Pistis (https://github.com/mbhall88/pistis) to create quality 

control plots. This allowed us to assess GC content and Phred quality score distributions, which appeared 

consistent across and within our reads. Overall, we obtained 2,080,266 reads for April, 737,164 for June, and 

5,491,510 for August, with a mean read quality of 10.0 (Supplementary Table 2c). 

 

2.2 Benchmarking of Bacterial Taxonomic Classifiers using Nanopore Reads 

We used 13 different computational tools for bacterial full-length 16S rDNA sequencing read classification 

(section 2.2.1).: 

Tool Version Commands 

BLASTN56 v.2.9.0+ # build database 
makeblastdb -in silva.fna -parse_seqids -blastdb_version 5 -title 
"2019-08-24_SILVA_BLASTdatabase" -dbtype nucl 
# run BLASTN 
blastn -db silva.fna -query Cam16S.fa -out Cam16S.out -outfmt 
'6' 

Centrifuge57 v.1.0.4 # build database 
centrifuge -x centrifuge_16s_database -U Cam16S.fa --threads 
config["centrifuge_16s"]["threads"] --report-file 
Cam16S_report.tsv -S Cam16S.tab --met-stderr 
centrifuge-kreport -x centrifuge_16s_database Cam16S.tab 
{input} > Cam16S.kreport 
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IDTAXA22 Implemented in R 
DECIPHER v.2.10.2 

load(“SILVA_SSU_r132_March2018.RData”) 
IdTaxa(Cam16S.fa, trainingSet, strand = "both", threshold = 0) 

Kraken258 v.2.0.7 # build database 
kraken2 --db kraken2_16s_database --output Cam16S,out --
report Cam16S.kreport --gzip-compressed --threads 1 
Cam16S.fa 

MAPseq21 v.1.2.3 mapseq Cam16S.fa silva_ref.fa > Cam16S.mseq 

MegaBLAST59 v.2.9.0+ # build database 
makeblastdb -in silva.fna -parse_seqids -blastdb_version 5 -title 
"2019-08-24_SILVA_BLASTdatabase" -dbtype nucl 
# run megaBLAST 
blastn -task "megablast" -db silva.fna -query Cam16S.fa -out 
Cam16S.out -outfmt '6' 

Minimap218 v.2.13-r852-dirty minimap2 -k 15 -d silva_k15.mmi silva.fna 
minimap2 -ax map-ont -L silva_k15.mmi Cam16S.fa > 
Cam16S.sam 

Mothur60 v.1.43.0 align.seqs(candidate=Cam16S.fa, 
template=mothur.silva.nr_v132.align, processors=1, ksize=6, 
align=needleman) 

QIIME 2 blastn61 v.2019.7 qiime feature-classifier classify-consensus-blast --i-query 
Cam16S.qza --i-reference-reads silva.qza --i-reference-
taxonomy silva_tax.qza --o-classification Cam16S.qza --
output-dir /Qiime2/Cam16S_blastn 

QIIME 2 sklearn61 v.2019.7 qiime feature-classifier classify-sklearn --i-reads Cam16S.qza -
-i-classifier silva-132-99-nb-classifier.qza --o-classification 
Cam16S.qza --p-n-jobs 8 --output-dir /Qiime2/Cam16S 
_sklearn 

RDP62 Implemented in R 
DADA2 v.1.12.163 

assignTaxonomy(seqs = Cam16S.fa, refFasta = 
silva_nr_v132_train_set.fa.gz", tryRC = T, 
outputBootstraps=T,minBoot=0) 

SINTAX64 Implemented in 
VSEARCH v.2.13.365 

vsearch -makeudb_usearch silva_tax.fa -output silva_tax.udb 
vsearch -sintax Cam16S.fa -db silva_tax.udb  
-tabbedout Cam16S.sintax -strand both -sintax_cutoff 0.5 

SPINGO20 v.1.3 spindex -k 8 -p 1 -d silva_spingo_orig.fa 
spingo -d silva_spingo_orig.fa -k 8 -a -i Cam16S.fa > 
Cam16S.spingo 
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2.2.1 Datasets 

We used nanopore sequencing data from our mock community and freshwater amplicons for benchmarking the 

classification tools. We therefore subsampled (a) 10,000 reads from each of the three mock community sequencing 

replicates (section 1.4), and (b) 10,000 reads from an aquatic sample (April-8; three random draws served as 

replicates). We then used the above 13 classification tools to classify these reads against the same database, SILVA 

v.13219 (Supplementary Figure 1). 

 

2.2.2 Comparison of Mock Community Classifications 

For the mock community classification benchmark, we assessed the number of unclassified reads, misclassified 

reads (i.e. sequences not assigned to any of the seven bacterial families), and the root mean squared error (RMSE) 

between observed and expected taxon abundance of the seven bacterial families. Following the detection of a 

strong bias towards the Enterobacteriaceae family across all classification tools, we also analysed RMSE values 

after exclusion of this particular family (Supplementary Figure 1b-c). 

 

2.2.3 Comparison of River Community Classifications 

For the aquatic sample, the number of unclassified reads were counted prior to monitoring the performance of 

each classification tool in comparison with a consensus classification, which we defined as majority vote across 

classifications from all computational workflows. We observed stable results across all three draws of 10,000 

reads from the same dataset (data not shown), indicating a robust representation of the performance of each 

classifier. 

 

2.2.4 Overall Classification Benchmark 

Minimap2 performed second best at classifying the mock community (lowest RMSE), while also delivering 

freshwater bacterial profiles in line with the majority vote of other classification tools (Supplementary Figure 1d-

e), in addition to providing rapid speed (data not shown). Yet, the application of this software to our entire dataset 

caused insufficient memory errors (at ~150 Gb RAM with kmer length 12), likely due to major sequence 

redundancies within the SILVA v.132 reference fasta file. Hence, to run each of our full samples within a 

reasonable memory limit of 50 Gb, it was necessary to reduce the number of threads to 1, raise the kmer size ('-

k') to 15 and set the minibatch size ('-K') to 25M (i.e., the number of query bases that are processed at any time), 

prolonging the runtime of several samples to ~three days. 
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2.3 Bacterial Analyses 

 

2.3.1 General Workflow 

After applying Minimap2 to the processed reads as explained above (section 2.2.4), we processed the resulting 

SAM files by firstly excluding all header rows starting with the ‘@’ sign and then transforming the sets of read 

IDs, SILVA IDs, and alignment scores to TSV files of unique read-bacteria assignments either on the bacterial 

genus or family level. All reads that could not be assigned to the genus or family level were discarded, respectively. 

In the case of read assignment to multiple taxa with the same alignment score, we determined the lowest taxonomic 

level in which these multiple taxa would be included. If this level was above the genus or family level, 

respectively, we discarded the read.  

 

2.3.2 Estimating the Level of Misclassifications and Contaminants 

Across three independent sequencing replicates of the same linear bacterial community standard (section 2.2.1), 

we found that the fraction of reads assigned to unexpected genus level taxa resides at ~1 % when using the 

Minimap2 classifier and the SILVA 132 database. 

 

Raw quantified DNA, PCR amplicons and sequencing read counts were considerably less abundant in DI water 

negative controls, as compared to actual freshwater specimens (Supplementary Table 2a). Only the negative 

control of the most prolific flow cell run (August 2018) passed our high confidence threshold of 37,000 sequencing 

reads on the family level (Figure 2b, Supplementary Figure 3, section 2.4). Further inspection of these negative 

control reads revealed that their metagenomic profile closely mimicked the taxonomic classification profiles of 

river samples within the same sequencing batch, in addition to low-level kit contaminants like alphaproteobacteria 

of the Bradyrhizobium and Methylobacterium genus66 which were otherwise nearly completely absent in any of 

the true aquatic isolates (Supplementary Table 5). 

 

2.4 Rarefaction and High-Confidence Samples 

Sample-specific rarefaction curves were generated by successive subsampling of sequencing reads classified by 

Minimap2 against the SILVA 132 database (section 2.2.1). For broader comparative data investigations, we chose 

to only retain samples that passed a conservative minimum threshold of 37,000 reads. Family and genus-level 
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species richness was hence mostly kept at ~90 % of the original values, in accordance with stable evenness profiles 

across a series of 100 bootstrap replicates (Supplementary Figure 3, section 2.4.1). Although we mainly present a 

single example rarefied dataset for our final downstream analyses, we repeated each analysis, including PCAs, 

hierarchical clustering and Mantel tests, based on additional rarefied datasets to assess the stability of the analyses. 

 

2.4.1 Mantel Test 

We performed Mantel tests (using scikit-bio version 0.5.1) to compare rarefied datasets with the full dataset. We 

therefore compared the Euclidean distance based on Z-standardised bacterial genera between all samples with 

more than 37,000 reads (two-sided test, 99,999 permutations). This resulted in a Pearson correlation of 0.814 (p 

= 2.1*10-4) for our main rarefied dataset (results of the Mantel test applied to the remaining three other rarefied 

datasets: R = 0.819 and p = 1.0*10-4, R = 0.828 and p = 8.0*10-5, R = 0.815 and p = 1.4*10-4, respectively). Results 

of the Mantel tests applied to the genus-level bacterial classifications were also similar for all four subsampled 

datasets (R = 0.847 and p = 1.0*10-5, R = 0.863 and p = 1.0*10-5, R = 0.851 and p = 1*10-5, R = 0.856 and p = 

1.0*10-5).  

 

2.5 Meta-Level Bacterial Community Analyses 

All classification assessment steps and summary statistics were performed in R or python (https://github.com/d-

j-k/puntseq). We used the python package ‘scikit-bio’ for the calculation of the Simpson index and the Shannon’s 

diversity as well as equitability index. 

 

2.6 Data Processing for Hierarchical Clustering, Principal Component and Outlier Analysis 

Rarefied read count data was subjected to log10(x+1) and Z-transformations. For the final PCA, negative and mock 

control samples were initially removed. Mock community samples were then aligned to the eigenspace determined 

by the water samples and added to plots displaying the main principal components (PCs explaining >10 % 

variance, respectively). For each of these relevant PCs, we further highlighted the 10 most important features (i.e., 

taxa with the largest weights) and their contributions to the PCs in barplots, and added the standard error across 

the three additional rarefied datasets. 
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For detecting outlier bacterial families per sample, we chose bacteria which were 1.) identified by more than 500 

reads, and 2.) which were at least five times more abundant in any single sample than in the mean of all samples 

combined. 

 

2.7 Pathogen Candidate Assessments 

A list of 88 known bacterial pathogenic species, respectively spanning 32 families and 45 genera, was compiled 

for targeted sequence testing. This was done through the careful integration of curated databases and online 

sources, foremost using PATRIC28,29 (Supplementary Table 6a). Additionally, we integrated known genera from 

a large wastewater reference collection30 (Supplementary Table 6b). 

 

To identify if DNA reads assigned to Leptospiraceae were more similar to sequence reads of previously identified 

pathogenic, intermediate or environmental Leptospira species, we built a neighbour-joining tree of Leptospiraceae 

reads classified in our samples data, together with sequences from reference databases (Figure 3d; species names 

and NCBI accession numbers in clockwise rotation around the tree in Supplementary Table 7a). We matched the 

orientation of our reads, and then aligned them with 68 Leptospira reference sequences and the Leptonema illini 

reference sequence (DSM 21528 strain 3055) as outgroup. We then built a neighbour-joining tree using Muscle 

v.3.8.3167 (excluding three reads in the “Other Environmental” clade that had extreme branch lengths >0.2). The 

reference sequences were annotated as pathogenic and saprophytic clades P1, P2, S1, S2 as recently described35. 

Additional published river water Leptospira that did not fall within these clades were included as "Other 

Environmental"68. Similarly, we constructed phylogenies for the Legionella, Salmonella and Pseudomonas genus, 

using established full-length 16S reference species sequences from NCBI (Supplementary Table 7b-d). 

 

3. Total Project Cost 

This study was designed to enable freshwater microbiome monitoring in budget-constrained research 

environments. Although we had access to basic infrastructure such as pipettes, a PCR and TissueLyser II machine, 

as well a high-performance laptop, we wish to highlight that the total sequencing consumable costs were held 

below £4,000. Here, individual costs ranged at ~£75 per sample. With the current MinION flow cell price of £720, 

we estimate that per-sample costs could be further reduced to as low as ~£15 when barcoding and pooling ~£100 

samples in the same sequencing run (for details, see Supplementary Table 3). Assuming near-equimolar amplicon 
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pooling, flow cells with an output of ~5,000,000 reads can yield well over 37,000 sequences per sample and 

thereby surpass this conservative threshold applied here for comparative river microbiota analyses. 
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