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Abstract

Purpose: When developing new types of tools for single-cell analyses, there is often a lack of datasets on which to

quantitatively assess the performance.

Results: We developed dyngen, a multi-modality simulator of single cells. In dyngen, the biomolecular state of an in

silico cell changes over time according to a predefined gene regulatory network. We used dyngen to benchmark three

emerging ways of analysing single-cell data: RNA velocity, cell-specific network inference and trajectory alignment

methods.

Conclusion: dyngen lays the foundations for benchmarking a wide variety of computational single-cell tools and

can be used to help kick-start the development of future types of analyses.

Introduction

Continuous technological advancements to single-cells omics are having profound effects on how researchers can

validate biological hypotheses. Early experimental technologies typically only allowed profiling a single modality

(e.g. DNA sequence, RNA or protein expression). However, recent developments permit profiling multiple modalities

simultaneously, and every modality added allows for new types of analyses that can be performed.

This confronts method developers with several challenges. The majority of the 250+ peer-reviewed computational

tools for analysing single-cell omics data were published without a quantitative assessment of the accuracy of the

tool. This is partially due to low availability of suitable benchmarking datasets; even if there are sufficient suitable

input datasets available, these are often not accompanied by the necessary metadata to serve as ground-truth for a

benchmark.

Here, synthetic data plays a crucial role in asserting minimum performance requirements for novel tools in anticipa-

tion of adequate real data. Generators of scRNA-seq data (e.g. splatter [1], powsimR [2], PROSSTT [3] and SymSim

[4]) have already been widely used to explore the strengths and weaknesses of computational tools, both by method

developers [5, 6, 7, 8] and independent benchmarkers [9, 10, 11]. However, a limitation of existing scRNA-seq profiles

generators is that they would require significant methodological alterations to add additional modalities or experi-

mental conditions.

An ideal experiment would be able to observe all aspects of a cell, including a full history of its molecular states, spatial

positions and environmental interactions [12]. While this falls outside the reach of current experimental technologies,

generating synthetic data in anticipation of new experimental technologies would allow already developing the next

wave of computational tools.

We developed a multi-modality simulator of single cells called dyngen (Figure 1A). dyngen uses an optimized version

of Gillespie’s stochastic simulation algorithm [13] to simulate gene regulation, splicing, and translation at a single-

molecule level. Its methodology allows tracking of many layers of information throughout the simulation, including

the abundance of any molecule in the cell, the progression of the cell along a dynamic process, and the activation

strength of individual regulatory interactions. dyngen can simulate a large variety of dynamic processes (e.g. cyclic,

branching, disconnected) as well as a broad range of experimental conditions (e.g. batch effects and time-series,

perturbation and knockdown experiments). The fine-grained controls over simulation parameters allow dyngen to

be applicable to a broad range of use-cases. We demonstrate this by performing first quantitative evaluations of three
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types of novel computational approaches: RNA velocity, cell-specific network inference, and trajectory alignment

methods.
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Figure 1: Showcase of dyngen functionality. A: The typical process of generating a dataset with dyngen. B: Evaluat-

ing different types of computational tools requires simulating different types of experiments and extracting different

layers of information from the simulation.

Results

A cell consists of a set of molecules, the abundance of which are affected by a set of reactions: transcription, splicing,

translation, and degradation (Figure 2A). A gene regulatory network (GRN) defines the reactions that are allowed to

occur (Figure 2B), which is constructed in such a way that cells slowly develop over time (Figure 2C,D). With every

time step d𝑡 in the simulation, the probability of a reaction occurring is computed (not shown). From the probabilities

are sampled which reactions occur during this time step d𝑡 (Figure 2E).

dyngen returns many modalities throughout the whole simulation: molecular abundance, number of reaction firings,

reaction likelihoods, and regulation activations (Figure 2C–F). These modalities can serve both as input data and

ground truth for benchmarking many types of computational approaches. For example, a network inference method

could use mRNA abundance and regulation activities as inputs and its output could be benchmarked against the gold

standard GRN.

Depending on how the GRN is designed, different cellular developmental processes can be simulated. dyngen in-

cludes generators of GRNs which result in many different developmental topologies (Figure 3), including branching,

converging, cyclic and even disconnected. Custom-defined GRNs offer more fine-grained control over the simula-

tion.

Together, these qualities allow it to be applicable in benchmarking a broad range of use-cases. In practice, dyngen

has already successfully been used to evaluate trajectory inference [10], trajectory-based differential expression [14],

and network inference [15] methods. To demonstrate this point even further, we apply dyngen on several promising

novel computational approaches for which quantitative assessment of the performance was until now lacking.

RNA velocity

Due to an issue in the scvelo wrapper, the benchmarking results (Figure 4A) might be inaccurate and are cur-

rently being revised.

In eukaryotes, a gene is first transcribed to a pre-mRNA and subsequently spliced into mature mRNA. Because reads

coming fromboth unspliced and spliced transcripts are observed in expression data, the relative ratio between the two

can tell us something about which genes are increasing, decreasing or remaining the same [16, 17]. To determine this,

some parameters have to be estimated to determinewhich fraction of unspliced and splicedmRNAs correspond to an
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Figure 2: dyngen models reactions at a single-molecule level and keeps track of multiple levels of information

throughout a simulation. A: Changes in abundance levels are driven strictly by gene regulatory reactions. B: The

input GRN is defined such that it models a dynamic process of interest. C: The reactions define how abundance levels

of molecules change at any particular time point. D: Firing many reactions can significantly alter the cellular state

over time. E: dyngen keeps track of the reactions that were fired during small intervals of time. F: Similarly, dyngen

can also keep track of the regulatory activity of every interaction.

increase or decrease. The estimation of these parameters makes some assumptions and can be handled in different

ways in the two main algorithms that are now available for RNA velocity estimation: velocyto [17] and scvelo [18]. It

can be difficult to obtain ground truth data to benchmark these algorithms, given that it would require continuous

data of transcriptional dynamics in individual cells. On the other hand, the ground truth velocity is rapidly extracted

from the dyngen model, by looking at whether each transcript is currently increasing or decreasing in expression.

We tested scvelo and velocyto on 8 datasets containing linear, bifurcating, disconnected and cyclic trajectories, and
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Figure 3: Multiple executions of dyngen with different predefined backbones. From each simulation of about 200

genes, 1000 cells were sampled. A: Linear. B: Bifurcating. C:Converging. D:Cyclic. E: Bifurcating loop. F: Bifurcating

converging. G: Consecutive branching. H: Binary tree. I: Disconnected.

varied the main parameter settings in which they estimate the velocity. We found that the original velocyto imple-

mentation, which assumes that the velocity remains constant in some cells, performed the best across all datasets.

The dynamical estimation of velocyto, as implemented in scvelo, performed the worst of all parameter settings. This

was mainly due to scvelo overestimating the dynamics of a gene, especially towards upregulation, while velocyto

correctly estimated not only when a gene changes, but also when it remained in a steady state.

Cell-specific network inference

Cell-specific network inference (CSNI) methods1 predict not only which transcription factors regulate which target

genes (Figure 5A, top left), but also how active each interaction is in every case (Figure 5A).

While a few pioneering CSNI approaches have already been developed [19, 20, 21], a quantitative assessment of

the performance is until now lacking. This is not surprising, as neither real nor in silico datasets of cell-specific or

even cell-type-specific interactions exists that is large enough so that it can be used as a ground-truth for evaluating

CSNI methods. Extracting the ground-truth dynamic network in dyngen is straightforward though, given that we can

calculate how target gene expression would change without the regulator being present.

We used this ground-truth to compare the performance of three CSNImethods (Figure 5B).We calculated the AUROC

and AUPR score – which are commonmetrics for NI benchmarking – for each cell individually. Computing themean

AUROC and AUPR per dataset showed that pySCENIC significantly outperforms LIONESS and SSN.

Trajectory alignment

Trajectory alignment allows studying the differences between the same trajectories from different samples. For ex-

ample, the cell developmental process of a patient could be compared to that of a healthy control to detect the

transcriptomic differences of a particular lineage.

1Different terms are commonly used when dealing with data from a particular source. For example, single-cell NI when applied to single-cell

transcriptomics data; sample-specific NI when applied to bulk transcriptomics; patient-derived NI when applied to bulk profiles of patients. A

more generaised variant of CSNI is casewise NI, which does not specify the type of data which is being analysed.
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Figure 4: dyngen allows benchmarking of RNA velocity methods. A: We tested five different methods and param-

eter settings for the estimation of RNA velocity on datasets with varying backbones (colours). Overall, the velocyto

method with the constant velocity assumption performed the best overall. B: An example bifurcating dataset, with as

illustration the expression and ground truth velocity of a gene that goes up and down in the trajectory. C: The RNA

velocity estimates of the different methods. D: The embedded RNA velocity of the different methods.

Dynamic TimeWarping (DTW) [22] is most commonly used to align linear trajectories. DTW is a technique originating

in the field of speech recognition and aligns temporal sequences by creating a warping path between the sequences

that indicates which sequence must be dilated or contracted to best match the other one. DTW can also be used in

combination with smoothed pseudocells [23].

Trajectory alignment, using DTW, has been used to compare gene expression kinetics resulting from different biolog-

ical processes [24], to compare human, chimpanzee and macaque neuronal development [25], to find differences in

gene regulation in the presence of certain growth factors [26], and to compare human and mouse embryogenesis

[23].
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Figure 5: dyngen allows benchmarking Cell-specific Network Inference (CSNI) methods. A: A cell is simulated

using the global gene regulatory network (GRN, top left). However, at any particular state in the simulation, only a

fraction of the gene regulatory interactions are active. B: CSNI methods were executed to predict the regulatory

interactions that are active in each cell specifically. Using the ground-truth cell-specific GRN, the performance of

each method was quantified on 14 dyngen datasets.

dyngen can be used to evaluate trajectory alignment techniques. We analyse how well DTW distinguishes between

different trajectories for increasing amounts of noise. When noise increases, DTW can no longer distinguish trajec-

tories clearly (Figure 6). In this case, there is no difference between when smoothed pseudocells are used or when

actual cells and their gene expression are used.

Discussion

As is, dyngen’s single-cell simulations can be used to evaluate common single-cell omics computational methods

such as clustering, batch correction, trajectory inference, and network inference. However, the combined effect of

these advantages results in a framework that is flexible enough to adapt to a broad range of applications. This may

include methods that integrate clustering, network inference, and trajectory inference. In this respect, dyngen may

promote the development of new tools in the single-cell field similarly as other simulators have done in the past [27,

28].

dyngen ultimately allows anticipating technological developments in single-cell multi-omics. In this way, it is possible

to design and evaluate the performance and robustness of new types of computational analyses before experimental

data becomes available. In addition, it could also be used to compare which experimental protocol is the most

cost-effective in producing qualitative and robust results in downstream analysis.

Currently, dyngen focuses on simulating cells as standalone entities that are well mixed. Splitting up the simula-

tion space into separate subvolumes could pave the way to better study key cellular processes such as cell division,

intercellular communication, and migration [29].
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Figure 6: dyngen allows benchmarking of trajectory alignmentmethods. A: Example of trajectory alignment using

DTW. The segments between the two trajectories show which cells are aligned. B: Shows the discrimination power

of DTW decreasing as the amount of noise added increases.

Methods

The workflow to generate in silico single-cell data consists of six main steps (Figure 7).

Defining the backbone: modules and states

One of the main processes involved in cellular dynamic processes is gene regulation, where regulatory cascades

and feedback loops lead to progressive changes in expression and decision making. The exact way a cell chooses a

certain path during its differentiation is still an active research field, although certain models have already emerged

and been tested in vivo. One driver of bifurcation seems to be mutual antagonism, where two genes strongly repress

each other [30, 31], forcing one of the two to become inactive [32]. Such mutual antagonism can be modelled and

simulated [33, 34]. Although the two-gene model is simple and elegant, the reality is frequently more complex, with

multiple genes (grouped into modules) repressing each other [35].

To start a dyngen simulation, the user needs to define a module network and a backbone. The module network

defines how sets of co-regulated genes, called modules, regulate each other. The module network is what mainly

determines which dynamic processes occur within the simulated cells.

A module network consists of modules connected together by regulatory interactions. A module may have basal

expression, which means genes in this module will be transcribed without the presence of transcription factor

molecules. A module marked as “active during the burn phase” means that this module will be allowed to generate
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Figure 7: The workflow of dyngen is comprised of six main steps. A: The user needs to specify the desired module

network or use a predefined module network. B: Each gene in a module is is regulated by one or more transcription

factors from the upstreammodule. Additional target genes are generated. C: Each gene regulatory interaction in the

GRN is converted to a set of biochemical reactions. D: Along with the module network, the user also needs to specify

the backbone structure of expected cell states. The average expression of each edge in the backbone is simulated

by activating a restricted set of genes for each edge. E: Multiple Gillespie SSA simulations are run using the reactions

defined in step C. The counts of each of the molecules at each time step are extracted. Each time step is mapped

to a point in the backbone. F: The molecule levels of multiple simulations are shown over time (left). From each

simulation, multiple cells are sampled (from left to middle). Technical noise from profiling is simulated by sampling

molecules from the set of molecules inside each cell (from middle to right).

expression of its genes during an initial warm-up phase (See section ). At the end of the dyngen process, cells will

not be sampled from the burn phase simulations. Interactions between modules have a strength (which is a positive

integer) and an effect (+1 for upregulating, -1 for downregulating).

Several examples ofmodule networks are given (Figure 8). A simple chain ofmodules (where onemodule upregulates

the next) results in a linear process. By having the last module repress the first module, the process becomes cyclic.

Two modules repressing each other is the basis of a bifurcating process, though several chains of modules have to

be attached in order to achieve progression before and after the bifurcation process. Finally, a converging process
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has a bifurcation occurring during the burn phase, after which any differences in module regulation is removed.

Note that these examples represent the bare minimum in terms of the number of modules used. Using longer chains

of modules is typically desired. In addition, the fate decisions made in this example of a bifurcation is reversible,

meaning cells can be reprogrammed to go down a different differentiation path. If this effect is undesirable, more

safeguards need to be put in place to prevent reprogramming from occurring (Section ).

Module network Backbone state network

Linear
A* B C S0 S1

+A
S2

+B
S3

+C

Cyclic
A* B

D

C

E

S0 S1
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S3
+C,+E

S0
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Figure 8: Example module networks.

Backbone lego

The backbone can make use of one or more “backbone lego” (BBL) pieces (Figure 9). A BBL consists of one or

more modules which regulate each other such that the output modules present a specific behaviour, depending

on the input module (Figure 9A). Parameters allow determining the number of modules involved in the process and

the number of outputs. Multiple BBLs can be chained together in order to intuitively create module networks and

corresponding state networks (Figure 9B). Note that not all dynamic processes can be represented by a combination

of BBLs, but they can serve as common building blocks to aid the construction of the backbone.

When the input node of a linear BBL (Figure 9C) is upregulated, the module the BBL is connected to will be upregu-

lated. A simple chain is a set of modules where a module upregulates the next. A chain with double repression has

an uneven number of modules forming a chain where each module downregulates the next but all modules (except

the input) have basal expression. A grid with double repression is similar; except that modules do not have basal

expression but instead get upregulated by an upstream module in the chain. Finally, a flip flop} consists of a simple

chain where first the modules (except the last) are upregulated. Once the second to last module is upregulated, that

module upregulates itself and the first module is strongly repressed, causing all other modules to lose expression and

finally the last module to be upregulated. The flip flop retains this output state, even when the input changes.

When the input node of a branching BBL (Figure 9D) is upregulated, a subset of its output modules will eventually be
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*
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× N, N ≥ 1
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× N, N ≥ 1
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× M, M ≥ 0

C Linear

D Branching

E  Leaf

* Linear Linear

Start End

Figure 9: Reusable regulatory building blocks that can be used to constructGRNs that result in dynamic processes

following an expected pattern. A: Each building block contains genes which serve as inputs that can be regulated

by external transcription factors. The connections inside the building block transform the input signal in a particular

way and has one or more output interactions of which the targets are not yet determined. B: By connecting multiple

building blocks together, a backbone of regulatory modules can be formed. C: dyngen offers several variations of

linear building blocks which allow for differing regulatory mechanisms. D: A branching module will upregulate the

expression of just one of the output interactions. Two variations are given of which the simple variant is more prone

to reprogramming events in comparison to the robust branching module. E,F: These components allow to specify

the beginning (no inputs) and end (no outputs) of the backbone.

upregulated. A simple branching uses reciprocal inhibition to drive the upregulation of one of the output modules.

Due to its simplicity, however, multiple output modules might be upregulated simultaneously and over long periods

of simulation time it might be possible that the choice of upregulated module changes. A robust branching improves

upon the simple branching by preventing upregulation of output modules until an internal branching decision has

been made, and by repressing the decision mechanism to avoid other output modules being upregulated other than

the one that has been chosen.

A leaf BBL (Figure 9E) is a linear BBL that has either no inputs or no outputs. A start BBL is a linear BBL where the first

module has basal expression, and all modules in this module will be active during the burn-in phase of the simulation.

An end BBL is also a linear BBL with its output regulating one final module.

Generating the gene regulatory network

The GRN is generated based on the given backbone in four main steps (Figure 10).
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Figure 10: Generating the feature network from a backbone consists of four main steps.

Step 1, sampling the transcription factors (TF). The TFs are the main drivers of the molecular changes in the sim-

ulation. The user provides a backbone and the number of TFs to generate. Each TF is assigned to a module such

that each module has at least 𝑥 parameters (default 𝑥 = 1). A TF inherits the ‘burn’ and ‘basal expression’ from the

module it belongs to.

Step 2, generating the TF interactions. Let each TF be regulated according to the interactions in the backbone.

These interactions inherit the effect, strength, and independence parameters from the interactions in the backbone.

A TF can only be regulated by other TFs or itself.

Step 3, sampling the target subnetwork. A user-defined number of target genes are added to the GRN. Target genes

are regulated by a TF or another target gene, but is always downstream of at least one TF. To sample the interactions

between target genes, one of the many FANTOM5 [36] GRNs is sampled. The currently existing TFs are mapped to

regulators in the FANTOM5 GRN. The targets are drawn from the FANTOM5 GRN, weighted by their page rank value.

For each target, at most 𝑥 regulators are sampled from the induced FANTOM5 GRN (default 𝑥 = 5). The interactions

connecting a target gene and its regulators are added the GRN.

Step 4, sampling the housekeeping subnetwork. Housekeeping genes are completely separate from any TFs or

target genes. A user-defined set of housekeeping genes are also sampled from the FANTOM5 GRN. The interactions

of the FANTOM5 GRN are first subsampled such that the maximum in-degree of each gene is 𝑥 (default 𝑥 = 5). A
random gene is sampled and a breadth-first-search is performed to sample the desired number of housekeeping

genes.

Convert gene regulatory network to a set of reactions

Simulating a cell’s GRN makes use of a stochastic framework which tracks the abundance levels of molecules over

time in a discrete quantity. For every gene 𝐺, the abundance levels of three molecules are tracked, namely of corre-

sponding pre-mRNAs, mature mRNAs and proteins, which are represented by the terms w𝐺, x𝐺 and y𝐺 respectively.

The GRN defines how a reaction affects the abundance levels of molecules and how likely it will occur. Gibson and

Bruck [37] provide a good introduction to modelling gene regulation with stochastic frameworks, on which many of

the concepts below are based.

For every gene in the GRN a set of reactions are defined, namely transcription, splicing, translation, and degradation.

Each reaction consists of a propensity function – a formula 𝑓(.) to calculate the probability 𝑓(.) × d𝑡 of it occurring
during a time interval d𝑡 – and the effect – how it will affect the current state if triggered.

The effects of each reaction mimic the respective biological processes (Table 1, middle). Transcription of gene 𝐺
results in the creation of a single pre-mRNA molecule w𝐺. Splicing turns one pre-mRNA w𝐺 into a mature mRNA

w𝐺. Translation uses a mature mRNA x𝐺 to produce a protein y𝐺. Pre-mRNA, mRNA and protein degradation results

in the removal of a w𝐺, x𝐺, and y𝐺 molecule, respectively.

The propensity of all reactions except transcription are all linear functions (Table 1, right) of the abundance level of

some molecule multiplied by a constant drawn from a normal distribution (Table 2). The propensity of transcription

of a gene 𝐺 depends on the abundance levels of its TFs.

The propensity of the transcription of a gene 𝐺 is inspired by thermodynamic models of gene regulation [38], in

which the promoter of 𝐺 can be bound or unbound by a set of 𝑁 transcription factors 𝐻𝑖. Let 𝑓(y1, y2, … , y𝑁)
denote the propensity function of 𝐺, in function of the abundance levels of the transcription factors. The following

subsections explain and define the propensity function when 𝑁 = 1, 𝑁 = 2, and finally for an arbitrary 𝑁 .

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.06.936971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.936971
http://creativecommons.org/licenses/by/4.0/


Table 1: Reactions affecting the abundance levels of pre-mRNAw𝐺, maturemRNA x𝐺 and proteins y𝐺 of gene 𝐺.

Define the set of regulators of 𝐺 as R𝐺, the set of upregulating regulators of 𝐺 as R+
𝐺, and the set of downregulating

regulators of 𝐺 as R−
𝐺. Parameters used in the propensity formulae are defined in Table 2.

Reaction Effect Propensity

Transcription ∅ → w𝐺 wpr𝐺 ×
bas𝐺−ind

|R+
𝐺|

𝐺 + ∏
𝐻∈R+

𝐺

(ind𝐺+𝜒𝐺,𝐻)

∏
𝐻∈R𝐺

(1+𝜒𝐺,𝐻)

Pre-mRNA degradation w𝐺 → ∅ wdr𝐺 × w𝐺
Splicing w𝐺 → x𝐺 wsr𝐺 × w𝐺
Mature mRNA degradation x𝐺 → ∅ xdr𝐺 × x𝐺
Translation x𝐺 → x𝐺 + y𝐺 ypr𝐺 × x𝐺
Protein degradation y𝐺 → ∅ ydr𝐺 × y𝐺

Table 2: Default parameters defined for the calculation of reaction propensity functions.
Parameter Symbol Definition

Transcription rate wpr𝐺 ∈ 𝑁(50, 10), ≥ 10
Splicing rate wsr𝐺 ∈ 𝑁(5, 1), ≥ 1
Translation rate ypr𝐺 ∈ 𝑁(5, 1), ≥ 1
Pre-mRNA half-life whl𝐺 ∈ 𝑁(0.15, 0.03), ≥ 0.05
Mature mRNA half-life xhl𝐺 ∈ 𝑁(0.15, 0.03), ≥ 0.05
Protein half-life rate yhl𝐺 ∈ 𝑁(0.25, 0.05), ≥ 0.1
Interaction strength str𝐺,𝐻 ∈ 10𝑈(0,2) *
Hill coefficient hill𝐺,𝐻 ∈ 𝑈(0.5, 2) *

Independence factor ind𝐺 ∈ [0, 1] *
Pre-mRNA degradation rate wdr𝐺 = ln(2) / whl𝐺
Mature mRNA degradation rate xdr𝐺 = ln(2) / xhl𝐺
Protein degradation rate ydr𝐺 = ln(2) / yhl𝐺
Dissociation constant dis𝐻 = 0.5 × wpr𝐻×wsr𝐻×ypr𝐻

(wdr𝐻+wsr𝐻)×xdr𝐻×ydr𝐻

Binding 𝜒𝐺,𝐻 = str𝐺,𝐻 × (y𝐻 / dis𝐻)hill𝐺,𝐻

Basal expression bas𝐺 =
⎧{
⎨{⎩

1 if R+
𝐺 = ∅

0.0001 if R−
𝐺 = ∅ and R+

𝐺 ≠ ∅
0.5 otherwise

*

*: unless 𝐺 is a TF, then the value is determined by the backbone.

Propensity of transcription when 𝑁 = 1

In the simplest case when 𝑁 = 1, the promoter can be in one of two states. In state 𝑆0, the promoter is not

bound by any transcription factors, and in state 𝑆1 the promoter is bound by 𝐻1. Each state 𝑆𝑗 is linked with a

relative activation 𝛼𝑗, a number between 0 and 1 representing the activity of the promoter at this particular state. The

propensity function is thus equal to the expected value of the activity of the promoter multiplied by the pre-mRNA

production rate of 𝐺.

𝑓(𝑦1, 𝑦2, … , 𝑦𝑁) = wpr ⋅
2𝑁−1
∑
𝑗=0

𝛼𝑗 ⋅ 𝑃 (𝑆𝑗) (1)

(2)

For 𝑁 = 1, 𝑃 (𝑆1) is equal to the Hill equation, where 𝑘𝑖 represents the concentration of 𝐻𝑖 at half-occupation and

𝑛𝑖 represents the Hill coefficient. Typically, 𝑛𝑖 is between [1,10]
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𝑃(𝑆1) = 𝑦𝑛1
1

𝑘𝑛1
1 + 𝑦𝑛1

1
(3)

= (𝑦1/𝑘1)𝑛1

1 + (𝑦1/𝑘1)𝑛1
(4)

The Hill equation can be simplified by letting 𝜈𝑖 = ( 𝑦𝑖
𝑘𝑖

)𝑛𝑖
.

𝑃(𝑆1) = 𝜈1
1 + 𝜈1

(5)

Since 𝑃 (𝑆0) = 1 − 𝑃 (𝑆1), the activation function is formulated and simplified as follows.

𝑓(𝑦1) = wpr ⋅ (𝛼0 ⋅ 𝑃 (𝑆0) + 𝛼1 ⋅ 𝑃 (𝑆1)) (6)

= wpr ⋅ (𝛼0 ⋅ 1
1 + 𝜈1

+ 𝛼1 ⋅ 𝜈1
1 + 𝜈1

) (7)

= wpr ⋅ 𝛼0 + 𝛼1 ⋅ 𝜈1
1 + 𝜈1

(8)

(9)

Propensity of transcription when 𝑁 = 2

When 𝑁 = 2, there are four states 𝑆𝑗. The relative activations 𝛼𝑗 can be defined such that 𝐻1 and 𝐻2 are indepen-

dent (additive) or synergistic (multiplicative). In order to define the propensity of transcription 𝑓(.), the Hill equation

𝑃(𝑆𝑗) is extended for two transcription factors.

Let 𝑤𝑗 be the numerator of 𝑃 (𝑆𝑗), defined as the product of all transcription factors bound in that state:

𝑤0 = 1 (10)

𝑤1 = 𝜈1 (11)

𝑤2 = 𝜈2 (12)

𝑤3 = 𝜈1 ⋅ 𝜈2 (13)

The denominator of 𝑃(𝑆𝑗) is then equal to the sum of all 𝑤𝑗. The probability of state 𝑆𝑗 is thus defined as:

𝑃(𝑆𝑗) = 𝑤𝑗

∑𝑗<2𝑁

𝑗=0 𝑤𝑗
(14)

= 𝑤𝑗
1 + 𝜈1 + 𝜈2 + 𝜈1 ⋅ 𝜈2

(15)

= 𝑤𝑗

∏𝑖≤𝑁
𝑖=1 (𝜈𝑖 + 1)

(16)

Substituting 𝑃 (𝑆𝑗) and 𝑤𝑗 into 𝑓(.) results in the following equation:

13

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.06.936971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.936971
http://creativecommons.org/licenses/by/4.0/


𝑓(𝑦1, 𝑦2) = wpr ⋅
2𝑁−1
∑
𝑗=0

𝛼𝑗 ⋅ 𝑃 (𝑆𝑗) (17)

= wpr ⋅
∑2𝑁−1

𝑗=0 𝛼𝑗 ⋅ 𝑤𝑗

∏𝑖≤𝑁
𝑖=1 (𝜈𝑖 + 1)

(18)

= wpr ⋅ 𝛼0 + 𝛼1 ⋅ 𝜈1 + 𝛼2 ⋅ 𝜈2 + 𝛼3 ⋅ 𝜈1 ⋅ 𝜈2
(𝜈1 + 1) ⋅ (𝜈2 + 1) (19)

(20)

Propensity of transcription for an arbitrary 𝑁

For an arbitrary 𝑁 , there are 2𝑁 states 𝑆𝑗. The relative activations 𝛼𝑗 can be defined such that 𝐻1 and 𝐻2 are

independent (additive) or synergistic (multiplicative). In order to define the propensity of transcription 𝑓(.), the Hill

equation 𝑃 (𝑆𝑗) is extended for 𝑁 transcription factors.

Let 𝑤𝑗 be the numerator of 𝑃 (𝑆𝑗), defined as the product of all transcription factors bound in that state:

𝑤𝑗 =
𝑖≤𝑁
∏
𝑖=1

(𝑗 mod 𝑖) = 1 ? 𝜈𝑖 : 1 (21)

The denominator of 𝑃(𝑆𝑗) is then equal to the sum of all 𝑤𝑗. The probability of state 𝑆𝑗 is thus defined as:

𝑃(𝑆𝑗) = 𝑤𝑗

∑𝑗<2𝑁

𝑗=0 𝑤𝑗
(22)

= 𝑤𝑗

∏𝑖≤𝑁
𝑖=1 (𝜈𝑖 + 1)

(23)

Substituting 𝑃 (𝑆𝑗) into 𝑓(.) yields:

𝑓(𝑦1, 𝑦2, … , 𝑦𝑁) = wpr ⋅
2𝑁−1
∑
𝑗=0

𝛼𝑗 ⋅ 𝑃 (𝑆𝑗) (24)

= wpr ⋅
∑2𝑁−1

𝑗=0 𝛼𝑗 ⋅ 𝑤𝑗

∏𝑖≤𝑁
𝑖=1 (𝜈𝑖 + 1)

(25)

Propensity of transcription for a large 𝑁

For large values of 𝑁 , computing 𝑓(.) is practically infeasible as it requires performing 2𝑁 summations. In order to

greatly simplify 𝑓(.), 𝛼𝑗 could be defined as 0 when one of the regulators inhibits transcription and 1 otherwise.

𝛼𝑗 = {0 if ∃𝑖 ∶ 𝑗 mod 𝑖 = 1 and 𝐻𝑖 represses 𝐺
1 otherwise

(26)

Substituting equation 26 into equation 25 and defining 𝑅 = {1, 2, … , 𝑁} and 𝑅+ = {𝑖|𝐻𝑖 activates 𝐺} yields the

simplified propensity function:

𝑓(𝑦1, 𝑦2, … , 𝑦𝑁) = wpr ⋅
∏𝑖∈𝑅+(𝜈𝑖 + 1)
∏𝑖∈𝑅(𝜈𝑖 + 1) (27)
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Independence, synergism and basal expression

The definition of 𝛼𝑗 as in equation 26 presents two main limitations. Firstly, since 𝛼0 = 1, it is impossible to tweak

the propensity of transcription when no transcription factors are bound. Secondly, it is not possible to tweak the

independence and synergism of multiple regulators.

Let ba ∈ [0, 1] denote the basal expression strength 𝐺 (i.e. how much will 𝐺 be expressed when no transcription

factors are bound), and sy ∈ [0, 1] denote the synergism of regulators 𝐻𝑖 of 𝐺, the transcription propensity becomes:

𝑓(𝑦1, 𝑦2, … , 𝑦𝑁) = wpr ⋅
ba − sy|𝑅+| + ∏𝑖∈𝑅+(𝜈𝑖 + sy)

∏𝑖∈𝑅(𝜈𝑖 + 1) (28)

Simulate single cells

dyngen uses Gillespie’s stochastic simulation algorithm (SSA) [13] to simulate dynamic processes. An SSA simulation

is an iterative process where at each iteration one reaction is triggered.

Each reaction consists of its propensity – a formula to calculate the probability of the reaction occurring during an

infinitesimal time interval – and the effect – how it will affect the current state if triggered. Each time a reaction is

triggered, the simulation time is incremented by 𝜏 = 1
∑𝑗 𝑝𝑟𝑜𝑝𝑗

ln ( 1
𝑟 ), with 𝑟 ∈ 𝑈(0, 1) and 𝑝𝑟𝑜𝑝𝑗 the propensity

value of the 𝑗th reaction for the current state of the simulation.

GillespieSSA2 is an optimised library for performing SSA simulations. The propensity functions are compiled to C++

and SSA approximations can be used which allow triggering many reactions simultaneously at each iteration. The

framework also allows storing the abundance levels of molecules only after a specific interval has passed since the

previous census. By setting the census interval to 0, the whole simulation’s trajectory is retained but many of these

time points will contain very similar information. In addition to the abundance levels, also the propensity values

and the number of firings of each of the reactions at each of the time steps can be retained, as well as specific

sub-calculations of the propensity values, such as the regulator activity level 𝑟𝑒𝑔𝐺,𝐻 .

Simulate experiment

From the SSA simulation we obtain the abundance levels of all the molecules at every state. We need to replicate

technical effects introduced by experimental protocols in order to obtain data that is similar to real data. For this, the

cells are sampled from the simulations and molecules are sampled for each of the cells. Real datasets are used in

order to achieve similar data characteristics.

Sample cells

In this step, 𝑁 cells are sampled the simulations. Two approaches are implemented: sampling from an unsynchro-

nised population of single cells (snapshot) or sampling at multiple time points in a synchronised population (time

series).

Snapshot The backbone consists of several states linked together by transition edges with length 𝐿𝑖, to which the

different states in the different simulations have been mapped (Figure 11A). From each transition, 𝑁𝑖 = 𝑁/ 𝐿𝑖
∑ 𝐿𝑖

cells

are sampled uniformly, rounded such that ∑ 𝑁𝑖 = 𝑁 .

Time series Assuming that the final time of the simulations is 𝑇 , the interval [0, 𝑇 ] is divided into 𝑘 equal intervals of

width 𝑤 separated by 𝑘 − 1 gaps of width 𝑔. 𝑁𝑖 = 𝑁/𝑘 cells are sampled uniformly from each interval (Figure 11B),

rounded such that ∑ 𝑁𝑖 = 𝑁 . By default, 𝑘 = 8 and 𝑔 = 0.75. For usual dyngen simulations, 10 ≤ 𝑇 ≤ 20. For
larger values of 𝑇 , 𝑘 and 𝑔 should be increased accordingly.

Sample molecules

Molecules are sampled from the simulation to replicate how molecules are experimentally sampled. A real dataset is

downloaded from a repository of single-cell RNA-seq datasets [39]. For each in silico cell 𝑖, draw its library size 𝑙𝑠𝑖
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0 cells (burn)

N × 5 / 12 cells
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separated by gaps of width g

From:

  Each interval

Sample:

N / k cells

Figure 11: Two approaches can be used to sample cells from simulations: snapshot and time-series.

from the distribution of transcript counts per cell in the real dataset. The capture rate 𝑐𝑟𝑗 of each in silico molecule

type 𝑗 is drawn from 𝑁(1, 0.05). Finally, for each cell 𝑖, draw 𝑙𝑠𝑖 molecules from the multinomial distribution with

probabilities 𝑐𝑟𝑗 × 𝑎𝑏𝑖,𝑗 with 𝑎𝑏𝑖,𝑗 the molecule abundance level of molecule 𝑗 in cell 𝑖.

Determining the ground-truth trajectory

To determine the state of a cell at any point in the simulation, we simulate the expression of the ground-truth tra-

jectory. Subsequently, map the expression of the cell to the closest resembling state in the ground-truth trajectory

by finding the point in the ground-truth trajectory with the highest Pearson correlation value w.r.t. the expression

values.

To simulate the expression of the ground-truth expression, we iterate over the edges in the backbone state network

starting from the root state. We assume the root state has nomodules active and has no expression of any molecules.

To transition to a next state, we activate or deactivate certain gene modules as defined by the backbone (Section )

and perform a noiseless ODE simulation. For each time interval 𝑡 = 0.01 along the trajectory, the expression values

are retained.

Determining the cell-specific ground-truth regulatory network

Calculating the regulatory effect of a regulator 𝑅 on a target 𝑇 (Figure 7F) requires determining the contribution of

𝑅 in the propensity function of the transcription of 𝑇 (section ) with respect to other regulators. This information is

useful, amongst others, for benchmarking cell-specific network inference methods.

The regulatory effect of 𝑅 on 𝑇 at a particular state 𝑆 is defined as the change in the propensity of transcription

when 𝑅 is set to zero, scaled by the inverse of the pre-mRNA production rate of 𝑇 . More formally:

regeffect𝐺 = proptrans𝐺(𝑆)−proptrans𝐺(𝑆[y𝑇 ←0])
wpr𝐺

Determining the regulatory effect for all interactions and cells in the dataset yields the complete cell-specific ground-

truth GRN (Figure 12). The regulatory effect lie between [−1, 1], where -1 represents complete inhibition of 𝑇 by 𝑅,

1 represents maximal activation of 𝑇 by 𝑅, and 0 represents inactivity of the regulatory interaction between 𝑅 and

𝑇 .

Comparison of cell-specific network inference methods

Several datasets were generated using the different predefined backbones. For every cell in the dataset, the transcrip-

tomics profile and the corresponding cell-specific ground-truth regulatory network was determined (Section ).

Several cell-specific NI methods were considered for comparison: SCENIC [19], LIONESS [40, 20], and SSN [21].
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Figure 12: The cell-specific regulatory effects of all interactions, computed on cells part of a bifurcation trajec-

tory. Negative values correspond to inhibitory interactions, positive values to activating interactions, and zero values

correspond to inactive interactions.

LIONESS [@ 20, 41] uses the Pearson correlation to infer cell-specific GRNs. To do so, first the Pearson correlation

is calculated between regulators and targets for all samples. Next, the Pearson correlation is again calculated for all

samples excluding one sample. The difference between the two correlation matrices is considered a cell-specific

GRN for that particular profile. This process is repeated for all profiles, resulting in a cell-specific GRN.

SSN [21] has, in essence, the exact same methodology as LIONESS. It is worth noting that the LIONESS preprint was

released before the publication of SSN. Since no implementation was provided by the authors, we implemented SSN

in R using basic R and tidyverse functions [42] and marked results from this implementation as ”SSN*”.

SCENIC [19] is a pipeline that consists of four main steps. Step 1: classical network inference is performed with

arboreto, which is similar to GENIE3 [43]. Step 2: select the top 10 regulators per target. Interactions are grouped

together in ‘modules’; eachmodule contains one regulator and all of its targets. Step 3: filter the modules usingmotif

analysis. Step 4: for each cell, determine an activity score of each module using AUCell. As a post-processing of

this output, all modules and the corresponding activity scores are combined back into a cell-specific GRN consisting

of (cell, regulator, target, score) pairs. For this analysis, the Python implementation of SCENIC was used, namely

pySCENIC. Since dyngen does not generate motif data, step 3 in this analysis is skipped.

The AUROC and AUPR metrics are common metrics for evaluating a predicted GRN with a ground-truth GRN. To

compare a predicted cell-specific GRN with the ground-truth cell-specific GRN, the top 10’000 interactions per cell

were retained. For each cell-specific network, the AUROC and AUPR were calculated.

Comparison of RNA velocity methods

15 datasets were generated with 5 different backbones: linear, linear simple, bifurcating, cyclic, and disconnected.

We extracted a ground truth RNA velocity by subtracting for each mRNA molecule the propensity of its production

by the propensity of its degradation. If the expression of an mRNA will increase in the future, this value is positive,

while it is negative if it is going to decrease. For each gene, we compared the ground truth velocity with the observed

velocity by calculating the Spearman rank correlation.

We compared two RNA velocity methods. The velocyto method [17], as implemented in the velocyto.py package,

in which we varied the “assumption” parameter between “constant_unspliced” and “constant_velocity”. The scvelo
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method [18], as implemented in the python scvelo package scvelo.de, in which we varied the “mode” parameter

between “deterministic”, “stochastic” and “dynamical”. For both methods, we used the same normalized data as

provided by dyngen, with no extra cell or feature filtering. We also matched the parameters between both methods

as best as possible, i.e. the k parameter for smoothing was set to 20 for both methods.

To visualize the velocity on an embedding, we used the “velocity_embedding” function, implemented in the scvelo

python package.

Comparison of trajectory alignment with added noise

2 datasets containing a trajectory were generated using dyngen. For each dataset, we shuffled 5% to 75% of the count

matrix, with steps of 5%. Next, we aligned (using DTW) all the base trajectories with all the noisy trajectories.

Let the normalized alignment distance between base trajectory x and trajectory y with z% noise be 𝑑𝑥𝑦𝑧. To calculate

how well an alignment algorithm can distinguish the two trajectories, we define the discrimination power of DTW.

𝑑12𝑧
𝑑11𝑧

∀𝑧 ∈ {0.05, 0.1, 0.15, ..., 0.75} (29)

𝑑21𝑧
𝑑22𝑧

∀𝑧 ∈ {0.05, 0.1, 0.15, ..., 0.75} (30)

If this ratio is high, it means that DTW is able to distinguish well between the two trajectories. If this ratio is 1, DTW is

not able to distinguish between the two trajectories at all.

These datasets and ratios were generated 10 times.

Availability

dyngen is available as an R package on GitHub github.com/dynverse/dyngen. The dyngen codebase is still under de-

velopment and is thus likely subject to change, including the adding or removing of functionality, renaming functions

or parameters, and changing default parameter values. The analyses performed in this manuscript are available on

GitHub github.com/dynverse/dyngen_manuscript.
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