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ABSTRACT 

While traditional microbiological freshwater tests focus on the detection of specific bacterial indicator species 

including pathogens, direct tracing of all aquatic DNA through metagenomics poses a profound alternative. Yet, 

in situ metagenomic water surveys face substantial challenges in cost and logistics. Here we present a simple, fast, 

inexpensive and remotely accessible freshwater diagnostics workflow centred around the portable nanopore 

sequencing technology. Using defined compositions and spatiotemporal microbiota from surface water of an 

example river in Cambridge (UK), we provide optimised experimental and bioinformatics guidelines, including a 

benchmark with twelve taxonomic classification tools for nanopore sequences. We find that nanopore 

metagenomics depicts both, the hydrological core microbiome and fine temporal gradients in line with 

complementary physicochemical measurements. Using reference-based sequence clustering, these data feature 

relevant sewage signals and pathogen maps at species level resolution. We anticipate that this framework will 

gather momentum for new environmental monitoring initiatives using portable devices. 

 

INTRODUCTION 

The global assurance of safe drinking water and basic sanitation has been recognised as a United Nations 

Millennium Development Goal1, particularly in light of the pressures of rising urbanisation, agricultural 

intensification and climate change2,3. These trends enforce an increasing demand for freshwater monitoring 

frameworks that combine cost effectiveness, fast technology deployability and data transparency4. Environmental 

metagenomics, the tracing of organisms present in a substrate through high-throughput DNA sequencing, yields 

informative measures of relative taxonomic species occurrence and functional diversity5. Microbial metagenomics 

studies overcome enrichment biases common to traditional culturing approaches5; however, they usually depend 

on expensive and stationary equipment, highly specialised operational training and substantial time lags between 

fieldwork, sample preparation, raw data generation and access. 

 

In recent years, these challenges have been revisited with the prospect of ‘portable’ DNA analysis. The main 

driver of this is the smartphone-sized MinION device from Oxford Nanopore Technologies (ONT), which enables 

real-time DNA sequencing using nanopores6. Nanopore read lengths can be comparably long (currently up to 

~2*106 bases7), which is enabled by continuous electrical sensing of sequential nucleotides along single DNA 

strands. In connection with a laptop or cloud access for the translation of raw voltage signal into nucleotides, 

nanopore sequencing can be used to rapidly monitor long DNA sequences in remote locations. Although there are 
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still common concerns about the technology's base-level accuracy, mobile MinION setups have already proven 

powerful for real-time tracing and open data sharing during bacterial and viral pathogen outbreaks8-13. 

 

Here we report a simple, inexpensive workflow to assess microbial freshwater ecosystems with nanopore DNA 

sequencing. Our benchmark involves the design and optimisation of essential experimental steps for multiplexed 

MinION usage in the context of local environments, together with an evaluation of computational methods for the 

bacterial classification of nanopore sequencing reads from metagenomic libraries. To showcase the resolution of 

sequencing-based aquatic monitoring in a spatiotemporal setting, we combine DNA analyses with 

physicochemical measurements of surface water samples collected at nine locations within a confined ~12 

kilometre reach of the River Cam passing through the city of Cambridge (UK) in April, June and August 2018. 

 

RESULTS 

 

Experimental design and computational workflows 

Nanopore full-length (V1-V9) 16S ribosomal RNA (rRNA) gene sequencing was performed on all location-

barcoded freshwater samples at each of the three time points (Figure 1; Supplementary Table 1a). Samples were 

complemented with a negative control (deionised water) and a mock community control composed of eight 

bacterial species in known mixture proportions (Methods). 

 

To obtain valid taxonomic assignments from freshwater sequencing profiles using nanopore sequencing, twelve 

different classification tools were compared through several performance metrics (Extended Data Figure 1; 

Methods). Root mean square errors (RMSE) between observed and expected bacteria of the mock community 

differed slightly across all classifiers. An Enterobacteriaceae overrepresentation was observed across all 

replicates and classification methods, pointing towards a consistent Escherichia coli amplification bias potentially 

caused by skewed taxonomic specificities of the selected 16S primer pair (27f and 1492r)14. Robust quantifications 

were obtained by Minimap215 alignments against the SILVA v.132 database16, for which 99.68 % of classified 

reads aligned to the expected mock community taxa (mean sequencing accuracy 92.08 %). Minimap2 

classifications reached the second lowest RMSE (excluding Enterobacteriaceae), and relative quantifications 

were highly consistent between mock community replicates. Benchmarking of the classification tools on one 

aquatic sample further confirmed Minimap2's reliable performance in a more complex bacterial community, 
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although other tools such as SPINGO17, MAPseq18, or IDTAXA19 also produced highly concordant results despite 

variations in processing speed and memory usage (data not shown). 

 

Diversity analysis and river core microbiome 

Using Minimap2 classifications within our bioinformatics consensus workflow (Extended Data Figure 2; 

Methods), we then inspected sequencing profiles of three independent MinION runs for a total of 30 river DNA 

isolates and six controls. This yielded ~8.3 million sequences with exclusive barcode assignments (Figure 2a; 

Supplementary Table 2). Overall, 55.9 % (n = 4,644,194) of raw reads could be taxonomically assigned to the 

family level (Figure 2b). To account for variations in sample sequencing depth, rarefaction with a cut-off at 37,000 

reads was applied to all samples. While preserving ~90 % of the original family level taxon richness (Mantel test, 

R = 0.814, p = 2.1*10-4; Extended Data Figure 3), this conservative thresholding resulted in the exclusion of 14 

samples, mostly from the June time point, for subsequent high-resolution analyses. The 16 remaining surface 

water samples revealed moderate levels of microbial heterogeneity (Figure 2b; Extended Data Figure 3): microbial 

family alpha diversity ranged between 0.46 (June-6) and 0.92 (April-7) (Simpson index), indicating partially low-

level evenness with a few taxonomic families that account for the majority of the metagenomic signal. Hierarchical 

clustering of taxon profiles showed a dominant core microbiome across all aquatic samples (clusters C2 and C4, 

Figure 2c). The most common bacterial families observed were Burkholderiaceae (40.0 %), Spirosomaceae (17.7 

%), and NS11-12 marine group (12.5 %), followed by Arcobacteraceae (4.8 %), Sphingomonadaceae (2.9 %) 

and Rhodobacteraceae (2.5 %) (Figure 2d). Members of these families are commonly associated with aquatic 

environments; for example, Burkholderiaceae reads mostly originate from genera such as Limnohabitans, 

Rhodoferax or Aquabacterium, which validates the suitability of this nanopore metagenomics workflow. 

 

Hierarchical clustering additionally showed that two biological replicates collected at the same location and time 

point (April samples 9.1 and 9.2), grouped with high concordance; this indicates that spatiotemporal trends are 

discernible even within a highly localised context. Besides the dominant core microbiome, microbial profiles 

showed a marked arrangement of time dependence, with water samples from April grouping more distantly to 

those from June and August (Figure 2c). Principal component analysis (PCA) (Figure 3a; Extended Data Figure 

4) revealed that the strongest differential abundances along the chronological axis of variation (PC3) derived from 

the higher abundance of Carnobacteriaceae in April (Figure 3b). This family is known for its occurrence in waters 

with low temperature20. 
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Hydrochemistry and seasonal profile of the River Cam 

While a seasonal difference in bacterial composition can be expected due to increasing water temperatures in the 

summer months, additional changes may have also been caused by alterations in river hydrochemistry and flow 

rate (Extended Data Figures 5 and 6, respectively; Supplementary Table 1c). To assess this effect in detail, we 

measured the pH and a range of major and trace cations in all river water samples using inductively coupled 

plasma-optical emission spectroscopy (ICP-OES), as well as major anions using ion chromatography (Extended 

Data Figure 5; Methods). As with the bacterial composition dynamics, we observed significant temporal variation 

in water chemistry, superimposed on a spatial gradient of generally increasing sodium and chloride concentrations 

along the river reach. This spatially consistent effect is likely attributed to wastewater and agricultural discharge 

inputs in and around Cambridge city. A comparison of the major element chemistry in the River Cam transect 

with the world's 60 largest rivers further corroborates the likely impact of anthropogenic pollution in this fluvial 

ecosystem21 (Extended Data Figure 5; Methods). 

 

Maps of potential bacterial pathogens at species-level resolution 

In line with these physicochemical trends, we next determined the spatiotemporal enrichment of potentially 

functionally important bacterial taxa through nanopore sequencing. We retrieved 55 potentially pathogenic 

bacterial genera through careful integration of species known to affect human health22,23, and also 13 wastewater-

associated24 bacterial genera (Supplementary Table 3). Of these, 21 potentially pathogenic and eight wastewater-

associated genera were detected across all of the river samples (Figure 3c; Methods). Many of these signals were 

stronger downstream of urban sections, within the mooring zone for recreational and residential barges (location 

7, Figure 1a) and in the vicinity of sewage outflow from a nearby wastewater treatment plant (location 8). The 

most prolific candidate pathogen genus observed was Arcobacter, which features multiple species implicated in 

acute gastrointestinal infections25. 

 

In general, much of the taxonomic variation across all samples was caused by sample April-7 (PC1 explains 27.6 

% of the overall variance in bacterial composition; Extended Data Figure 4a-b). This was characterised by an 

unusual dominance of Caedibacteraceae, Halomonadaceae and others (Extended Data Figure 4c). Isolate April-

8 also showed a highly distinct bacterial composition, with some families nearly exclusively occurring in this 

sample (outlier analysis, Methods). The most predominant bacteria in this sewage pipe outflow are typically found 
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in wastewater sludge or have been shown to contribute to nutrient pollution from effluents of wastewater plants, 

such as Haliangiaceae, Nitospiraceae, Rhodocyclaceae, and Saprospiracea24,26 (Figure 3c). 

 

Using multiple sequence alignments between nanopore reads and pathogenic species references, we further 

resolved the phylogenies of three common potentially pathogenic genera occurring in our river samples, 

Pseudomonas, Legionella and Salmonella (Extended Data Figure 7; Methods). While Legionella and Salmonella 

diversities only presented negligible levels of known harmful species, a cluster of sequencing reads in downstream 

sections indicated a low abundance of the opportunistic, environmental pathogen Pseudomonas aeruginosa 

(Extended Data Figure 7). 

 

We also found significant variations in relative abundances of the Leptospira genus, which was recently described 

to be enriched in wastewater effluents in Germany27. Indeed, the peak of River Cam Leptospira reads falls into an 

area of increased sewage influx (Figure 3c). The Leptospira genus contains several potentially pathogenic species 

capable of causing life-threatening leptospirosis through waterborne infections28, however also features close-

related saprophytic and ‘intermediate’ taxa29. To resolve its complex phylogeny in the River Cam surface, we 

aligned Leptospira reads from all samples together with various reference sequences assigned to pre-classified 

pathogenic, saprophytic and other environmental Leptospira species29 (Figure 3d; Supplementary Table 4a; 

Methods). Despite the presence of nanopore sequencing errors (Extended Data Figure 8) and correspondingly 

inflated read divergence, we could pinpoint spatial clusters and a distinctly higher similarity between our 

amplicons and saprophytic rather than pathogenic Leptospira species. These findings were subsequently validated 

by targeted, Leptospira species-specific qPCR (Supplementary Table 5, Methods), confirming that the latest 

nanopore sequencing quality is high enough to yield indicative results for bacterial monitoring workflows at the 

species level. 

 

DISCUSSION 

Using an inexpensive, easily adaptable and scalable framework, we provide the first spatiotemporal nanopore 

sequencing atlas of bacterial microbiota along a river reach. Beyond the core microbiome of an example fluvial 

ecosystem, our results suggest that it is possible to robustly assess the heterogeneity in accessory bacterial 

composition in the context of supporting physical (temperature, flow rate) and hydrochemical (pH, inorganic 

solutes) parameters. We show that the technology's current accuracy of ~92 % allows for the designation of 
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significant human pathogen community shifts along rural-to-urban river transitions, as illustrated by downstream 

increases in the abundance of pathogen candidates. 

 

Furthermore, our assessment of popular bioinformatics workflows for taxonomic classification highlights current 

challenges with error-prone nanopore sequences. We observed differences in terms of bacterial quantifications, 

read misclassification rates and consensus agreements between the twelve tested computational methods. In this 

computational benchmark, using the SILVA v.132 reference database, one of the most balanced performances 

was achieved by Minimap2 alignments. As nanopore sequencing quality continues to increase through refined 

pore chemistries, basecalling algorithms and consensus sequencing workflows30-32, future bacterial taxonomic 

classifications are likely to improve and advance opportunities for aquatic species discovery. 

 

We show that nanopore amplicon sequencing data can resolve the core microbiome of a freshwater body, as well 

as its temporal and spatial fluctuations. Besides common freshwater bacteria, we find that the differential 

abundances of Carnobacteriaceae most strongly contribute to seasonal loadings in the River Cam. 

Carnobacteriaceae have been previously associated with cold environments20, and we found these to be more 

abundant in colder April samples (mean 11.3 °C, vs. 15.8 °C in June and 19.1 °C in August). This might help to 

establish this family as an indicator for bacterial community shifts along with water temperature fluctuations. 

 

Most routine freshwater surveillance frameworks focus on semi-quantitative diagnostics of only a limited number 

of target taxa, such as pathogenic Salmonella, Legionella and faecal coliforms33,34. Our proof-of-principle analysis 

highlights that the combination of full-length 16S rRNA gene amplification and nanopore sequencing can 

complement hydrochemical controls in pinpointing relatively contaminated freshwater sites, some of which had 

been previously highlighted for their pathogen diversity and abundance of antimicrobial resistance genes35,36. 

Nanopore sequencing here allowed for the reliable distinction of closely related pathogenic and non-pathogenic 

bacterial species of the common Salmonella, Legionella, Pseudomonas and Leptospira genera. For Leptospira 

bacteria, we further validated nanopore sequencing results through the gold standard qPCR workflow of Public 

Health England (Supplementary Table 5). 

 

A number of experimental intricacies should be addressed towards future nanopore freshwater sequencing studies, 

mostly by scrutinising water DNA extraction yields, PCR biases and molar imbalances in barcode multiplexing 
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(Figure 2a; Extended Data Figure 8). Yet, our results show that it would be theoretically feasible to obtain 

meaningful river microbiota from >100 barcoded samples on a single nanopore flow cell, thereby enabling water 

monitoring projects involving large collections at costs below £20 per sample (Supplementary Table 6). Barcoded 

shotgun nanopore sequencing protocols may pose a viable alternative strategy to bypass pitfalls often observed in 

amplicon-based workflows, namely taxon-specific primer biases14, 16S rDNA copy number fluctuations between 

species37 and the omission of functionally relevant sequence elements. In combination with sampling protocol 

adjustments, shotgun nanopore sequencing could moreover be used for the monitoring of eukaryotic 

microorganisms and viruses in freshwater ecosystems. 

 

Since the commercial launch of the MinION in 2015, a wide set of nanopore sequencing applications like rRNA 

gene38-41 and shotgun42-45 metagenomics have attracted the interest of a growing user community; indeed, two 

independent case studies have recently provided decomposition analyses of faecal bacterial pathogens in MinION 

libraries derived from river and spring waters in Crow Agency (Montana, USA)46 and Kathmandu Valley 

(Nepal)47. Although it is to be expected that short-read metagenomics technology continues to provide valuable 

environmental insights, as illustrated through global cataloguing efforts of ocean48, wastewater24 and soil49 

microbiomes, many traditional platforms are unfeasible for monitoring remote environments - especially in low-

resource settings. We reason that the low investment costs, the convenience of MinION handling and 

complementary development of portable DNA purification methods50 will allow for such endeavours to become 

increasingly accessible to citizens and public health organisations around the world, ultimately democratising the 

opportunities, open sharing and benefits of DNA sequencing. 
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Figure 1: Freshwater microbiome study design and experimental workflow. (a) Schematic map of Cambridge 

(UK) illustrating sampling locations (colour-coded) along the Cam River. Geographic coordinates of latitude and 

longitude are expressed as decimal fractions according to the global positioning system. (b) Experimental 

workflow to monitor bacterial communities from freshwater samples using nanopore sequencing (Methods). 
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Figure 2: Bacterial diversity of the River Cam. (a) Nanopore sequencing output summary. Values in the centre 

of the pie charts depict total numbers of classified nanopore sequences per time point. Percentages illustrate 

representational fractions of locations and control barcodes (negative control and mock community). (b) Read 

depth and bacterial classification summary. Upper bar plot shows the total number of reads, and the number of 

reads classified to any taxonomic level, to at least bacterial family level, to the ten most abundant bacterial families 

across all samples, or to other families. Rarefaction cut-off displayed at 37,000 reads (dashed line). Lower bar 

plot features fractions of the ten most abundant bacterial families across the samples with more than 100 reads. 

Colours in bars for samples with less than 37,000 reads are set to transparent. (c) Hierarchical clustering of 
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bacterial family abundances across freshwater samples after rarefaction, together with the mock community 

control. Four major clusters of bacterial families occur, with two of these (C2 and C4) corresponding to the core 

microbiome of ubiquitously abundant families, one (C3) corresponding to the main mock community families 

and one (C1) corresponding to the majority of rare accessory taxa. (d) Detailed river core microbiome. Violin 

plots (log10 scale of relative abundance [%] across all samples, nApril = 7, nJune = 2, nAugust = 7) summarise fractional 

representation of bacterial families from clusters C2 and C4, sorted by median total abundance. Vertical dashed 

line depicts 0.1 % proportion. 
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Figure 3: Rare taxa and potential pathogens of the River Cam. (a) PCA of bacterial composition across 

locations, indicating community dissimilarities along the main time (PC3) and spatial (PC4) axes of variation; 

dots coloured according to time points. (b) Contribution of individual bacterial families to the PCs in (a). Error 

bars represent the standard deviation of these families across four independent rarefactions. (c) Abundance and 

distribution of potentially pathogenic bacteria and wastewater treatment related bacteria, at genus level resolution. 

The boxplots on the left show the abundance distribution across locations per bacterial genus. Error bars represent 
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Q1 – 1.5*IQR (lower), and Q3 + 1.5*IQR (upper), respectively; Q1: first quartile, Q3: third quartile, IQR: 

interquartile range. The centre colour-scale table depicts the categorisation of subsets of genera as waterborne 

bacterial pathogens (WB), drinking water pathogens (DWP), potential drinking water pathogens (pDWP), human 

pathogens (HP) and core genera from wastewater treatment plants (WW) (dark grey: included, light grey: 

excluded) (Supplementary Table 3). The right-hand circle plot shows the distribution of bacterial genera across 

locations of the River Cam. Circle sizes represent overall read size fractions, while circle colours (sigma scheme) 

represent the standard deviation from the observed mean relative abundance within each genus. (d) Phylogenetic 

tree illustrating the multiple sequence alignment of all nanopore reads classified as Leptospira, together with 

known Leptospira reference sequences ranging from pathogenic to saprophytic species29 (Supplementary Table 

4a). 
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Extended Data Figure 1: Benchmarking of classification tools with nanopore full-length 16S reads. (a) 

Schematic of mock community quantification performance testing. (b) Observed vs. expected read fraction of 

bacterial families present in 10,000 nanopore reads randomly drawn from mock community sequencing data. 

Example representation of Minimap2 (kmer length 15) quantifications with (upper) and without (lower) 

Enterobacteriaceae (Methods). (c) Mock community classification output summary for twelve classification tools 

tested against the 10,000 nanopore reads. Root mean squared errors observed and expected bacterial read fractions 

are provided with (RMSE) and without Enterobacteriaceae (RMSE reduced). (d) Classification output summary 

for 10,000 reads randomly drawn from an example freshwater sample (Methods). 'Overlapping' fractions (red) 

represent agreements of a classification tool with the majority of tested methods on the same reads, while 'non-

overlapping' fractions (light blue) represent disagreements. Dark green sets highlight rare taxon assignments not 

featured in any of the 10,000 majority classifications, while dark blue bars show unclassified read fractions. (e) 

Top 10 represented bacterial taxon families across all twelve classifiers based on the 10,000 aquatic reads used in 

(d). 
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Extended Data Figure 2: Bioinformatics consensus workflow. Essential data processing steps, from nanopore 

sequencing to spatiotemporal bacterial composition analysis (Methods). After full-length 16S rDNA sequencing 

with the MinION (R9.4 flow cell), local basecalling of the raw fast5 files was performed using Guppy69. Output 

fastq files were filtered for length and quality (Methods), and reads assigned to their location barcode using 

Porechop. We then used Minimap215 (k = 15) and the SILVA v.132 database16 for taxonomic classifications. 

Rarefaction reduced each sample to the same number of reads (37,000), allowing for a robust comparison of 

bacterial composition across samples in various downstream analyses. 
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Extended Data Figure 3: Impact of rarefaction on diversity estimation. (a) Example rarefaction curve for 

bacterial family classifications of the 'April-1' sample. The chosen cut-off preserves most (~90 %) of the original 

family taxon richness (vertical line). (b) Difference between original and rarefied family richness at 37,000 reads 

across all freshwater sequencing runs with quantitative sequencing outputs above the chosen cut-off. Boxplots 

feature 100 independent rarefactions per sample. Error bars represent Q1 – 1.5*IQR (lower), and Q3 + 1.5*IQR 

(upper), respectively. (c) Diversity visualisation of the ten most abundant bacterial families across all samples 

with sequencing outputs >37,000 reads, through 400 ‘unordered bubbles’. Taxonomic proportions and colours are 

in accordance with Figure 2b. Shannon (H) and Simpson (D) indices for all samples indicate marginal differences 

between pairs of original and rarefied sets. 
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Extended Data Figure 4: Principal component analysis of river bacterial family compositions. (a-b) PCA 

with two independent rarefaction sets to 37,000 reads in all freshwater sequencing samples. Numbers and coloured 

dots indicate locations for each time point. The first and second principal components (PC1 and PC2, combined 

variance: ~41 %) robustly capture outlier samples 'April-7' along PC1 and 'April-2', 'August-4' and 'April-8' along 

PC2. (c-d) Fractional loads of the ten bacterial families most strongly contributing to changes along PC1 (c) and 

along PC2 (d). Error bars represent standard deviation of these families to the respective PC across four 

independent rarefactions. Subsequent principal components (PC3 and PC4) are less outlier-driven and depict 

spatial and temporal metagenomic trends within the River Cam. 
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Extended Data Figure 5: Geological and hydrochemical profile of the River Cam and its basin. (a) Outline 

of the Cam River catchment surrounding Cambridge (UK), and its corresponding lithology. Overlay of bedrock 

geology and superficial deposits (British Geological Survey data: DiGMapGB-50, 1:50,000 scale) is shown as 

visualised by GeoIndex. Bedrock is mostly composed of subtypes of Cretaceous limestone (chalk), gault (clay, 

sand) and mudstone. Approximate sampling locations are colour-coded as in Figure 1. (b) Principal component 

analysis of measured pH and 13 inorganic solute concentrations of this study's 30 river surface water samples. 

PC1 (~49 % variance) displays a strong, continuous temporal shift in hydrochemistry. (c) Parameter contributions 

to PC1 in (b), highlighting a reduction in water hardness (Ca2+, Mg2+) and increase in pH towards the summer 

months (June and August). (d) Mixing diagram with Na+-normalised molar ratios, representing inorganic 

chemistry loads of world's 60 largest rivers21; open circles represent polluted rivers with total dissolved solid 

(TDS) concentrations >500 mg l-1. Cam River ratios are superimposed as ellipses from ten samples per month (50 

% confidence, respectively). Separate data points for all samples from August are also shown and colour-coded, 

indicating the downstream-to-upstream trend of Na+ increase (also observed in April and June). End-member 

signatures show typical chemistry of small rivers draining these lithologies exclusively (carbonate, silicate and 

evaporite). 
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Extended Data Figure 6: Cambridge weather and Cam River flow rate. (a) Daily air temperature [°C], (b) 

daily sunshine [hours], and (c) daily rainfall [mm] of Cambridge in 2018 (black trend line) vs. 1998-2017 (blue 

background trend lines). (d) Cam River gauged daily flow [m3s-1] in 2018 (black trend line) vs. 1968-2017 (blue 

background trend lines). Data was compiled from public repositories 

https://www.cl.cam.ac.uk/research/dtg/weather/ and https://nrfa.ceh.ac.uk/. Gauged daily flow measurements at 
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Jesus Lock, Cambridge (between sampling locations 5 and 6; NRFA #33016) were discontinued in 1983. Yet, 

contemporary flow rates can be modelled with high accuracy (Pearson's R = 0.9, R2 = 0.8) through linear data 

integration of three upstream stations already in operation since before 1983: Rhee at Wimpole (NRFA #33027, 

70.2 % model weight), Granta at Stapleford (NRFA #33053, 19.6 % model weight) and Cam at Dernford (NRFA 

#33024, 10.3 % model weight). 
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Extended Data Figure 7: Phylogenetic clustering of candidate pathogenic bacterial genera in the River 

Cam. Phylogenetic trees illustrating multiple sequence alignments of exemplary River Cam nanopore reads 

classified as (a) Legionella, (b) Salmonella or (c) Pseudomonas, together with known reference species sequences 

ranging from pathogenic to saprophytic taxa within the genes (Supplementary Table 4b-d). Reads highlighted in 

light violet background display close clustering with pathogenic isolates of (b) Salmonella spp. and (c) 

Pseudomonas aeruginosa. 
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Extended Data Figure 8: Key challenges of environmental monitoring with nanopore sequencing. (a-b) 

Correlation analysis between DNA extraction yield, 16S amplification yield and raw sequencing output 

(Supplementary Table 2). (a) DNA concentrations (x-axis) obtained from 30 freshwater samples after extraction 

with the DNeasy PowerWater Kit (Methods) are compared against the DNA concentration of the same samples 

after full-length 16S PCR amplification (y-axis), as measured by Qubit dsDNA HS. Fitted linear model displays 

the 95 % confidence interval (R = Pearson correlation coefficient). (b) The DNA concentration obtained for each 

sample after full-length 16S PCR amplification (x-axis) is compared against the final number of demultiplexed 

nanopore sequencing reads. Logarithmic fit with 95 % confidence interval indicates that samples with a minimum 

input concentration measurement of ~5 ng/µl yielded sequencing outputs sufficient to pass the rarefaction 

threshold of 37,000 reads. (c) Multiple sequence alignment of an example set of related nanopore 16S sequences, 

displaying increased indel rates at homopolymer reference sites (underlined); the mean sequencing error rate for 

this study lies at 7.92 %. 
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MATERIALS AND METHODS 

 

1.1 Freshwater sampling 

We monitored nine distinct locations along a 11.62 km reach of the River Cam, featuring sites upstream, 

downstream and within the urban belt of the city of Cambridge, UK. Measurements were taken at three time 

points, in two-month intervals between April and August 2018 (Figure 1; Supplementary Table 1a). To warrant 

river base flow conditions and minimise rain-derived biases, a minimum dry weather time span of 48h was 

maintained prior to sampling51. One litre of surface water was collected in autoclaved DURAN bottles (Thermo 

Fisher Scientific, Waltham, MA, USA), and cooled to 4 °C within three hours. Two bottles of water were collected 

consecutively for each time point, serving as biological replicates of location 9 (samples 9.1 and 9.2). 

 

1.2 Physical and chemical metadata 

We assessed various chemical, geological and physical properties of the River Cam (Extended Data Figures 5 and 

6, Supplementary Tables 1b and 1c). 

 

In situ water temperature was measured immediately after sampling. To this end, we linked a DS18B20 digital 

temperature sensor to a portable custom-built, grid mounted Arduino nano v3.0 system. The pH was later recorded 

under temperature-controlled laboratory conditions, using a pH edge electrode (HI-11311, Hanna Instruments, 

Woodsocket, RI, USA). 

 

To assess the dissolved ion concentrations in all collected water samples, we aerated the samples for 30 seconds 

and filtered them individually through a 0.22 µM pore-sized Millex-GP polyethersulfone syringe filter 

(MilliporeSigma, Burlington, MA, USA). Samples were then acidified to pH ~2, by adding 20 µL of 7M distilled 

HNO3 per 3 mL sample. Inductively coupled plasma-optical emission spectroscopy (ICP-OES, Agilent 5100 

SVDV; Agilent Technologies, Santa Clara, CA, USA) was used to analyse the dissolved cations Na+, K+, Ca2+, 

Mg2+, Ba2+, Li+, as well as Si and SO42- (as total S) (Supplementary Table 1b). International water reference 

materials (SLRS-5 and SPS-SW2) were interspersed with the samples, reproducing certified values within 10 % 

for all analysed elements. Chloride concentrations were separately measured on 1 mL of non-acidified aliquots of 

the same samples, using a Dionex ICS-3000 ion chromatograph (Thermo Fisher Scientific, Waltham, MA, USA) 

(Supplementary Table 1b). Long-term repeat measurements of a USGS natural river water standard T-143 
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indicated precision of more than 4 % for Cl-. However, the high Cl- concentrations of the samples in this study 

were not fully bracketed by the calibration curve and we therefore assigned a more conservative uncertainty of 10 

% to Cl- concentrations. 

 

High calcium and magnesium concentrations were recorded across all samples, in line with hard groundwater and 

natural weathering of the Cretaceous limestone bedrock underlying the river catchment (Extended Data Figure 5). 

There are no known evaporite salt deposits in the river catchment, and therefore the high dissolved Na+, K+ and 

Cl- concentrations in the River Cam are likely derived from anthropogenic inputs52 (Extended Data Figure 5). We 

calculated bicarbonate concentrations through a charge balance equation (concentrations in mol/L): 

 

conc (HCO3-) = conc (Li+) + conc (Na+) + conc (K+) + 2*conc (Mg2+) + 2*conc (Ca2+) - conc (Cl-) - 2*conc (S2-) 

 

The total dissolved solid (TDS) concentration across the 30 freshwater samples had a mean of 458 mg/L (range 

325 - 605 mg/L) which is relatively high compared to most rivers, due to 1.) substantial solute load in the Chalk 

groundwater (particularly Ca2+, Mg2+, and HCO3-) and 2.) likely anthropogenic contamination (particularly Na+, 

Cl-, and SO42-). The TDS range and the major ion signature of the River Cam is similar to other anthropogenically 

heavily-impacted rivers21, exhibiting enrichment in Na+ (Extended Data Figure 5). 

 

Overall, ion profiles clustered substantially between the three time points, indicating characteristic temporal shifts 

in water chemistry. PC1 of a PCA on the solute concentrations [µmol/L] shows a strong time effect, separating 

spring (April) from summer (June, August) samples (Extended Data Figure 5b). We highlighted the ten most 

important features (i.e., features with the largest weights) and their contributions to PC1 (Extended Data Figure 

5c). 

 

We integrated sensor data sets on mean daily air temperature, sunshine hours and total rainfall from a public, 

Cambridge-based weather station (Extended Data Figure 6a-c; Supplementary Table 1c). Similarly, mean gauged 

daily Cam water discharge [m3s-1] of the River Cam was retrieved through publicly available records from three 

upstream gauging stations connected to the UK National River Flow Archive (https://nrfa.ceh.ac.uk/), together 

with historic measurements from 1968 onwards (Extended Data Figure 6d) 
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1.3 DNA extraction 

Within 24 hours of sampling, 400 mL of refrigerated freshwater from each site was filtered through an individual 

0.22 µm pore-sized nitrocellulose filter (MilliporeSigma, Burlington, MA, USA) placed on a Nalgene polysulfone 

bottle top filtration holder (Thermo Fisher Scientific) at -30 mbar vacuum pressure. Additionally, 400 mL de-

ionised (DI) water was also filtered. We then performed DNA extractions with a modified DNeasy PowerWater 

protocol (Qiagen, Hilden, Germany). Briefly, filters were cut into small slices with sterile scissors and transferred 

to 2 mL Eppendorf tubes containing lysis beads. Homogenization buffer PW1 was added, and the tubes subjected 

to ten minutes of vigorous shaking at 30 Hz in a TissueLyser II machine (Qiagen). After subsequent DNA binding 

and washing steps in accordance with the manufacturer's protocol, elution was done in 50 µL EB. We used Qubit 

dsDNA HS Assay (Thermo Fisher Scientific) to determine water DNA isolate concentrations (Supplementary 

Table 2a). 

 

1.4 Bacterial full-length 16S rDNA sequence amplification 

DNA extracts from each sampling batch and DI water control were separately amplified with V1-V9 full-length 

(~1.45 kbp) 16S rRNA gene primers, and respectively multiplexed with an additional sample with a defined 

bacterial mixture composition of eight species (Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica, 

Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Listeria monocytogenes, Bacillus 

subtilis; D6305, Zymo Research, Irvine, CA, USA) (Extended Data Figure 1b-c), which was previously assessed 

using nanopore shotgun metagenomics42. We used common primer binding sequences 27f and 1492r, both 

coupled to unique 24 bp barcodes and a nanopore motor protein tether sequence (Supplementary Table 7). Full-

length 16S rDNA PCRs were performed with the following conditions: 

 

30.8 µL DI water 

6.0 µL barcoded primer pair (10 µM) 

5.0 µL PCR-buffer with MgCl2 (10x) 

5.0 µL dNTP mix (10x) 

3.0 µL freshwater DNA extract 

0.2 µL Taq (Qiagen) 

 

94 °C - 2 minutes 
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94 °C - 30 seconds, 60 °C - 30 seconds, 72 °C - 45 seconds (35 cycles) 

72 °C - 5 minutes 

 

1.5 Nanopore library preparation 

Amplicons were purified from reaction mixes with a QIAquick purification kit (Qiagen). Two rounds of alcoholic 

washing and two additional minutes of drying at room temperature were then performed, prior to elution in 30 µL 

10 mM Tris-HCl pH 8.0 with 50 mM NaCl. After concentration measurements with Qubit dsDNA HS, twelve 

barcoded extracts of a given batch were pooled in equimolar ratios, to approximately 300 ng DNA total 

(Supplementary Table S2b). We used KAPA Pure Beads (KAPA Biosystems, Wilmington, MA, USA) to 

concentrate full-length 16S rDNA products in 21 µL DI water. Multiplexed nanopore ligation sequencing libraries 

were then made by following the SQK-LSK109 protocol (Oxford Nanopore Technologies, Oxford, UK). 

  

1.6 Nanopore sequencing 

R9.4 MinION flow cells (Oxford Nanopore Technologies) were loaded with 75 µl of ligation library. The MinION 

instrument was run for approximately 48 hours, until no further sequencing reads could be collected. Fast5 files 

were basecalled using Guppy (version 3.15) and output DNA sequence reads with Q>7 were saved as fastq files. 

Various output metrics per library and barcode are summarised in Supplementary Table 2c. 

 

1.7 Leptospira validation 

In collaboration with Public Health England, raw water DNA isolates of the River Cam from each location and 

time point were subjected to the UK reference service for leptospiral testing (Supplementary Table 5). This test is 

based on quantitative real-time PCR (qPCR) of 16S rDNA and LipL32, implemented as a TaqMan assay for the 

detection and differentiation of pathogenic and non-pathogenic Leptospira spp. from human serum. Briefly, the 

assay consists of a two-component PCR; the first component is a duplex assay that targets the gene encoding the 

outer membrane lipoprotein LipL32, which is reported to be strongly associated with the pathogenic phenotype. 

The second reaction is a triplex assay targeting a well conserved region within the 16S rRNA gene (rrn) in 

Leptospira spp. Three different genomic variations correlate with pathogenic (PATH probe), intermediate (i.e., 

those with uncertain pathogenicity in humans; INTER probe) and non-pathogenic Leptospira spp. (ENVIRO 

probe), respectively. 
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2. DNA sequence processing workflow 

The described data processing and read classification steps were implemented using the Snakemake workflow 

management system53 and are available on Github - together with all necessary downstream analysis scripts to 

reproduce the results of this manuscript (https://github.com/d-j-k/puntseq). 

 

2.1 Read data processing 

Reads were demultiplexed and adapters trimmed using Porechop (version 0.2.4, 

https://github.com/rrwick/porechop). The only non-default parameter set was '--check_reads' (to 50,000), to 

increase the subset of reads to search for adapter sets. Next, we removed all reads shorter than 1.4 kbp and longer 

than 1.6 kbp with Nanofilt (version 2.5.0, https://github.com/wdecoster/nanofilt). 

  

We gathered read statistics such as quality scores and read lengths using NanoStat (version 1.1.2, 

https://github.com/wdecoster/nanostat), and used Pistis (https://github.com/mbhall88/pistis) to create quality 

control plots. This allowed us to assess GC content and Phred quality score distributions, which appeared 

consistent across and within our reads. Overall, we obtained 2,080,266 reads for April, 737,164 for June, and 

5,491,510 for August, with a mean read quality of 10.0 (Supplementary Table 2c). 

 

2.2 Benchmarking of bacterial taxonomic classifiers using nanopore reads 

We used twelve different computational tools for bacterial full-length 16S rDNA sequencing read classification 

(section 2.2.1).: 

Tool Version Commands 

BLASTN54,55 v.2.9.0+ # build database 
makeblastdb -in silva.fna -parse_seqids -blastdb_version 5 -title 
"2019-08-24_SILVA_BLASTdatabase" -dbtype nucl 
# run BLASTN 
blastn -db silva.fna -query Cam16S.fa -out Cam16S.out -outfmt 
'6' 

Centrifuge56 v.1.0.4 # build database 
centrifuge -x centrifuge_16s_database -U Cam16S.fa --threads 
config["centrifuge_16s"]["threads"] --report-file 
Cam16S_report.tsv -S Cam16S.tab --met-stderr 
centrifuge-kreport -x centrifuge_16s_database Cam16S.tab 
{input} > Cam16S.kreport 

IDTAXA19 Implemented in R load(“SILVA_SSU_r132_March2018.RData”) 
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DECIPHER 
v.2.10.2 

IdTaxa(Cam16S.fa, trainingSet, strand = "both", threshold = 0) 

Kraken 257 v.2.0.7 # build database 
kraken2 --db kraken2_16s_database --output Cam16S,out --
report Cam16S.kreport --gzip-compressed --threads 1 
Cam16S.fa 

MAPseq18 v.1.2.3 mapseq Cam16S.fa silva_ref.fa > Cam16S.mseq 

MegaBLAST55,58 v.2.9.0+ # build database 
makeblastdb -in silva.fna -parse_seqids -blastdb_version 5 -title 
"2019-08-24_SILVA_BLASTdatabase" -dbtype nucl 
# run megaBLAST 
blastn -task "megablast" -db silva.fna -query Cam16S.fa -out 
Cam16S.out -outfmt '6' 

Minimap215 v.2.13-r852-dirty minimap2 -k 15 -d silva_k15.mmi silva.fna 
minimap2 -ax map-ont -L silva_k15.mmi Cam16S.fa > 
Cam16S.sam 

Mothur59 v.1.43.0 align.seqs(candidate=Cam16S.fa, 
template=mothur.silva.nr_v132.align, processors=1, ksize=6, 
align=needleman) 

QIIME 260 v.2019.7 # classification using classify-consensus-blast 
qiime feature-classifier classify-consensus-blast --i-query 
Cam16S.qza --i-reference-reads silva.qza --i-reference-
taxonomy silva_tax.qza --o-classification Cam16S.qza --
output-dir /Qiime2/Cam16S_blastn 

RDP61 Implemented in R 
DADA2 v.1.12.162 

assignTaxonomy(seqs = Cam16S.fa, refFasta = 
silva_nr_v132_train_set.fa.gz", tryRC = T, 
outputBootstraps=T,minBoot=0) 

SINTAX63 Implemented in 
VSEARCH 
v.2.13.364 

vsearch -makeudb_usearch silva_tax.fa -output silva_tax.udb 
vsearch -sintax Cam16S.fa -db silva_tax.udb  
-tabbedout Cam16S.sintax -strand both -sintax_cutoff 0.5 

SPINGO17 v.1.3 spindex -k 8 -p 1 -d silva_spingo_orig.fa 
spingo -d silva_spingo_orig.fa -k 8 -a -i Cam16S.fa > 
Cam16S.spingo 
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2.2.1 Datasets 

We used nanopore sequencing data from our mock community and freshwater amplicons for benchmarking the 

classification tools. We therefore subsampled (a) 10,000 reads from each of the three mock community sequencing 

replicates (section 1.4), and (b) 10,000 reads from an aquatic sample (April-8; three random draws served as 

replicates). We then used the above twelve classification tools to classify these reads against the same database, 

SILVA v.13216 (Extended Data Figure 1). 

 

2.2.2 Comparison of mock community classifications 

For the mock community classification benchmark, we assessed the number of unclassified reads, misclassified 

reads (i.e. sequences not assigned to any of the seven bacterial families), and the root mean squared error (RMSE) 

between observed and expected taxon abundance of the seven bacterial families. Following the detection of a 

strong bias towards the Enterobacteriaceae family across all classification tools, we also analysed RMSE values 

after exclusion of this family (Extended Data Figure 1b-c). 

 

2.2.3 Comparison of river community classifications 

For the aquatic sample, the number of unclassified reads were counted prior to monitoring the performance of 

each classification tool in comparison with a consensus classification, which we defined as majority vote across 

classifications from all computational workflows. We observed stable results across all three draws of 10,000 

reads from the same dataset (data not shown), indicating a robust representation of the performance of each 

classifier. 

 

2.2.4 Overall classification benchmark 

Minimap2 performed second best at classifying the mock community (lowest RMSE), while also delivering 

freshwater bacterial profiles in line with the majority vote of other classification tools (Extended Data Figure 1d-

e), in addition to providing rapid speed (data not shown). Yet, the application of this software to our entire dataset 

caused insufficient memory errors (at ~150 Gb RAM with kmer length 12), likely due to major sequence 

redundancies within the SILVA v.132 reference fasta file. Therefore, to run each of our full samples within a 

reasonable memory limit of 50 Gb, it was necessary to reduce the number of threads to 1, raise the kmer size ('-

k') to 15 and set the minibatch size ('-K') to 25M (i.e., the number of query bases that are processed at any time), 

prolonging the runtime of several samples to ~three days. 
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2.3 Bacterial analyses 

 

2.3.1 General workflow 

After applying Minimap2 to the processed reads as explained above (section 2.2.4), we processed the resulting 

SAM files by firstly excluding all header rows starting with the '@' sign and then transforming the sets of read 

IDs, SILVA IDs, and alignment scores to TSV files of unique read-bacteria assignments either on the bacterial 

genus or family level. All reads that could not be assigned to the genus or family level were discarded, respectively. 

In the case of a read assignment to multiple taxa with the same alignment score, we determined the lowest 

taxonomic level in which these multiple taxa would be included. If this level was above the genus or family level, 

respectively, we discarded the read.  

 

2.3.2 Estimating the level of misclassifications and DNA contaminants 

Across three independent sequencing replicates of the same linear bacterial community standard (section 2.2.1), 

we found that the fraction of reads assigned to unexpected genus level taxa lies at ~1 % when using the Minimap2 

classifier and the SILVA v.132 database. 

 

Raw quantified DNA, PCR amplicons and sequencing read counts were considerably less abundant in DI water 

negative controls, as compared to actual freshwater specimens (Supplementary Table 2a). Only the negative 

control of the most prolific flow cell run (August 2018) passed the relatively high confidence threshold of 37,000 

sequencing reads on the family level (Figure 2b, Extended Data Figure 3, section 2.4). Further inspection of these 

negative control reads revealed that their metagenomic profile closely mimicked the taxonomic classification 

profiles of river samples within the same sequencing batch, in addition to low-level kit contaminants like 

alphaproteobacteria of the Bradyrhizobium and Methylobacterium genus65 which were otherwise nearly 

completely absent in any of the true aquatic isolates (Supplementary Table 8). 

 

2.3.3 Determination of nanopore sequencing accuracy 

Minimap2 alignments against mock community taxa were used to determine the mean read-wise nanopore 

sequencing accuracy for this study, as determined by the formula:  

accuracy = 1 - (read mismatch length ÷ read alignment length) 
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These values were calculated for each of all eight species against each sequencing replicate, using the samtools66 

(v.1.3.1) stats function. 

 

2.4 Rarefaction and high-confidence samples 

Sample-specific rarefaction curves were generated by successive subsampling of sequencing reads classified by 

Minimap2 against the SILVA v.132 database (section 2.2.1). For broader comparative data investigations, we 

chose to only retain samples that passed a conservative minimum threshold of 37,000 reads. Family and genus-

level species richness was hence mostly kept at ~90 % of the original values, in accordance with stable evenness 

profiles across a series of 100 bootstrap replicates (Extended Data Figure 3; section 2.4.1). Although we mainly 

present a single example rarefied dataset within this manuscript, we repeated each analysis, including PCAs, 

hierarchical clustering and Mantel tests, based on additional rarefied datasets to assess the stability of all results. 

 

2.4.1 Mantel test 

We performed Mantel tests (using scikit-bio version 0.5.1) to compare rarefied datasets with the full dataset. We 

therefore compared the Euclidean distance based on Z-standardised bacterial genera between all samples with 

more than 37,000 reads (two-sided test, 99,999 permutations). This resulted in a Pearson correlation of 0.814 (p 

= 2.1*10-4) for our main rarefied dataset (results of the Mantel test applied to the remaining three other rarefied 

datasets: R = 0.819 and p = 1.0*10-4, R = 0.828 and p = 8.0*10-5, R = 0.815 and p = 1.4*10-4, respectively). Results 

of the Mantel tests applied to the genus-level bacterial classifications were also similar for all four subsampled 

datasets (R = 0.847 and p = 1.0*10-5, R = 0.863 and p = 1.0*10-5, R = 0.851 and p = 1*10-5, R = 0.856 and p = 

1.0*10-5).  

 

2.5 Meta-level bacterial community analyses 

All classification assessment steps and summary statistics were performed in R or python (https://github.com/d-

j-k/puntseq). We used the python package 'scikit-bio' for the calculation of the Simpson index and the Shannon's 

diversity as well as equitability index. 
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2.6 Data processing for hierarchical clustering, principal component and outlier analyses 

Rarefied read count data was subjected to a log10(x+1) transformation before hierarchical clustering using the 

complete linkage method. For PCA analyses, rarefied read count data was subjected to log10(x+1) and Z-

transformations. Negative control samples were removed. Mock community samples were initially removed to 

then be re-aligned to the eigenspace determined by the aquatic samples. We provide PCA visualisations of the 

main principal components (PCs explaining >10 % variance, respectively). For each of these relevant PCs, we 

further highlight the ten most important features (i.e., taxa with the largest weights) and their contributions to the 

PCs in barplots. 

 

For detecting outlier bacterial families per sample, we chose bacteria which were 1.) identified by more than 500 

reads and 2.) which were at least five times more abundant in any single sample than in the mean of all samples 

combined. 

 

2.7 Pathogen candidate assessments 

A list of 55 known bacterial pathogenic genera, spanning 37 families, was compiled for targeted sequence testing. 

This was done through the careful integration of curated databases and online sources, foremost using PATRIC22 

and data on known waterborne pathogens23 (Supplementary Table 3a). Additionally, we integrated known genera 

from a large wastewater reference collection24 (Supplementary Table 3b). 

 

To identify if DNA reads assigned to Leptospiraceae were more similar to sequence reads of previously identified 

pathogenic, intermediate or environmental Leptospira species, we built a neighbour-joining tree of Leptospiraceae 

reads classified in our samples data, together with sequences from reference databases (Figure 3d; species names 

and NCBI accession numbers in clockwise rotation around the tree in Supplementary Table 4a). We matched the 

orientation of our reads, and then aligned them with 68 Leptospira reference sequences and the Leptonema illini 

reference sequence (DSM 21528 strain 3055) as outgroup. We then built a neighbour-joining tree using Muscle 

v.3.8.3167 (excluding three reads in the ‘Other Environmental’ clade that had extreme branch lengths >0.2). The 

reference sequences were annotated as pathogenic and saprophytic clades P1, P2, S1, S2 as recently described29. 

Additional published river water Leptospira that did not fall within these clades were included as ‘Other 

Environmental’68. Similarly, we constructed phylogenies for the Legionella, Salmonella and Pseudomonas genus, 

using established full-length 16S reference species sequences from NCBI (Supplementary Table 4b-d). 
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3. Total project cost 

This study was designed to enable freshwater microbiome monitoring in budget-constrained research 

environments. Although we had access to basic infrastructure such as pipettes, a PCR and TissueLyser II machine, 

as well a high-performance laptop, we wish to highlight that the total sequencing consumable costs were held 

below £4,000 (Supplementary Table 6a). Here, individual costs ranged at ~£75 per sample (Supplementary Table 

6b). With the current MinION flow cell price of £720, we estimate that per-sample costs could be further reduced 

to as low as ~£15 when barcoding and pooling ~£100 samples in the same sequencing run (Supplementary Table 

6c). Assuming near-equimolar amplicon pooling, flow cells with an output of ~5,000,000 reads can yield well 

over 37,000 sequences per sample and thereby surpass this conservative threshold applied here for comparative 

river microbiota analyses. 

 

DATA AVAILABILITY 

Sequencing datasets generated and analysed during this study are available from the European Nucleotide 

Archive, project accession PRJEB34900 (https://www.ebi.ac.uk/ena/data/view/PRJEB34900). The following 

figures of this manuscript are based on this data: Figures 2, 3, Extended Data Figures 1, 3, 4, 5, 7, and 8. 

Environmental measurements are available from public repositories, 

https://www.cl.cam.ac.uk/research/dtg/weather/ and https://nrfa.ceh.ac.uk/. The following figure of this 

manuscript are based on this data: Extended Data Figure 6. 

 

The are no restrictions on data availability. 

 

CODE AVAILABILITY 

Our Github repository (https://github.com/d-j-k/puntseq/) provides a Snakemake framework that integrates all 

data pre-processing steps, and a Singularity that contains all necessary software  (https://github.com/d-j-

k/puntseq/tree/master/analysis/). We further provide complete and rarefied SILVA 132 classifications from runs 

of Minimap2 (https://github.com/d-j-k/puntseq/tree/master/minimap2_classifications), which can be directly used 

as an input for downstream analyses. 
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SUPPLEMENTARY TABLE LEGENDS 

 

Table S1: Summary of samples and metadata. 

(a) Sampling locations. (b) Environmental metadata by sample. (c) Environmental metadata by time point. 

 

Table S2: Summary of raw DNA, amplicon and sequencing yields. 

(a) Water DNA extraction yields. (b) Full-length 16S PCR amplicon extraction yields. (c) Nanopore sequencing 

read metrics. 

 

Table S3: Summary of pathogen and wastewater bacterial genera tested. 

(a-b) List of pathogen (a) and wastewater (b) candidate bacterial genera. 

 

Table S4: Summary of reference sequences for high-resolution pathogen mapping. 

(a-d) References and NCBI accessions for Leptospira (a), Legionella (b), Salmonella (c) and Pseudomonas (d). 

 

Table S5: Summary of multi-species Leptospira quantifications by Taqman qPCR. 

 

Table S6: Summary of project costs. 

(a) Basic sequencing workflow cost estimate. (b) Cost estimate per sample, based on a 12-plex MinION 

sequencing run. (c) Projected cost estimate per sample, based on a 100-plex MinION sequencing run. 

 

Table S7: Summary of full-length 16S primer sequences (5' - 3'). 

 

Table S8: Summary of negative controls. 

(a-c) Relative classification output per sample (%), sorted by negative control abundances in April (a), June (b) 

and August (c). 
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