
 1 

A framework for implementing metaheuristic 

algorithms using intercellular communication  

Martín Gutiérrez ∗	‡, Yerko Ortiz ‡, Javier Carrión ‡  

‡ Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Santiago, Chile  

KEYWORDS Individual based Model, Synthetic Biology, cell-cell communication, 

metaheuristics, framework, gro.  

ABSTRACT  

Metaheuristic procedures (MH) have been a trend driving Artificial Intelligence (AI) researchers 

for the past 50 years. A variety of tools and applications (not only in Computer Science) stem from 

these techniques. Also, MH frequently rely on evolution, a trademark process involved in cell 

colony growth. Generally, MH are used to approximate the solution to difficult problems but 

require a large amount of computational resources. Cell colonies harboring synthetic distributed 

circuits using intercell communication offer a direction for tackling this problem, as they process 

information in a massively parallel fashion. In this work, we propose a framework that maps MH 

elements to synthetic circuits in growing cell colonies. The framework relies on cell-cell 

communication mechanisms such as quorum sensing (QS) and bacterial conjugation. As a proof-

of-concept, we also implemented the workflow associated to the framework, and tested the 

execution of two specific MH (Genetic Algorithms and Simulated Annealing) encoded as synthetic 
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circuits on the gro simulator. Furthermore, we show an example of how our framework can be 

extended by implementing another kind of computational model: The Cellular Automaton. This 

work seeks to lay the foundations of mappings for implementing AI algorithms in a general manner 

using Synthetic Biology constructs in cell colonies. 

MAIN TEXT 

Evolution is a key element involved in all microbiology processes. It is the process that drives 

organism adaptation to better survive and thrive in their surrounding environment. This process 

occurs at a genetic level, involving mainly genetic recombination and mutation. The genetic 

diversity produced by evolution is studied and used as inspiration in computational methods such 

as Evolutionary Algorithms (EAs)1,2. These algorithms are generally used for approximating 

solutions to optimization problems. Since evolution is a standard occurring process, it is natural to 

relate EAs to microbiology experiments, and more specifically, to Synthetic Biology constructs. 

This relationship has already been addressed by Directed Evolution3,4. However, the control level 

of Directed Evolution is not as specific as the one reached in EAs. Furthermore, several other 

computational methods can be translated to Synthetic Biology constructs that emulate their 

operation. Metaheuristic procedures (MH)5–7 are a larger class of procedures that contain EAs. 

Inspiration upon which these techniques are designed range from metallurgy processes8–10 through 

bird flock movement patterns11–13, and ant colony food foraging14,15. A general mapping, relating 

Synthetic Biology constructs to MH elements can be proposed such that any procedure of that 

class can be modeled as a synthetic circuit. This is due to MH sharing common elements and 

similarities that can be generalized. 
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This alternative paradigm for designing, implementing and executing MH is developed in the 

context of large-scale individual systems. The original population of solutions that take part in the 

execution is replaced by a set of individual entities, such as cells (in this work bacteria, 

specifically). Large-scale parallelism is a consequence of moving towards this new paradigm, but 

also the use of the procedure within a biological environment. This expands the scope of MH, 

establishing a wider array of possible implementations and problems to tackle. This association is 

logical, as these techniques work on a set of different elements (solutions) and apply changes on 

these elements to explore a search space and eventually reach a good solution in a reasonable 

amount of time according to specific constraints.  

MH have been long studied and possess a defined structure16. One approach towards implementing 

AI using Synthetic Biology is shown in this article in the form of a framework that automates the 

mapping of MH elements to synthetic constructs. A proof of concept is implemented to show the 

automation of the process and generation of readily executable simulation files for the cell colony 

simulator gro17,18. 

RESULTS  

One key aspect for using MH is to be able to represent all elements necessary for the execution of 

the procedure. Mainly, this involves the solution pool used in the execution, a fitness function to 

evaluate different solutions, and operations that carry out the exploration of new solutions. The 

application and design of these elements in a context of Synthetic Biology is not straightforward, 

as often they are dependent on the problem to solve. However, in this work, we propose a general 

mapping scheme to relate each of the elements which participate in an MH to a functional synthetic 

construct and make the association easier. The whole set of constructs is then organized and 
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distributed over a pool of individuals (in this case, bacteria) to represent, and reproduce dynamics 

associated to the procedures. These constructs are designed from a general standpoint and seek to 

translate each of the involved components using transcriptional logic gates, intercellular 

communication mechanisms, and external elements such as environmental signals. It should be 

highlighted that the mapping presented here is a proposal and could be complemented and 

extended with other kinds of mechanisms, such as CRISPR19,20 systems, external conditions such 

as temperature, nutrient consumption, or specific spatial conditions. Also, it should be stressed that 

our proposal heavily relies on intercellular communication, since it offers a higher computation 

power and also distributes it among the colony cells. The main intercell communication processes 

used were bacterial conjugation21–23 and Quorum Sensing (QS)24–27. 

 

The framework is composed by three parts: 

1) A set of parameters that configure the execution of the instance of a MH. This set of parameters 

is always the same for the selected technique, despite having specific values to solve different 

problems. At this stage, the input parameters for the procedure are abstracted and generalized for 

multiple instances of the selected MH. 

 

2) A mapping/translation language to relate specific elements of the MH technique to genetic 

circuits. This is the fundamental idea and value of the presented work, as it provides the blueprints 

for automating the design of MH in Synthetic Biology. How specific elements are ported to a 

genetic circuit will be discussed further in this section. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/


 5 

 

3) An interpreter that automates the translation of the specification of the algorithm into a skeleton 

of a gro source code, so the MH can readily be simulated and tested. The output design of this 

interpreter is generated based on 2) and configured based on 1). 

A depiction of the framework elements and their relationship is shown in Figure 1. 

 

Figure 1. Framework elements. Intercellular communication processes were chosen as the tools 

to implement evolution operators in MH for cell colonies. Depending on what MH is implemented, 

each process could play a different role. MH logic and representation are encoded using 

transcriptional regulation. However, other possibilities such as the use of RNA or CRISPR 

mediated regulation remain open to be explored as new forms of logic and representation for MH. 

The selected tools are then mapped to the logic of the specific MH, generating a model. Once the 

model and mapping have occurred, a gro simulation file is outputted and run to analyze the 

behavior of the algorithm.  

 

The aim of our framework was to generalize how MH are defined in terms of their parameters, 

establish base circuits which can be extended to generically model key players in MH procedures 

such as fitness functions, pool of solutions, or operations. We think this is a two-fold contribution 
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as first, it eliminates the need for fully understanding all intricate mechanisms of the MH despite 

being able to use it, and second, automates its design thanks to the mapping that translates all of 

the elements into gene circuits (that are outputted in the form of a gro specification file, but also 

set a starting point in the design of gene circuit implementation related to the MH in the wet-lab).  

We believe that each MH implemented for cell colonies following the proposed approach, and 

pursuing an optimization goal, represents a specialized form of Directed Evolution. It establishes 

further definition and control from an algorithmic standpoint, because the general algorithmic logic 

and evolution steps are explicitly specified. Furthermore, this continuous evolution is constantly 

being evaluated in MH by means of a fitness function. The variability for expressing and 

implementing this function within the context of our framework offers improved flexibility, 

expressiveness and specificity in the expected solutions with respect to the original definition of 

Directed Evolution. 

Circuit design is done sequentially over the framework on the basis of fundamental part integration 

and the idea that all of the components of the MH procedure can be expressed in terms of these 

parts.  Such parts merge into a more complex circuit that evaluates the inputs and outputs a function 

of these inputs. The circuits implement different elements of an MH, such as fitness function, 

solution representation, or evolution operators. These circuits will be presented and described after 

reviewing the basics on MH. 

Metaheuristics (MH) 

MH are probabilistic techniques that take inspiration on certain observed general phenomena. The 

dynamics of the observed phenomena are then simplified and expressed in procedures that use 

input parameters for configuring and following the execution sequence. MH are mostly used for 
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approximating solutions to difficult optimization problems. The simplification of the phenomenon 

and general approach of algorithm execution is a heuristic28. The heuristic is a function that seeks 

to guide the execution by estimating the reward that would be associated to carrying out a given 

step or strategy. 

Inspiration for MH can originate from the most varied situations. Early instances of these 

techniques are Evolutionary Strategies29, Genetic Algorithms30,31 and Genetic Programming32. 

These procedures are all based on the phenomenon of natural selection. Evolving solutions, 

evaluating them and selecting for the best ones is the main heuristic driving these techniques. Since 

the evolution of the solution is guided by the heuristic, and the techniques are probabilistic, there 

is no certainty of convergence or eventually reaching the global optimum (and therefore are tagged 

as approximation procedures). However, the current best solution will tend towards an optimum 

(either local or global). Solutions are explored over a large landscape, called the search space. 

Since exploring the whole search space is not possible in most cases, strategies to partially visit 

the search space and evaluate solutions – to find the best possible one – are implemented.  In sum, 

the procedure will actually be capable of improving the solution more by further evolving it, and 

in the long run (possibly infinite), will find the best possible solution. This same scenario can be 

modelled for other inspiration sources such as metallurgy processes, ant colonies or bird flock 

movements to name a few. 

In the next subsections, the two MH (Simulated Annealing and Simple Genetic Algorithms) that 

will specifically be implemented and tested through our framework will be described. 
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Simulated Annealing (SA) 

SA8–10 is a MH that uses a controlled annealing process as inspiration for searching for optimal 

solutions. The goal of this algorithm is to best approximate a global optimum of a function. The 

definition of SA relies mainly on a temperature cooling function: the real annealing process 

requires the input metals to first be heated, merged, and later slowly cooled down. The goal is to 

achieve larger stable crystallization. Hence, the size and stability of the crystals depends on how 

the metal mixture is cooled down. 

 

Being mainly an optimization technique, SA seeks to improve a solution according to specific 

problem conditions.  The procedure works iteratively: first, a random solution is chosen and stored 

as the best one that has been found. Then, at each step, a random solution in the neighborhood of 

the previously chosen one is selected and evaluated. This new solution replaces the best one found 

with a given probability, and dependent on the temperature function and the fitness value of each 

of the involved solutions. This means that even a worse quality solution could replace the current 

best solution with a certain probability. The temperature function represents the probability of 

accepting any solution as a better one while the search space is explored. This function decreases 

as the algorithm execution progresses, entailing a gradually more localized search. The spirit of 

exploring potentially worse quality solutions is to reach other better solutions through them, and 

to not stay trapped at a local optimum. 

 

The procedure of SA is shown in Figure 2. 
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Figure 2. SA procedure flowchart. The candidate solution is first randomly generated and then 

evolved into a different one. Then, the new solution is tested for its fitness and replaces the 

previous solution probabilistically. The probability depends on a temperature variable, describing 

instability when the value is high, and translating into a higher chance of accepting worse solutions 

to explore different regions of the search space. The temperature variable is inspired on the real 

annealing process: it decreases gradually as the algorithm progresses in its execution. Examples of 

stopping criteria are number of iterations or fitness value reached. 

 

Simple genetic algorithm (SGA) 

SGA30,31 finds its origins in evolution: it is an iterative MH that evaluates and evolves a pool of 

solutions in search of the fittest one. It is strongly based on evolution defined by Charles Darwin33. 

The key to assessing each solution lies in the definition of a fitness function, that returns a score 

based on the features of the individual being evaluated. Two kinds of operations are used for 

evolving: crossover and mutation. Each of these operations represents, respectively, local search 

Start

A = B

Generate initial random solution A

Generate candidate solution B 
based on A and within A’s neighborhood

f(B) > f(A)

End

A = B with probability p(t)

Step 
sequence 

done?

Stop 
criterion 

met?

NoYes

Yes

Yes

No

Decrease temperature t

No

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/


 10 

(exploitation) and global search (exploration). Crossover is applied on a group of solutions it 

receives as input and returns a new group of solutions that are a combination of the former 

solutions. This operation seeks to model sexual reproduction. On the other hand, mutation is 

applied on a single solution and is defined as an arbitrary change in one or more of the traits of the 

solution. The goal of both operations is to obtain new solutions and preserve strong features of the 

explored ones in the case of crossover, or in the case of mutation, to increase variety of the solution 

pool. The search for a fit solution continues until the algorithm reaches a termination criterion. The 

basic operation of the algorithm is as follows: first, a pool of random solutions is created. Then, a 

subset of solutions is selected for reproduction (crossover) and generates new solutions with a 

given probability. Solutions in the pool then undergo mutation with a given probability. Finally, 

all of the solutions in the pool are evaluated using the fitness function, and a new initial pool of 

solutions is created for the next iteration. At this stage, termination criteria are also evaluated to 

check if the algorithm should stop. The procedure is depicted in Figure 3. 

 

Figure 3. SGA procedure flowchart. SGA operates with solution populations, therefore, using 

cell colonies aligns naturally with its definition. Evolution is composed by three operations: 
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selection, crossover and mutation. Furthermore, the solutions are evaluated at each iteration 

through a fitness function. All operations are applied until a stop criterion is reached. Typically, 

the stop criterion is met when a given level of fitness is achieved or when a certain number of 

generations (iterations) have been completed. 

 

Synthetic circuit designs for MH simulation 

Heuristics are embedded in MH through a fitness function that evaluates and guides the search for 

best solutions within a search space. As a base assumption in this context, we will link the 

individual solution to the information inside a single cell. The presence or absence of a set of 

proteins of interest will act as the specific solution instance. Therefore, depending on which 

proteins are present or absent, each cell represents an individual and independent solution. 

Both evaluation and evolution dynamics will be implemented by taking advantage of cell 

capabilities. Bacterial conjugation will be used as the main backbone for evolution operations both 

in SA (solution mutation) and in SGA (crossover operation). Since solutions are represented as a 

set of proteins within a cell, perturbations of the set occur upon the arrival of a plasmid containing 

new proteins of interest into the cell. Fitness evaluation is organized in a synthetic circuit that 

senses the presence or absence of the proteins and performs a certain action (GFP expression in 

this case) when fitness is optimal.  

A summary of the complete proposed mapping for both SA and SGA is depicted in Figure 4. 
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Figure 4. General logic mapping for SA and SGA. A. General gene network mapping for the 

MH framework. A three-tier design is proposed: the first tier are conjugative plasmids holding 

input proteins that are used by the fitness function to assess the quality of the solution. A second 

tier is a transition one in which the input signals are transduced into standard proteins for their 

evaluation. Finally, tier three is the evaluation circuit in which the input signals are checked against 

their respective set (if they need to be present, absent, or it is indifferent if they are present), and 

if said evaluation is successful, triggers an action. In this case, it is GFP expression, but that action 

may be replaced by any other.  B. The mutation operation for SGA acts on the expression of a 

specific protein in the design, changing the solution to evaluate. The mutation rate parameter for 

SGA maps directly to the mutation rate configured in the simulation. This operation accounts for 

global search in terms of the solution exploration.  C. Crossover is a recombination operation that 

we mapped to bacterial conjugation. Part of a foreign solution is integrated to the current one. In 

our mapping, we individualized a single protein to be held by a unique plasmid, therefore 

mobilizing a single protein between solutions for recombination. Conjugation rate is the parameter 

that accounts for the SGA crossover rate parameter. D. SA is largely based on a temperature 

decrease function: we use environmental signals (such as aTc or IPTG) as its representation. The 

temperature is associated to the signal concentration at a given location. The decrease is achieved 

by the shoving mechanical effects of the cell colony: the center of the colony experiences a greater 

temperature that the outer sections. 
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Other evolution models 

Cellular automaton (CA) 

A CA34–36 is a n-dimensional grid structure where each of its cells has a state. These states are 

defined according to a set of given rules dependent on the states of its neighboring cells and the 

current cell itself. The rules describe interactions in the grid that alter the states and can describe 

spatio-temporal patterns in terms of the cell states. Based on the definition of neighborhood and 

specific rules involved in the design of the CA, it exhibits specific behaviors such as cyclic 

configurations or sequential movements. The most well-known early instance of this model is 

Conway’s Game of Life37. It is a binary CA in which grid cells die whenever their (Moore) 

neighborhood is overcrowded (more than 3 live neighbor cells) or undercrowded (less than 2 live 

cells), see Figure 5. Live grid cells stay alive when they neighborhood has 2 or 3 live neighbor 

grid cells. Finally, dead grid cells become live whenever they have exactly 3 live neighbors.  This 

instance of CA will be the one inspiring our implementation. Although CA are not MH, the 

evolving nature of the model led us to test our framework logic, based on intercell communication, 

to implement CA.  

 

Implementation examples 

To illustrate the capabilities and flexibility of the framework, we first present the phases involved 

in the parameterization, design and construction of the model along with the whole execution 

process associated with our implementation of the framework. Finally, simulation examples in the 
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gro simulator are shown. Data for executions carried out for this work can be found in the 

Supplementary Information document. 

 

Parameter collection for model generation 

The first phase uses user-defined parameters to guide the shaping and automated generation of the 

model skeleton. Specifically, two of the three techniques mentioned above (SGA and SA) are 

examples that can be promptly executed in cell colony simulators using our implementation of 

framework. The third model, CA, is shown as an example of how it would be possible to extend 

the functionalities and models proposed by our framework through relating to the underlying 

models. 

 

The fitness function and constraints associated to each of the MH (SGA and SA) are encoded 

through references to proteins and their interactions: since in gro, proteins are the unit for 

directing cell behavior, in our framework, they will mainly act as the base variables. The number 

of proteins used in the system is entered as a parameter, but also if each protein should be present, 

absent, or if it does not matter for describing a good solution to the problem. Concretely, the 

evaluation represents the fitness function. Also, the initial and final number of cells in the colony 

for the simulation are specified as additional parameters. It should also be noted that other proteins 

are used in the construction of the logic processes driving the algorithmic steps of each MH. 

Algorithm-related circuit construction process is automatically done in the next step. 

 

These are all general parameters that are useful for specifying both SGA and SA. However, some 

specific parameters must also be collected in the case of each algorithm. For SGA, both mutation 
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and crossover ratios must be provided. Mutation is implemented as an arbitrary change in the state 

of a protein within a cell, while crossover is simulated as a bacterial conjugation event. In the case 

of SA, the basic additional parameter is the temperature decrease ratio. In terms of gro 

simulations, this ratio is translated to the diffusion factor of an environmental signal (such as aTc), 

since the temperature can be associated to the signal concentration.  

 

For implementing CA, they key parameter is setting intercell signaling using appropriate diffusion 

and degradation ratios. These parameters configure the distance from the signaling cell to its 

furthest neighbor. The goal of this configuration process is to emulate the Moore neighborhood in 

2D. Within these settings, rules are encoded based on the concentration of signal sensed by cells. 

An example is shown in Figure 5, and a summary of the parameters involved in the framework 

(and for CA modeling) is compiled in Table 1. 

 

Figure 5. Approximation of Moore neighborhood using cells. CA execution is strongly 

dependent on the concept of neighborhood. 2D CA typically work on a Moore neighborhood. To 

reproduce this idea in the context of cell colonies, autoinducer sensing is used. The size of the 

neighborhood is dependent directly on the reach of the autoinducers. In terms of our model, this is 

represented through diffusion and degradation values of the intercellular signal.   
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Algorithm parameter Description Algorithms Biological interpretation 

Number of proteins  Integer that specifies the 
number of proteins of interest 
for each solution 

SA, SGA  Number of plasmids 
expressing proteins of 
interest 

Protein presence  Contribution of each protein 
to the fitness function (if it 
should be present or absent) 

SA, SGA Expected expression 
state of a protein 
(ON/OFF)  

Initial cell count  Size of initial solution pool SA, SGA  Initial cell colony count 

Final cell count  Size of final solution pool 
(stop criterion) 

SA, SGA  Final cell colony count 

Mutation rate  Determines mutation 
frequency  

SGA  Promoter mutation 
frequency 

Crossover rate  Determines recombination 
rate  

SGA  Conjugation rate 

Temperature decrease 
rate  

Establishes size and cooling 
rate of the temperature zone  

SA Diffusion and 
degradation rates of an 
environment signal 

Solution perturbation  Defines how the solution is 
altered for exploration   

SA Conjugation rate 

Moore neighborhood 
size  

Establishes size of the 
neighborhood of a cell 

CA Diffusion and 
degradation rates of an 
intercellular signal 

Table 1. Fundamental parameters for modeling MH in cell colonies. Different parameters may be 

represented by the same biological equivalent depending on the MH to be modeled (conjugation 

rate, or signals for instance). All parameters marked for each MH need to be set for the execution 

of said simulation. This is crucial, because they control all aspects of the MH and require the 

specification in terms of their mapped biological equivalent.  

 

Translation into the base model for simulation 

Once the basic parameters and elements for the MH have been chosen and put in place, a model is 

constructed. This model summarizes the operation rules according to the specific mapping of the 

different elements present in the chosen technique to simulation instructions and constructs. The 
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models are predefined and are an extensible (although specific) representation of the algorithms. 

Under our framework, it is possible to capture the essence and approximate the dynamics of MH 

through genetic designs. Therefore, as it is possible to model a MH based on genetic circuits, it 

can also be simulated. 

 

The core representation of these circuits lies in protein expression that each define the elements of 

the solution for all MH. Therefore, a candidate solution is linked to a set of proteins being 

expressed jointly within the cell (shown in Figure 4). Intercell communication methods such as 

QS, or bacterial conjugation serve the purpose of providing a backbone for implementing 

operations on the existing solutions and obtaining new solutions. Specifically, under our 

representation, a set of plasmids hold the solution elements and their mobility aids in the 

dissemination of these elements within the colony. Since intercell communication is 

programmable, specific behavior regarding these operations can represent different operations for 

each MH. 

 

Automated generation of gro skeleton simulation file 

Finally, with the model in place and informed by the input parameters, a simulation file generator 

constructs a gro simulation skeleton file. The mapping to the gro file takes place using the 

abstractions present in the simulator such as proteins, plasmids, environmental signals, etc. This 

file can be directly run by the gro simulator, or it can be modified by the final user for more 

specific operation. 
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SGA execution examples 

SGA examples were designed and implemented for simulation. In all examples, each solution is 

represented as a set of proteins that can be either present or absent. Each of these proteins is under 

the control of a promoter as a single gene in an operon. In turn, each operon resides in a different 

conjugative plasmid. 

Each solution is then evaluated through a fitness function. This function is encoded in an operon 

that checks for a subset of necessary proteins that should be present, a subset of detrimental 

proteins that should be absent, and a subset of proteins that have no effect on the fitness of the 

solution. The operons that implement this function are also encoded in a single plasmid. Cells that 

comply with the requirements of the fitness function are classified as optimal solutions. Optimal 

solutions are marked by expressing GFP, and all other bacteria are uncolored. This is done merely 

for simulation purposes, but GFP could be replaced with different processes such as cell death, 

growth rate configuration or intercell signaling, depending on the purpose of the evaluation. 

 

Crossover operation is mapped to bacterial conjugation between cells. Conjugation rate is therefore 

associated to the crossover rate parameter of the original SGA. Mutation operation was modeled 

as promoter mutation leading to incorrect functioning of the circuit, and arbitrary change in protein 

expression. Selection is random, since arbitrary recombination occurs, and bacterial conjugation 

is a simulated as a stochastic process. 

SA execution examples 

Our team implemented simulations to test SA. Like in SGA, each solution is represented as a set 

of proteins of interest, and the fitness function also evaluates a solution based on the present/absent 

proteins in a cell. Concretely, a set of conjugative plasmids each holding a protein of interest, 
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account for the values needed for evaluation each solution. The choice of conjugative plasmids to 

hold each of the proteins was made to better relate to a neighborhood space among solutions. It 

should be stressed that this does not refer to a physical neighborhood, but to a logical one for the 

solution set. If a set of proteins is represented as a binary string, binary neighbors of said string 

can be reached through conjugation. 

 

Fitness evaluation is measured with a function based on interest proteins. A subset of proteins must 

be present, another subset must be absent, and it is indifferent if a third subset of proteins is present 

or absent. Similar to SGA, we established a color code in which green glow marks cells containing 

an optimal solution. Uncolored cells describe a solution with few or none of the necessary proteins 

being expressed. It should be stressed that, unlike the original definition of the algorithm, we did 

not implement plasmid loss (a possible way of finding a different solution), but only relied on 

plasmid mobility and aggregation. 

 

The last important element of SA, the temperature value, was related to an aTc global signal. 

Therefore, this value is linked to the concentration of aTc at a given location. Temperature decrease 

is simulated mechanically, as cells are pushed outwards and experience a lower aTc concentration 

(equivalent to a lower temperature).  

 

CA execution example 

Finally, and as an extension to the proposed framework, we implemented a simulation in gro 

relying mainly on QS. This was necessary to map the idea of Moore neighborhood to a cell colony 

context (see Figure 5). To preserve a static neighborhood, we eliminated growth from the colony 
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simulation. The implemented CA simulation was an adaptation of Conway’s Game of Life. The 

synthetic circuit to implement this logic is based on the idea of band detection38,39: overcrowding 

and under-crowding are conditions that induce grid cell death, while a mid-level crowding amount 

induces grid cell life. The equivalence between the original Game of Life model and the proposed 

simulation is that a grid cell is mapped to a single cell in a colony. 

 

The color code for this simulation was to use RFP for live cells and uncolored cells for “dead” 

ones. Cell state is determined based on the concentration of AHL at the cell location: high and low 

concentrations induce the cell to the “death” state, while a mid-level concentration makes the cell 

glow red.  There are also some green cells, which have the task of starting the system, since there 

is no initial amount of AHL in the environment. These cells are placed randomly in the colony and 

are controlled by an environmental signal (aTc) as a start switch. 

 

A summary of the circuits implemented for the simulations is depicted in Figure 6. 
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Figure 6. Circuit implementation and simulation. A. SGA circuit implementation and 

simulation. The set of plasmids required to be absent for the fitness function to be optimal are 

organized in an OR gate manner. If any protein of this set is present, it triggers the cI repressor 

which in turn represses the fitness reporting (GFP for this example). The plasmids required to be 

present are processed through an AND gate design: if any of these proteins are missing, the trpR 

repressor causes the final cI repressor to act on the GFP reporting. Proteins not included in this 

design are omitted from the fitness evaluation, which is equivalent to a “don’t care” classification 

in terms of fitness values. All plasmids encoding proteins for evaluation are conjugative. B. The 

SA implementation follows a very similar design to the one made for SGA, however, it 

incorporates a temperature sensing module, in which aTc concentration regulates conjugation 

frequency, having higher conjugation rates when aTc concentration is higher, and gradually lower 

ones as aTc concentration diminishes. C. A Game of Life (CA) design is implemented in two parts. 

It should be noted that a CA does not use a fitness function, therefore does not include this part in 

the implementation. One of the modules initiates the system, since no AHL signals are present in 

the beginning (and represent the neighborhood signaling for a “live cell”). Once the system is 

started, the first module ceases its operation and the other module, an adaptation of the Basu et 

al.38 band detector, evaluates the Game of Life in a mid-range concentration of AHL (for assessing 
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live cells maintaining their state or dead cells coming to life). This second module is the one that 

keeps the CA running afterwards. 

 

DISCUSSION 

We presented a new framework that proposes a mapping to associate MH to genetic circuits to be 

encoded in a growing cell colony. The idea behind this proposal is to bring the inspiration from 

evolution, used for EA (and more broadly MH), back to its origins – an evolving and growing cell 

colony – for assessing its viability as an implementation testbed. One of the advantages of this 

approach is that several intrinsic processes involved in the cell and necessary for evolution, such 

as growth, gene circuit operation, or intercell communication need not be artificially imposed on 

the model. However, it is their integration into the model, and the level of control which must be 

studied and adapted to be a suitable element within the mapping. One example of such features 

may be mutations that occur in the DNA sequence: although this is a process that can be directly 

linked to mutations in the definition of SGA, for instance, it is also practically impossible to 

guarantee a mutation rate (as a parameter for SGA).  This leads to a couple of possible options. 

First, a redefinition of MH within a different paradigm immersed in a biological context. 

Adaptation of MH to a context in which some parameters and/or elements are not fixed, 

controllable or can be mapped. Second, a direct and artificial mapping of the MH, forcing 

relationships and mappings to maintain a strict link to their original definition.  Since our testbed 

was a simulation platform, we took a hybrid approach, leaving some of the processes, such as 

colony growth, to be controlled by the simulator and to be interpreted within the MH execution. 

This flexibility can be observed, for example, in the implementation of the original version of SA, 

where there is no mention of “growth” in its definition. Our implementation maps it to the 
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evolution of the temperature function, and thanks to mechanical shoving of the cells outwards of 

the colony, acts as temperature decrease (aTc concentration is a candidate to represent the 

temperature measure). However, a strict link was maintained to the evolution of the solution itself 

and encoded in the cells as a boolean function based on plasmid and/or protein presence. This 

could have been modeled in a different manner and only have relied on intrinsic mutation. In sum, 

we propose a framework and one possible mapping for relating MH to synthetic circuits, however, 

other possible mappings are also valid. Concerning CA, QS is a key player in our implementation, 

driving the simulation of the model, as it relies heavily on the signal diffusion and degradation 

parameters. It is very difficult to faithfully reproduce an original Moore neighborhood using QS, 

since it is not guaranteed that the neighborhood includes a specific number of neighbors or that 

diffusion can be parametrized, in-vitro or in-vivo, to an extent that an immediate neighborhood 

can be detected with a very low concentration of AHL. However, we have shown that it is possible 

to simulate a CA using (simulated) cell colonies. Characterizing the power of CA in cell colonies 

and specifying the limits of the expressivity for these models becomes an important matter, as 

there are cases of CA that are Turing-complete models40,41.  

 

We believe that the model proposed in this work can be directed towards solving problems 

involving a large number of variables and in which many solutions need to be evaluated. This is 

based on the fact that cell colonies have very large counts and large-scale parallelism in the solution 

evaluations is possible. We think that the number of solutions that is evaluated in parallel within 

this context is not something that can be achieved by a traditional computer. However, it is also 

true that even though the proposed model is extensible, a lack of well-characterized synthetic parts 

may pose a problem in terms of orthogonal intercell communication42–45 and variety of elements to 
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construct large synthetic circuits. Future in-vivo implementations can be assisted by software to 

help select the proper parts for the design46,47. Typical SGA and SA algorithms running in a 

computer use a relatively “low” number of solutions with respect to our proposal (and our testbed 

is still low on cell counts). Cell colonies are capable of evaluating orders of magnitude more 

solutions. One constraint to which our work is subjected at this stage is that the current version of 

the gro simulator works with digital proteins. We are aware that this is a large limitation and that 

the power of the proposed framework would increase greatly by extending its definition to work 

with analog values of protein expression instead of digital values.  

 

An existing and common related technique is directed evolution. We believe that including rules 

defined by a MH, evolution can be controlled further and more precisely. Also, it is our opinion 

that the process is made autonomous, since the selection machinery can be programmed and 

expressed in terms of synthetic circuits. Also, if multicellular distributed circuits with intercell 

communication are taken into account, complex computation and conditions can be described48,49. 

Protein engineering50 is an application to which this research could be applied in that the properties 

or functionalities of the protein are encoded as a fitness function, establishing the selection 

mechanism for desired proteins to be evolved. 

 

Future work 

Current research is being invested into relating different AI algorithms such as Neural Networks, 

Reinforced Learning (Q-Learning) and other MH, such as Ant Colony Optimization, to our 

framework. Also, a related direction would be to further study the proposed framework by 

broadening the tools used to implement the underlying synthetic circuits. An idea in this direction 
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would be to include bacteriophage infection as an intercell communication method51 in the 

framework definition. The current renewed interest in AI, and its need of powerful computational 

resources, offers a huge opportunity for directing the potential of Synthetic Biology towards 

satisfying those needs and providing an alternative paradigm (and more natural, since inspiration 

for most MH actually comes from biology) for solving difficult problems. The goal of this ongoing 

and future research is to reach the definition of a global AI framework52. Characterizing CA 

computational power in cell colonies is another interesting and important topic to study. Another 

long-standing debt of our research group is the linkage of the gro simulator to accept SBOL53,54 

specifications as input. In the context of the work presented in this paper, the association of SBOL 

to Agent/Individual based Model (AbM/IbM) simulators such as gro can go further and entail an 

AI toolkit within SBOL for immediate implementation of such algorithms in cell colonies. A more 

distant direction is to use the framework to internally implement EA for Xenobots55 using division 

of labor56 to perfect and automate their functionality. 

 

Materials and Methods 

We used a new version of gro developed by AI-UDP for the simulations. This new version can 

be found at https://github.com/AI-UDP/GRO63. All simulations (gro, C, and C++) were run in 

MacOS Catalina version 10.15.2 and in Windows 10. The interpreter to generate the gro 

simulation files was written in C++ and can be found at https://github.com/AI-

UDP/MHInterpreter. Machines used for simulations were two MacBook Pro core i5 2.7 GHz and 

2.5 GHz with 8GB RAM and a Pentium G4560 3.GHz with 16GB RAM. 
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ASSOCIATED CONTENT 

Supporting Information.  

The following files are available free of charge. 

Text S1.  Data for both implementations of SA and SGA, and Conway’s Game of Life. More 

information on the interpreter is also provided.  

SA.mp4. Video of the Simulated Annealing execution in gro. 

SGA.mp4. Video of the Simple Genetic Algorithm execution in gro. 

CA.mp4. Video of the Cellular Automaton in gro. 

SA.gro – This is the file generated (.gro) by the interpreter and used in the gro simulator for 

Simulated Annealing (SA). 

SGA.gro – This is the file generated (.gro) by the interpreter and used in the gro simulator for 

Simple Genetic Algorithms (SGA). 

CA.gro – This is a file we implemented (.gro) and used in the gro simulator for Conway’s Game 

of Life.  

SA.c – This is a source file implemented in C to generate data and compare with SA.gro data. 

SGA.cpp – This is a source file implemented in C++ to generate data and compare with SGA.gro 

data. 
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gameOfLife.c – C implementation of a cellular automaton (Game of Life) to compare its execution 

with CA.gro. 
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