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39 ABSTRACT

40 Background: Acute coronary syndrome (ACS) is a growing global health problem, and 

41 precision medicine techniques hold promise for the development of diagnostic indicators of 

42 ACS. In this pilot, we sought to assess the utility of an integrated analysis of metabolomic and 

43 microRNA data in peripheral blood to distinguish patients with abnormal cardiac stress testing 

44 from matched controls.

45 Methods: We used prospectively collected samples from emergency department (ED) 

46 patients placed in an ED-based observation unit who underwent stress testing for ACS. We 

47 isolated microRNA and quantified metabolites from plasma collected before and after stress 

48 testing in patients with myocardial ischemia on stress testing versus those with normal stress 

49 tests. The combined metabolomic and microRNA data were analyzed jointly for case (ischemia) 

50 and 1:1 matched control patients in a supervised, dimension-reducing discriminant analysis. 

51 Two integrative models were implemented: a baseline model utilizing data collected prior to 

52 stress-testing (T0) and a stress-delta model, which included the difference between post-stress 

53 test (T1) and pre-stress test (T0).

54 Results: Seven case patients with myocardial ischemia on ED cardiac stress testing (6 

55 females, 85% Caucasian, mean Thrombolysis In Myocardial Infarction Score=3, 4 patients 

56 ultimately received percutaneous coronary intervention) were 1:1 age and sex-matched to 

57 controls. Several metabolites and microRNAs were differentially expressed between cases and 

58 controls. Integrative analysis of the baseline levels of metabolites and microRNA expression 

59 showed modest performance for distinguishing cases from controls with an overall error rate of 

60 0.143. The stress-delta model showed worse performance for distinguishing cases from 

61 controls, with an overall error rate of 0.500. 
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62 Conclusions: Given our small sample size, results are hypothesis-generating. However, 

63 this pilot study shows a potential method for a precision medicine approach to cardiac stress 

64 testing in patients undergoing workup for ACS.

65

66 Keywords: Coronary heart disease, stress testing, metabolomics, transcriptomics, microRNA, 

67 precision medicine

68

69 Introduction 

70 Acute Coronary Syndrome (ACS). remains one of the most significant health problems 

71 globally(1). A cornerstone of risk assessment for ACS is provocative stress testing(2-5). 

72 Conceptually, stress testing is composed of two elements, a stressor and an evaluation of 

73 function. The evaluative function of stress testing currently depends on imaging technology to 

74 evaluate for the presence of ischemic myocardium. However, imaging evaluation requires 

75 specialized equipment and technical expertise. A blood-based biomarker approach to cardiac 

76 stress testing could obviate the need for expensive equipment or highly trained personnel. 

77

78 MicroRNAs are small non-coding segments of RNA circulating that can be found in the 

79 bloodstream and act as paracrine regulators of local cellular gene transcription(6). MicroRNA 

80 profiles may be able to distinguish among various causes of myocardial injury, e.g. myocardial 

81 ischemia from heart failure(7). Based on prior literature, a number of microRNAs seem 

82 promising for identifying myocardial ischemia from coronary artery disease: miR-1(8-12), miR-

83 133(8, 9, 13), miR-208(9, 12, 14), miR-499(8, 9, 12-14), miR-126(10, 13, 15). Thus, microRNAs 

84 are a promising area of biomarker research.

85
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86 Metabolomics is another promising modality for the characterization of function in high-

87 energy utilization organs such as the heart. Such analyses examine a wide range of 

88 fundamental biological molecules, many of which are connected to underlying metabolic 

89 processes in the body such as fatty acids and oxidation products. The concentration of these 

90 molecules can also rapidly change in response to acute disease states. It has been shown that 

91 certain amino acids and acylcarnitines levels in peripheral blood are associated with long-term 

92 risk of cardiovascular disease, particularly coronary related(16-18). We previously reported the 

93 analysis of stress-induced changes in selected metabolites including amino acids and 

94 acylcarnitines(19).

95

96 In current clinical practice, the information gathered from stress testing is usually 

97 reduced down to a single data dimension to simplify decision-making. However, it is widely 

98 recognized that a precision medicine strategy for chest pain evaluation will require expanding 

99 the number of biomarkers (whether blood-based, imaging, or in other forms) and to integrate  

100 information to provide a more accurate answer. The challenge associated with expanding the 

101 number of biomarkers is that very large datasets can be problematic for biostatistical analysis. 

102 However, several dimension-reducing biostatistical approaches now allow the integration of 

103 large datasets from different categories of molecules(20). 

104

105 In this paper, we used transcriptomic and metabolomic approaches to demonstrate the 

106 feasibility of a biomarker-based stress test using precision medicine techniques. We also sought 

107 to develop the technical capabilities and protocols to study serially measured microRNAs and 

108 metabolites in patients undergoing cardiac stress testing for symptoms of ACS. We believe this 

109 novel model of stress testing represents an exciting opportunity to apply a precision medicine 

110 approach to cardiac disease diagnosis and prognosis. 

111
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112 Methods

113 Study setting and population

114 We conducted a pilot study to determine whether serial microRNA and metabolomic 

115 data could be combined to enhance the diagnostic performance of cardiac stress testing. We 

116 used peripheral blood samples in EDTA collection tubes from a biorepository created to study 

117 changes in high-sensitivity troponin and B-type natriuretic peptide during stress testing.  This 

118 biorepository has been previously described(21, 22). Briefly, samples were collected from adult 

119 emergency department (ED) patients who had symptoms of ACS and who underwent stress 

120 testing in our observation unit. All patients, as a condition of enrollment, underwent standard 

121 symptom-limited Bruce Protocol exercise echocardiogram tests as part of their usual care. 

122 These tests reported the presence or absence of inducible myocardial ischemia, defined as 

123 stress-induced regional wall motion abnormality in at least one segment. All tests were 

124 interpreted by board-certified cardiologists who were blinded to any biomarker data. Two 

125 reviewers independently confirmed the accuracy of the reports for this study. Patients had 

126 follow-up phone calls at one year. 

127

128 Metabolomic analyses

129 Similar to our prior work(19), we used standard mass spectrometry to determine plasma 

130 quantities of selected acylcarnitines and amino acids, as previously described (Table 1)(23). 

131 We used standard liquid-handling steps for the Genesis RSP 150/4 Robotic Sample Processor 

132 (Tecan AG, Maennedorf, Switzerland). Plasma samples were spiked with cocktails of stable 

133 isotope-labeled standards specific to each assay module for quantitative measurement of these 

134 targeted analytes. The proteins were precipitated with methanol, supernatant dried, and 

135 esterified with hot, acidic methanol (acylcarnitines) or n-butanol (amino acids). We then used 
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136 tandem mass spectrometry on a Quattro Micro instrument (Waters Corporation, Milford, MA) to 

137 analyze acylcarnitines and amino acids.  The lower level of quantitation for amino acids was 0.5 

138 µM and for acylcarnitines the limit of quantitation was 0.015 µM.

139

140 Table 1. Metabolites Assayed 

Amino Acids Acylcarnitines

Alanine C2 C10:2 C16:1

Arginine C3 C10:1 C16

Asparagine C4/Ci4 C10 C16:1-OH/C14:1-DC

Citrulline C5:1 C7-DC C16-OH/C14-DC

Glutamine C5 C8:1-DC C18:2

Glycine C4-OH C10-OH/C8-DC C18:1

Histidine C6 C12:1 C18

Leucine/Isoleucine C5-OH/C3-DC C12 C18:2-OH

Methionine C4-DC/Ci4-DC C12-OH/C10-DC C18:1-OH/C16:1-DC

Ornithine C8:1 C14:2 C18-OH/C16-DC

Phenylalanine C8 C14:1 C20:4

Proline C5-DC C14 C20

Serine C8:1-OH/C6:1-

DC

C14:1-OH C18:1-DC

Tyrosine C6-DC C14-OH/C12-DC C20-OH/C18-DC

Valine C10:3 C16:2 C22

141

142

143 MicroRNA analyses
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144 We extracted RNA using the Qiagen miRNeasy Serum/Plasma Advanced Kit (Qiagen, 

145 Frederick, MD) from plasma collected in ethylenediamine tetraacetic acid (EDTA) tubes. We 

146 used a standard QIASeq miRNA Library Kit protocol (Qiagen, Frederick, MD) for library 

147 preparation, and library quality control (QC) was performed on the Agilent Bioanalyzer with the 

148 Deoxyribonucleic Acid (DNA) High-Sensitivity Assay. Samples were sequenced on the Illumina 

149 (San Diego, CA) HiSeq 4000 Sequencer at 50 bp Single Read.  

150

151 Data Analysis

152 For all analytes, comparisons were made between cases and controls at baseline 

153 (baseline model), and the difference between pre- and post- stress test (stress-delta model). 

154

155 MicroRNA analysis 

156 SmRNA-seq data were processed using the Trim Galore toolkit(24), which employs 

157 Cutadapt(25) to trim low-quality bases and Illumina sequencing adapters from the 3’ end of the 

158 reads. Only reads that were 18-28 nucleotides in length after trimming were kept for further 

159 analysis. Reads were mapped to the hg19 version of the human genome using the Bowtie 

160 alignment tool(26). Reads were kept for subsequent analysis if they mapped to no more than 13 

161 genomic locations. Gene counts were compiled using custom scripts that compare mapped 

162 read coordinates to the miRbase microRNA database(27). Reads that match the coordinates of 

163 the known mature microRNAs were kept if they perfectly matched the coordinates of the miRNA 

164 seed while not varying by more than 2 nucleotides on the 3’ end of the mature miRNA. Only 

165 mature miRNAs that had at least 10 reads in any given sample were used in subsequent 

166 analysis. Normalization was performed using the DESeq2 Bioconductor package from the R 

167 statistical programming environment applying the ‘poscounts’ approach to eliminate systematic 

168 differences across the samples(28). The normalized data were log-transformed and differential 
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169 expression was tested using linear regression. For the stress-delta model, we employed a 

170 mixed-effects model with the patient ID as a random effect. The false discovery rate was used 

171 to adjust for multiple hypothesis testing. 

172

173 Targeted metabolite data were log-transformed prior to analysis and a PCA was conducted to 

174 assess for the presence of outliers and confounding demographic factors. MicroRNA-Seq count 

175 data were also log-transformed. For the integrative analysis, microRNAs that were missing in 

176 half or more of the samples were removed from the data set. All integrative analyses were 

177 conducted with baseline (“T0”, pre-stress test) and delta (“T1” – “T0”) data sets, where T1 

178 corresponds to post–stress test samples.

179

180 Regularized Canonical Correlation Analysis

181 Regularized canonical correlation analysis (rCCA) seeks to extract latent variables that 

182 maximize the correlation between the two data sets, but with an additional regularization step 

183 that reduces the number of variables contributing to each component. An initial leave-one-out 

184 cross-validation step can be performed to select the regularization parameters for each data set.  

185 To explore correlation between the metabolomic and microRNA baseline and delta datasets, a 

186 rCCA was performed in the mixOmics package in R. Five components were retained in our final 

187 model.

188

189 Integrative Sparse Discriminative Analysis

190 To identify metabolites and microRNAs that discriminate between control and case subjects, we 

191 examined both datasets jointly in the mixOmics package in R using the DIABLO (Data 

192 Integration Analysis for Biomarker discovery using Latent variable approaches for ‘Omics 

193 studies) method. DIABLO is a supervised, dimension-reducing discriminant analysis using a 
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194 sparse projection to latent structures analysis with a discriminant component; this performs 

195 similar to a canonical correlation analysis with the exception that covariance rather than 

196 correlation is maximized. 

197

198 After determining the optimal number of components, the number of variables for each 

199 component was chosen through leave-one-out cross-validation over a grid of possible number 

200 of variables per component (minimum=1, maximum=50 and 30 for the baseline and delta data 

201 sets, respectively). Performance of the final model was assessed with leave-one-out cross-

202 validation with the centroids distance.

203

204 RESULTS

205 The baseline demographic and clinical characteristics of each subject are summarized in Table 

206 2. Patients had a high rate of hypertension, hyperlipidemia, and diabetes. Six of the 7 Case 

207 patients had subsequent coronary angiography during the index visit, with 5 of them having at 

208 least one artery with stenosis >50%.  Four patients underwent subsequent percutaneous 

209 coronary interventions. All Control patients underwent follow up at 1 year from their index ED 

210 visit without any cardiac diagnosis being made. 

211 Table 2. Patient Demographics and Clinical Characteristics

Characteristic Cases 

N (%)

Controls

N (%)

Age (Years), Mean (Range) 63.9 (54-76) 64.0 (55-71)

Sex

Male 1 (14.3%) 1 (14.3%)

Female 6 (85.7%) 6 (85.7%)
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Race

Black or African American 1 (14.3%) 3 (42.9%)

White / Caucasian 6 (85.7%) 4 (57.1%)

Hypertension 6 (85.7%) 4 (57.1%)

Diabetes 4 (57.1%) 3 (42.9%)

History of Tobacco Use 3 (42.9%) 0 (0%)

Hyperlipidemia 6 (85.7%) 3 (42.9%)

Past Myocardial Infarction 4 (57.1%) 1 (14.3%)

History of Coronary Artery Disease 5 (71.4%) 2 (28.6%)

212

213 Metabolomics Results

214 The concentrations of assayed amino acids and acylcarnitines both before and after stress 

215 testing for each subject are available in S1 File. Among acylcarnitines, acetylcarnitine (C2) and 

216 the hexanoylcarnitine (C6-DC/C8-OH) showed the greatest absolute differences in baseline 

217 values between cases and controls (7.54 µM versus 9.92 µM (p=0.54) and 0.12 µM versus 0.08 

218 µM, (p=0.16) respectively). Among amino acids, glycine, proline, and tyrosine showed the 

219 greatest absolute differences in baseline values between cases and controls (421.04 µM versus 

220 332.96 µM, (p=0.17); 184.87 µM versus 222.92 µM, (p=0.42); and 62.24 µM versus 75.08 µM, 

221 (p=0.13), respectively). 

222

223 The greatest absolute differences in stress-delta values between cases and controls were seen 

224 in metabolites octanoylcarnitine (C8) and decanoylcarnitine (C10) (-0.004 µM versus -0.06 µM 

225 (p=0.39) and -0.02 µM versus -0.10 µM, (p=0.42) respectively). Among amino acids proline, 

226 valine, and asparagine showed the highest stress delta greatest absolute differences in stress-
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227 delta values between cases and controls (33.86 µM versus -0.79 µM, (p=0.24); 4.80 µM versus 

228 -21.75 µM, (p=0.44); and 10.80 µM versus -15.57 µM, (p=0.26).

229

230 MicroRNA Results

231 Among 1,238 microRNAs, 52 were differentially expressed (p<0.05) between cases and 

232 controls at baseline and 12 had significantly different stress-deltas with unadjusted analysis. 

233 These microRNAs are listed in S2 File. We constructed heat maps (Figs 1 and 2) to show 

234 differential baseline and stress-delta microRNA expression in cases and controls. PCA plots 

235 demonstrated that moderate variance was explained by MicroRNA principal components (S1-S3 

236 Figs).

237 Figs 1 and 2. Baseline and Stress-Delta MicroRNA Heatmap. Heat maps 

238 demonstrating key baseline and stress-delta microRNAs that are different between case 

239 (myocardial ischemia) and matched control patients. The Baseline model (Fig 1) shows 

240 the z-score transformed expression value and the Stress-Delta heatmap (Fig 2) shows 

241 the log2 (fold-change) values for each patient across time.  Both heatmaps have been 

242 clustered by both genes and samples using a correlation distance with complete linkage.

243

244 Integrative Analysis

245 We performed rCCA to assess the correlation structure of the metabolomics and 

246 microRNA data. Figs 3 and 4 shows the baseline and stress-delta correlations of microRNAs 

247 and metabolites derived from the rCCA analysis. Only 6 of the baseline and 18 of the 64 stress-

248 delta metabolites showed correlations above 0.65 with specific microRNAs, suggesting that 

249 combining the two datasets provided additive information.

250 Figs 3 and 4. Regularized Canonical Correlation Analysis Heat Map of MicroRNAs 

251 and Metabolites. Regularized Canonical Correlation Analysis heatmap showing 
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252 correlations between baseline (3) and stress-delta (4) microRNAs and metabolites as a 

253 result of stress testing.

254

255 For the integrative discriminant analysis, both the baseline model and the stress-delta 

256 model produced a single latent component. We calculated error rates for our integrated analysis 

257 model for predicting cases or controls. Integrative analysis of metabolite levels and microRNA 

258 expression at baseline showed modest performance for distinguishing cases from controls, with 

259 an overall error rate of 0.143 (Table 3). Using stress-delta data actually led to a worse error 

260 (0.500) for distinguishing cases from controls. 

261

262 Table 3. Integrative Model Performance. Error rates are shown for each group individually 

263 (Case and Control). The weighted vote error rate is calculated by assigning each data set a 

264 weight based on the correlation between its latent component and the outcome.

Group Weighted Vote Baseline  Weighted Vote Stress Delta  

Case 0.000 0.571 

Control 0.286 0.429 

Overall Error Rate 0.143 0.500 

265

266 Figs 5 and 6 show a plot of individual subject scores for microRNA and metabolites 

267 latent components, using only those microRNAs and metabolites that were retained in the 

268 baseline and stress-delta integrative model. Cases and controls can be visually separated along 

269 these two axes representing each category’s latent component. It should be noted that these 

270 results represent a best-case estimate of our model’s ability to distinguish cases from controls 

271 given that the model was tested on the same data that it was trained on.
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272 Fig 5 and 6. Plot of Coordinates for Individual Patients from the Baseline (Fig 5) 

273 and Stress-Delta (Fig 6) Integrative Model Using Both Metabolomic and MicroRNA 

274 Data. Control (grey triangle) vs. case (red circle) separation in the stress-delta 

275 integrative model.

276

277 Finally, we present the results for loadings to the model. These metabolites and 

278 microRNAs are the ones that were the most influential on the latent component. For the 

279 baseline model, the two analytes with the highest loadings were mir-665 and C18:1-DC. The 

280 loadings of selected metabolites and microRNAs for the component in the stress-delta model 

281 are shown in Fig 7. Analytes with the highest loadings are relatively equally divided between 

282 metabolites and microRNAs, suggesting value in combining both datasets. 

283 Fig 7. Metabolite and MicroRNA Loadings from the Latent Component Of Stress-

284 Delta Integrative Model. Specific stress-delta metabolites and microRNAs that loaded 

285 to the latent component of the stress-delta model is shown. Case samples cluster on the 

286 lower end of the first component. A negative loading for a particular analyte indicates it 

287 increased in cases, whereas a positive loading indicates that is increased in controls.

288

289 DISCUSSION

290 Although the observable features of myocardial ischemia have been noted for almost a 

291 century(29), stress testing has largely remain unchanged for the past three decades(5). Current 

292 stress test modalities do not widely utilize multiple modes of information to enhance prediction 

293 accuracy. Simple examples of multi-modal stress tests exist, e.g. the Duke Treadmill Score(30), 

294 which combines exercise tolerance information and electrocardiogram characteristics to make a 

295 prediction of future risk. However, these multi-modal stress tests do not take advantage of the 

296 large amounts of data that we are currently capable of collecting from patients’ blood samples. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.06.936757doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.936757
http://creativecommons.org/licenses/by/4.0/


14

297 Although our current modalities of stress testing are sensitive for obstructive coronary disease, 

298 their accuracy can be further improved, particularly for identifying specific high-risk phenotypes 

299 that benefit from emerging therapies. 

300

301 In contrast to the blood-based biomarker approach for evaluation of acute myocardial 

302 infarction, currently assessment for myocardial ischemia and/or obstructive coronary artery is 

303 heavily imaging-dependent. Use of serial biomarkers is not routine practice for assessing 

304 myocardial ischemia, especially in the context of a stress test. Thus, this study presents a novel 

305 paradigm for assessing patients for myocardial ischemia. Our current ability to serially measure 

306 multiple blood-based molecules presents an opportunity to develop more sophisticated multi-

307 modal stress tests that incorporate large amounts of data. 

308

309 We have previously examined the utility of blood-based biomarkers to enhance cardiac 

310 stress testing(19, 21, 22). In this pilot study, we outline the methodology to further develop a 

311 biomarker-augmented stress test using a precision medicine approach. First, we identified 

312 several differences at baseline, post-stress, and stress-delta between cases and controls, 

313 largely as a consequence of the large number of analytes we assessed. While a great deal of 

314 prior literature has examined baseline (resting) biomarkers for prediction of coronary heart 

315 disease, stress-delta biomarker assessments give us the ability to assess acute changes in 

316 response to a controlled ischemic event, with the benefit of within-patient control for baseline 

317 values. We were able to assess a large number of potential biomarkers in each blood sample, 

318 creating the possibility of a systems biology approach to biomarker discovery.

319

320 Systems biology is an efficient approach to both understanding pathophysiologic 

321 mechanisms and identifying clinically useful biomarkers. MicroRNAs are an ideal clinical 

322 biomarker target to identify myocardial ischemia because their peripheral blood concentration 
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323 can change rapidly in response to disease and they remain stable and detectable in the 

324 peripheral bloodstream. Our study demonstrates that microRNAs can be easily isolated from 

325 peripheral blood plasma and analyzed accurately in serial fashion. Furthermore, many 

326 candidate microRNAs appear to differentiate patients with myocardial ischemia from those with 

327 normal studies, suggesting promise for future studies in larger patient cohorts. 

328

329 Likewise, metabolomics may be an ideal means to obtain information on the viability of 

330 the heart because of the organ’s dynamic nature. Numerous studies have demonstrated that 

331 resting baseline metabolite abnormalities are associated with adverse cardiovascular 

332 outcomes(18, 31, 32). Furthermore, myocardial ischemia is known to cause dysregulated 

333 energy utilization of myocardial cells(33). A previous study(17) demonstrated that a number of 

334 metabolites change dynamically in patients with ischemic stress tests compared to normal 

335 controls. Our prior work showed that alanine, C14:1-OH, C16:1, C18:2, C20:4 demonstrated 

336 patterns of acute changes in ischemic patients that were different from normal controls. In the 

337 current study, our small sample size was underpowered to confirm or refute this finding. 

338 However, combining metabolomics with microRNA data did provide additive diagnostic 

339 information.  Other categories of molecules could be used in a precision medicine stress test, 

340 such as proteomics, immune mediators, catecholamine levels, and traditional markers of 

341 cardiac necrosis or stress.

342

343 As a pilot study, there are many limitations to this analysis. The small sample size and 

344 large number of analytes examined precludes us from making definitive statements about the 

345 importance of any specific analyte for our stress-delta paradigm. It is important to note that the 

346 error rates represent a best-case estimate of what is expected given that they are based on the 

347 same data the model was trained on. Our limited sample size prevented us from performing a 

348 validation in an independent cohort. In the future, we hope to collect a large set of samples 
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349 which will enable us to have separate testing and validation cohorts to fully measure the 

350 robustness of this model. Furthermore, our patients were chosen from a cohort of patients 

351 referred for stress testing in a single center’s emergency department observation unit. Use of a 

352 biomarker-augmented stress test needs to be studied in a more representative patient sample in 

353 the future. 

354

355 CONCLUSIONS 

356 In this pilot study of patients undergoing cardiac stress testing, we analyzed serially 

357 drawn blood samples for microRNA and metabolite levels. We demonstrated how these data 

358 could be used to differentiate patients with myocardial ischemia on imaging from normal 

359 controls. Based on this pilot, we intend to further study this paradigm of stress testing in a larger 

360 cohort. Our current paradigm of cardiac stress testing can be enhanced by systematic molecular 

361 profiling techniques. Future work should be conducted to identify the specific modalities and/or 

362 analytes that change dynamically in the setting of induced myocardial ischemia. 

363
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