
 1

A framework for implementing metaheuristic

algorithms using intercellular communication

Martín Gutiérrez ∗	‡, Yerko Ortiz ‡, Javier Carrión ‡

‡ Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Santiago, Chile

KEYWORDS Individual based Model, Synthetic Biology, cell-cell communication,

metaheuristics, framework, gro.

ABSTRACT

Metaheuristic procedures (MH) have been a trend driving Artificial Intelligence (AI) researchers

for the past 50 years. A variety of tools and applications (not only in Computer Science) stem from

these techniques. Also, MH frequently rely on evolution, a trademark process involved in cell

colony growth. Generally, MH are used to approximate the solution to difficult problems but

require a large amount of computational resources. Cell colonies harboring synthetic distributed

circuits using intercell communication offer a direction for tackling this problem, as they process

information in a massively parallel fashion. In this work, we propose a framework that maps MH

elements to synthetic circuits in growing cell colonies. The framework relies on cell-cell

communication mechanisms such as quorum sensing (QS) and bacterial conjugation. As a proof-

of-concept, we also implemented the workflow associated to the framework, and tested the

execution of two specific MH (Genetic Algorithms and Simulated Annealing) encoded as synthetic

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 2

circuits on the gro simulator. Furthermore, we show an example of how our framework can be

extended by implementing another kind of computational model: The Cellular Automaton. This

work seeks to lay the foundations of mappings for implementing AI algorithms in a general manner

using Synthetic Biology constructs in cell colonies.

MAIN TEXT

Evolution is a key element involved in all microbiology processes. It is the process that drives

organism adaptation to better survive and thrive in their surrounding environment. This process

occurs at a genetic level, involving mainly genetic recombination and mutation. The genetic

diversity produced by evolution is studied and used as inspiration in computational methods such

as Evolutionary Algorithms (EAs)1,2. These algorithms are generally used for approximating

solutions to optimization problems. Since evolution is a standard occurring process, it is natural to

relate EAs to microbiology experiments, and more specifically, to Synthetic Biology constructs.

This relationship has already been addressed by Directed Evolution3,4. However, the control level

of Directed Evolution is not as specific as the one reached in EAs. Furthermore, several other

computational methods can be translated to Synthetic Biology constructs that emulate their

operation. Metaheuristic procedures (MH)5–7 are a larger class of procedures that contain EAs.

Inspiration upon which these techniques are designed range from metallurgy processes8–10 through

bird flock movement patterns11–13, and ant colony food foraging14,15. A general mapping, relating

Synthetic Biology constructs to MH elements can be proposed such that any procedure of that

class can be modeled as a synthetic circuit. This is due to MH sharing common elements and

similarities that can be generalized.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 3

This alternative paradigm for designing, implementing and executing MH is developed in the

context of large-scale individual systems. The original population of solutions that take part in the

execution is replaced by a set of individual entities, such as cells (in this work bacteria,

specifically). Large-scale parallelism is a consequence of moving towards this new paradigm, but

also the use of the procedure within a biological environment. This expands the scope of MH,

establishing a wider array of possible implementations and problems to tackle. This association is

logical, as these techniques work on a set of different elements (solutions) and apply changes on

these elements to explore a search space and eventually reach a good solution in a reasonable

amount of time according to specific constraints.

MH have been long studied and possess a defined structure16. One approach towards implementing

AI using Synthetic Biology is shown in this article in the form of a framework that automates the

mapping of MH elements to synthetic constructs. A proof of concept is implemented to show the

automation of the process and generation of readily executable simulation files for the cell colony

simulator gro17,18.

RESULTS

One key aspect for using MH is to be able to represent all elements necessary for the execution of

the procedure. Mainly, this involves the solution pool used in the execution, a fitness function to

evaluate different solutions, and operations that carry out the exploration of new solutions. The

application and design of these elements in a context of Synthetic Biology is not straightforward,

as often they are dependent on the problem to solve. However, in this work, we propose a general

mapping scheme to relate each of the elements which participate in an MH to a functional synthetic

construct and make the association easier. The whole set of constructs is then organized and

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 4

distributed over a pool of individuals (in this case, bacteria) to represent, and reproduce dynamics

associated to the procedures. These constructs are designed from a general standpoint and seek to

translate each of the involved components using transcriptional logic gates, intercellular

communication mechanisms, and external elements such as environmental signals. It should be

highlighted that the mapping presented here is a proposal and could be complemented and

extended with other kinds of mechanisms, such as CRISPR19,20 systems, external conditions such

as temperature, nutrient consumption, or specific spatial conditions. Also, it should be stressed that

our proposal heavily relies on intercellular communication, since it offers a higher computation

power and also distributes it among the colony cells. The main intercell communication processes

used were bacterial conjugation21–23 and Quorum Sensing (QS)24–27.

The framework is composed by three parts:

1) A set of parameters that configure the execution of the instance of a MH. This set of parameters

is always the same for the selected technique, despite having specific values to solve different

problems. At this stage, the input parameters for the procedure are abstracted and generalized for

multiple instances of the selected MH.

2) A mapping/translation language to relate specific elements of the MH technique to genetic

circuits. This is the fundamental idea and value of the presented work, as it provides the blueprints

for automating the design of MH in Synthetic Biology. How specific elements are ported to a

genetic circuit will be discussed further in this section.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 5

3) An interpreter that automates the translation of the specification of the algorithm into a skeleton

of a gro source code, so the MH can readily be simulated and tested. The output design of this

interpreter is generated based on 2) and configured based on 1).

A depiction of the framework elements and their relationship is shown in Figure 1.

Figure 1. Framework elements. Intercellular communication processes were chosen as the tools

to implement evolution operators in MH for cell colonies. Depending on what MH is implemented,

each process could play a different role. MH logic and representation are encoded using

transcriptional regulation. However, other possibilities such as the use of RNA or CRISPR

mediated regulation remain open to be explored as new forms of logic and representation for MH.

The selected tools are then mapped to the logic of the specific MH, generating a model. Once the

model and mapping have occurred, a gro simulation file is outputted and run to analyze the

behavior of the algorithm.

The aim of our framework was to generalize how MH are defined in terms of their parameters,

establish base circuits which can be extended to generically model key players in MH procedures

such as fitness functions, pool of solutions, or operations. We think this is a two-fold contribution

Intercellular communication

Conjugation QS Phages … Transcription
factors RNAi CRISPRi …

…
Genetic regulation

Synthetic Biology toolkit

Metaheuristics

…

Ant Colony Optimization

Simulated Annealing

Simple Genetic Algorithms

Evolution
operators

Algorithm logic and
solution representation

Simulation

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 6

as first, it eliminates the need for fully understanding all intricate mechanisms of the MH despite

being able to use it, and second, automates its design thanks to the mapping that translates all of

the elements into gene circuits (that are outputted in the form of a gro specification file, but also

set a starting point in the design of gene circuit implementation related to the MH in the wet-lab).

We believe that each MH implemented for cell colonies following the proposed approach, and

pursuing an optimization goal, represents a specialized form of Directed Evolution. It establishes

further definition and control from an algorithmic standpoint, because the general algorithmic logic

and evolution steps are explicitly specified. Furthermore, this continuous evolution is constantly

being evaluated in MH by means of a fitness function. The variability for expressing and

implementing this function within the context of our framework offers improved flexibility,

expressiveness and specificity in the expected solutions with respect to the original definition of

Directed Evolution.

Circuit design is done sequentially over the framework on the basis of fundamental part integration

and the idea that all of the components of the MH procedure can be expressed in terms of these

parts. Such parts merge into a more complex circuit that evaluates the inputs and outputs a function

of these inputs. The circuits implement different elements of an MH, such as fitness function,

solution representation, or evolution operators. These circuits will be presented and described after

reviewing the basics on MH.

Metaheuristics (MH)

MH are probabilistic techniques that take inspiration on certain observed general phenomena. The

dynamics of the observed phenomena are then simplified and expressed in procedures that use

input parameters for configuring and following the execution sequence. MH are mostly used for

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 7

approximating solutions to difficult optimization problems. The simplification of the phenomenon

and general approach of algorithm execution is a heuristic28. The heuristic is a function that seeks

to guide the execution by estimating the reward that would be associated to carrying out a given

step or strategy.

Inspiration for MH can originate from the most varied situations. Early instances of these

techniques are Evolutionary Strategies29, Genetic Algorithms30,31 and Genetic Programming32.

These procedures are all based on the phenomenon of natural selection. Evolving solutions,

evaluating them and selecting for the best ones is the main heuristic driving these techniques. Since

the evolution of the solution is guided by the heuristic, and the techniques are probabilistic, there

is no certainty of convergence or eventually reaching the global optimum (and therefore are tagged

as approximation procedures). However, the current best solution will tend towards an optimum

(either local or global). Solutions are explored over a large landscape, called the search space.

Since exploring the whole search space is not possible in most cases, strategies to partially visit

the search space and evaluate solutions – to find the best possible one – are implemented. In sum,

the procedure will actually be capable of improving the solution more by further evolving it, and

in the long run (possibly infinite), will find the best possible solution. This same scenario can be

modelled for other inspiration sources such as metallurgy processes, ant colonies or bird flock

movements to name a few.

In the next subsections, the two MH (Simulated Annealing and Simple Genetic Algorithms) that

will specifically be implemented and tested through our framework will be described.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 8

Simulated Annealing (SA)

SA8–10 is a MH that uses a controlled annealing process as inspiration for searching for optimal

solutions. The goal of this algorithm is to best approximate a global optimum of a function. The

definition of SA relies mainly on a temperature cooling function: the real annealing process

requires the input metals to first be heated, merged, and later slowly cooled down. The goal is to

achieve larger stable crystallization. Hence, the size and stability of the crystals depends on how

the metal mixture is cooled down.

Being mainly an optimization technique, SA seeks to improve a solution according to specific

problem conditions. The procedure works iteratively: first, a random solution is chosen and stored

as the best one that has been found. Then, at each step, a random solution in the neighborhood of

the previously chosen one is selected and evaluated. This new solution replaces the best one found

with a given probability, and dependent on the temperature function and the fitness value of each

of the involved solutions. This means that even a worse quality solution could replace the current

best solution with a certain probability. The temperature function represents the probability of

accepting any solution as a better one while the search space is explored. This function decreases

as the algorithm execution progresses, entailing a gradually more localized search. The spirit of

exploring potentially worse quality solutions is to reach other better solutions through them, and

to not stay trapped at a local optimum.

The procedure of SA is shown in Figure 2.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 9

Figure 2. SA procedure flowchart. The candidate solution is first randomly generated and then

evolved into a different one. Then, the new solution is tested for its fitness and replaces the

previous solution probabilistically. The probability depends on a temperature variable, describing

instability when the value is high, and translating into a higher chance of accepting worse solutions

to explore different regions of the search space. The temperature variable is inspired on the real

annealing process: it decreases gradually as the algorithm progresses in its execution. Examples of

stopping criteria are number of iterations or fitness value reached.

Simple genetic algorithm (SGA)

SGA30,31 finds its origins in evolution: it is an iterative MH that evaluates and evolves a pool of

solutions in search of the fittest one. It is strongly based on evolution defined by Charles Darwin33.

The key to assessing each solution lies in the definition of a fitness function, that returns a score

based on the features of the individual being evaluated. Two kinds of operations are used for

evolving: crossover and mutation. Each of these operations represents, respectively, local search

Start

A = B

Generate initial random solution A

Generate candidate solution B
based on A and within A’s neighborhood

f(B) > f(A)

End

A = B with probability p(t)

Step
sequence

done?

Stop
criterion

met?

NoYes

Yes

Yes

No

Decrease temperature t

No

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 10

(exploitation) and global search (exploration). Crossover is applied on a group of solutions it

receives as input and returns a new group of solutions that are a combination of the former

solutions. This operation seeks to model sexual reproduction. On the other hand, mutation is

applied on a single solution and is defined as an arbitrary change in one or more of the traits of the

solution. The goal of both operations is to obtain new solutions and preserve strong features of the

explored ones in the case of crossover, or in the case of mutation, to increase variety of the solution

pool. The search for a fit solution continues until the algorithm reaches a termination criterion. The

basic operation of the algorithm is as follows: first, a pool of random solutions is created. Then, a

subset of solutions is selected for reproduction (crossover) and generates new solutions with a

given probability. Solutions in the pool then undergo mutation with a given probability. Finally,

all of the solutions in the pool are evaluated using the fitness function, and a new initial pool of

solutions is created for the next iteration. At this stage, termination criteria are also evaluated to

check if the algorithm should stop. The procedure is depicted in Figure 3.

Figure 3. SGA procedure flowchart. SGA operates with solution populations, therefore, using

cell colonies aligns naturally with its definition. Evolution is composed by three operations:

Start

Generate initial random population

Evaluate fitness of each
solution in the population

Stop
criterion

met?
End

Apply crossover with
probability Pc

No

Yes

Select solutions
for evolution

Apply mutation with
probability Pm

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 11

selection, crossover and mutation. Furthermore, the solutions are evaluated at each iteration

through a fitness function. All operations are applied until a stop criterion is reached. Typically,

the stop criterion is met when a given level of fitness is achieved or when a certain number of

generations (iterations) have been completed.

Synthetic circuit designs for MH simulation

Heuristics are embedded in MH through a fitness function that evaluates and guides the search for

best solutions within a search space. As a base assumption in this context, we will link the

individual solution to the information inside a single cell. The presence or absence of a set of

proteins of interest will act as the specific solution instance. Therefore, depending on which

proteins are present or absent, each cell represents an individual and independent solution.

Both evaluation and evolution dynamics will be implemented by taking advantage of cell

capabilities. Bacterial conjugation will be used as the main backbone for evolution operations both

in SA (solution mutation) and in SGA (crossover operation). Since solutions are represented as a

set of proteins within a cell, perturbations of the set occur upon the arrival of a plasmid containing

new proteins of interest into the cell. Fitness evaluation is organized in a synthetic circuit that

senses the presence or absence of the proteins and performs a certain action (GFP expression in

this case) when fitness is optimal.

A summary of the complete proposed mapping for both SA and SGA is depicted in Figure 4.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 12

Figure 4. General logic mapping for SA and SGA. A. General gene network mapping for the

MH framework. A three-tier design is proposed: the first tier are conjugative plasmids holding

input proteins that are used by the fitness function to assess the quality of the solution. A second

tier is a transition one in which the input signals are transduced into standard proteins for their

evaluation. Finally, tier three is the evaluation circuit in which the input signals are checked against

their respective set (if they need to be present, absent, or it is indifferent if they are present), and

if said evaluation is successful, triggers an action. In this case, it is GFP expression, but that action

may be replaced by any other. B. The mutation operation for SGA acts on the expression of a

specific protein in the design, changing the solution to evaluate. The mutation rate parameter for

SGA maps directly to the mutation rate configured in the simulation. This operation accounts for

global search in terms of the solution exploration. C. Crossover is a recombination operation that

we mapped to bacterial conjugation. Part of a foreign solution is integrated to the current one. In

our mapping, we individualized a single protein to be held by a unique plasmid, therefore

mobilizing a single protein between solutions for recombination. Conjugation rate is the parameter

that accounts for the SGA crossover rate parameter. D. SA is largely based on a temperature

decrease function: we use environmental signals (such as aTc or IPTG) as its representation. The

temperature is associated to the signal concentration at a given location. The decrease is achieved

by the shoving mechanical effects of the cell colony: the center of the colony experiences a greater

temperature that the outer sections.

A
araC

trpR

PBAD

cI

lacI
PTrp

cI
PLac

gfp
Pλ

x

y

PX

PY

Input plasmids Signal transduction
plasmids

Fitness evaluation circuit

B x x

PB

x

PB

x

Mutation

Mutation

X expressed X not expressed

X expressedX not expressed

D

High [IPTG]
(High temperature)

Low [IPTG]
(Low Temperature)

Low [IPTG]
(Low Temperature)

C

Crossover

pA pB pA pB

pA

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 13

Other evolution models

Cellular automaton (CA)

A CA34–36 is a n-dimensional grid structure where each of its cells has a state. These states are

defined according to a set of given rules dependent on the states of its neighboring cells and the

current cell itself. The rules describe interactions in the grid that alter the states and can describe

spatio-temporal patterns in terms of the cell states. Based on the definition of neighborhood and

specific rules involved in the design of the CA, it exhibits specific behaviors such as cyclic

configurations or sequential movements. The most well-known early instance of this model is

Conway’s Game of Life37. It is a binary CA in which grid cells die whenever their (Moore)

neighborhood is overcrowded (more than 3 live neighbor cells) or undercrowded (less than 2 live

cells), see Figure 5. Live grid cells stay alive when they neighborhood has 2 or 3 live neighbor

grid cells. Finally, dead grid cells become live whenever they have exactly 3 live neighbors. This

instance of CA will be the one inspiring our implementation. Although CA are not MH, the

evolving nature of the model led us to test our framework logic, based on intercell communication,

to implement CA.

Implementation examples

To illustrate the capabilities and flexibility of the framework, we first present the phases involved

in the parameterization, design and construction of the model along with the whole execution

process associated with our implementation of the framework. Finally, simulation examples in the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 14

gro simulator are shown. Data for executions carried out for this work can be found in the

Supplementary Information document.

Parameter collection for model generation

The first phase uses user-defined parameters to guide the shaping and automated generation of the

model skeleton. Specifically, two of the three techniques mentioned above (SGA and SA) are

examples that can be promptly executed in cell colony simulators using our implementation of

framework. The third model, CA, is shown as an example of how it would be possible to extend

the functionalities and models proposed by our framework through relating to the underlying

models.

The fitness function and constraints associated to each of the MH (SGA and SA) are encoded

through references to proteins and their interactions: since in gro, proteins are the unit for

directing cell behavior, in our framework, they will mainly act as the base variables. The number

of proteins used in the system is entered as a parameter, but also if each protein should be present,

absent, or if it does not matter for describing a good solution to the problem. Concretely, the

evaluation represents the fitness function. Also, the initial and final number of cells in the colony

for the simulation are specified as additional parameters. It should also be noted that other proteins

are used in the construction of the logic processes driving the algorithmic steps of each MH.

Algorithm-related circuit construction process is automatically done in the next step.

These are all general parameters that are useful for specifying both SGA and SA. However, some

specific parameters must also be collected in the case of each algorithm. For SGA, both mutation

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 15

and crossover ratios must be provided. Mutation is implemented as an arbitrary change in the state

of a protein within a cell, while crossover is simulated as a bacterial conjugation event. In the case

of SA, the basic additional parameter is the temperature decrease ratio. In terms of gro

simulations, this ratio is translated to the diffusion factor of an environmental signal (such as aTc),

since the temperature can be associated to the signal concentration.

For implementing CA, they key parameter is setting intercell signaling using appropriate diffusion

and degradation ratios. These parameters configure the distance from the signaling cell to its

furthest neighbor. The goal of this configuration process is to emulate the Moore neighborhood in

2D. Within these settings, rules are encoded based on the concentration of signal sensed by cells.

An example is shown in Figure 5, and a summary of the parameters involved in the framework

(and for CA modeling) is compiled in Table 1.

Figure 5. Approximation of Moore neighborhood using cells. CA execution is strongly

dependent on the concept of neighborhood. 2D CA typically work on a Moore neighborhood. To

reproduce this idea in the context of cell colonies, autoinducer sensing is used. The size of the

neighborhood is dependent directly on the reach of the autoinducers. In terms of our model, this is

represented through diffusion and degradation values of the intercellular signal.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 16

Algorithm parameter Description Algorithms Biological interpretation

Number of proteins Integer that specifies the
number of proteins of interest
for each solution

SA, SGA Number of plasmids
expressing proteins of
interest

Protein presence Contribution of each protein
to the fitness function (if it
should be present or absent)

SA, SGA Expected expression
state of a protein
(ON/OFF)

Initial cell count Size of initial solution pool SA, SGA Initial cell colony count

Final cell count Size of final solution pool
(stop criterion)

SA, SGA Final cell colony count

Mutation rate Determines mutation
frequency

SGA Promoter mutation
frequency

Crossover rate Determines recombination
rate

SGA Conjugation rate

Temperature decrease
rate

Establishes size and cooling
rate of the temperature zone

SA Diffusion and
degradation rates of an
environment signal

Solution perturbation Defines how the solution is
altered for exploration

SA Conjugation rate

Moore neighborhood
size

Establishes size of the
neighborhood of a cell

CA Diffusion and
degradation rates of an
intercellular signal

Table 1. Fundamental parameters for modeling MH in cell colonies. Different parameters may be

represented by the same biological equivalent depending on the MH to be modeled (conjugation

rate, or signals for instance). All parameters marked for each MH need to be set for the execution

of said simulation. This is crucial, because they control all aspects of the MH and require the

specification in terms of their mapped biological equivalent.

Translation into the base model for simulation

Once the basic parameters and elements for the MH have been chosen and put in place, a model is

constructed. This model summarizes the operation rules according to the specific mapping of the

different elements present in the chosen technique to simulation instructions and constructs. The

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 17

models are predefined and are an extensible (although specific) representation of the algorithms.

Under our framework, it is possible to capture the essence and approximate the dynamics of MH

through genetic designs. Therefore, as it is possible to model a MH based on genetic circuits, it

can also be simulated.

The core representation of these circuits lies in protein expression that each define the elements of

the solution for all MH. Therefore, a candidate solution is linked to a set of proteins being

expressed jointly within the cell (shown in Figure 4). Intercell communication methods such as

QS, or bacterial conjugation serve the purpose of providing a backbone for implementing

operations on the existing solutions and obtaining new solutions. Specifically, under our

representation, a set of plasmids hold the solution elements and their mobility aids in the

dissemination of these elements within the colony. Since intercell communication is

programmable, specific behavior regarding these operations can represent different operations for

each MH.

Automated generation of gro skeleton simulation file

Finally, with the model in place and informed by the input parameters, a simulation file generator

constructs a gro simulation skeleton file. The mapping to the gro file takes place using the

abstractions present in the simulator such as proteins, plasmids, environmental signals, etc. This

file can be directly run by the gro simulator, or it can be modified by the final user for more

specific operation.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 18

SGA execution examples

SGA examples were designed and implemented for simulation. In all examples, each solution is

represented as a set of proteins that can be either present or absent. Each of these proteins is under

the control of a promoter as a single gene in an operon. In turn, each operon resides in a different

conjugative plasmid.

Each solution is then evaluated through a fitness function. This function is encoded in an operon

that checks for a subset of necessary proteins that should be present, a subset of detrimental

proteins that should be absent, and a subset of proteins that have no effect on the fitness of the

solution. The operons that implement this function are also encoded in a single plasmid. Cells that

comply with the requirements of the fitness function are classified as optimal solutions. Optimal

solutions are marked by expressing GFP, and all other bacteria are uncolored. This is done merely

for simulation purposes, but GFP could be replaced with different processes such as cell death,

growth rate configuration or intercell signaling, depending on the purpose of the evaluation.

Crossover operation is mapped to bacterial conjugation between cells. Conjugation rate is therefore

associated to the crossover rate parameter of the original SGA. Mutation operation was modeled

as promoter mutation leading to incorrect functioning of the circuit, and arbitrary change in protein

expression. Selection is random, since arbitrary recombination occurs, and bacterial conjugation

is a simulated as a stochastic process.

SA execution examples

Our team implemented simulations to test SA. Like in SGA, each solution is represented as a set

of proteins of interest, and the fitness function also evaluates a solution based on the present/absent

proteins in a cell. Concretely, a set of conjugative plasmids each holding a protein of interest,

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 19

account for the values needed for evaluation each solution. The choice of conjugative plasmids to

hold each of the proteins was made to better relate to a neighborhood space among solutions. It

should be stressed that this does not refer to a physical neighborhood, but to a logical one for the

solution set. If a set of proteins is represented as a binary string, binary neighbors of said string

can be reached through conjugation.

Fitness evaluation is measured with a function based on interest proteins. A subset of proteins must

be present, another subset must be absent, and it is indifferent if a third subset of proteins is present

or absent. Similar to SGA, we established a color code in which green glow marks cells containing

an optimal solution. Uncolored cells describe a solution with few or none of the necessary proteins

being expressed. It should be stressed that, unlike the original definition of the algorithm, we did

not implement plasmid loss (a possible way of finding a different solution), but only relied on

plasmid mobility and aggregation.

The last important element of SA, the temperature value, was related to an aTc global signal.

Therefore, this value is linked to the concentration of aTc at a given location. Temperature decrease

is simulated mechanically, as cells are pushed outwards and experience a lower aTc concentration

(equivalent to a lower temperature).

CA execution example

Finally, and as an extension to the proposed framework, we implemented a simulation in gro

relying mainly on QS. This was necessary to map the idea of Moore neighborhood to a cell colony

context (see Figure 5). To preserve a static neighborhood, we eliminated growth from the colony

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 20

simulation. The implemented CA simulation was an adaptation of Conway’s Game of Life. The

synthetic circuit to implement this logic is based on the idea of band detection38,39: overcrowding

and under-crowding are conditions that induce grid cell death, while a mid-level crowding amount

induces grid cell life. The equivalence between the original Game of Life model and the proposed

simulation is that a grid cell is mapped to a single cell in a colony.

The color code for this simulation was to use RFP for live cells and uncolored cells for “dead”

ones. Cell state is determined based on the concentration of AHL at the cell location: high and low

concentrations induce the cell to the “death” state, while a mid-level concentration makes the cell

glow red. There are also some green cells, which have the task of starting the system, since there

is no initial amount of AHL in the environment. These cells are placed randomly in the colony and

are controlled by an environmental signal (aTc) as a start switch.

A summary of the circuits implemented for the simulations is depicted in Figure 6.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 21

Figure 6. Circuit implementation and simulation. A. SGA circuit implementation and

simulation. The set of plasmids required to be absent for the fitness function to be optimal are

organized in an OR gate manner. If any protein of this set is present, it triggers the cI repressor

which in turn represses the fitness reporting (GFP for this example). The plasmids required to be

present are processed through an AND gate design: if any of these proteins are missing, the trpR

repressor causes the final cI repressor to act on the GFP reporting. Proteins not included in this

design are omitted from the fitness evaluation, which is equivalent to a “don’t care” classification

in terms of fitness values. All plasmids encoding proteins for evaluation are conjugative. B. The

SA implementation follows a very similar design to the one made for SGA, however, it

incorporates a temperature sensing module, in which aTc concentration regulates conjugation

frequency, having higher conjugation rates when aTc concentration is higher, and gradually lower

ones as aTc concentration diminishes. C. A Game of Life (CA) design is implemented in two parts.

It should be noted that a CA does not use a fitness function, therefore does not include this part in

the implementation. One of the modules initiates the system, since no AHL signals are present in

the beginning (and represent the neighborhood signaling for a “live cell”). Once the system is

started, the first module ceases its operation and the other module, an adaptation of the Basu et

al.38 band detector, evaluates the Game of Life in a mid-range concentration of AHL (for assessing

A
araC

trpR

PBAD

cI

lacI

PTrp

cI

PLac

gfp

Pλ

x

y

PX

PY

rel

rel

B
araC

trpR

PBAD

cI

lacI

PTrp

cI

PLac

gfp

Pλ

x

y

PX

PY

reltetR

reltetR

aTC

aTC

PTet

PTet

C

lacIM1

PLux

luxR cI

PLux

lacI

Pλ

rfp

PLac

luxI

AHLAHL
AHL

tetR

aTC

luxI

PTet

gfp

AHL

Time [min]

0 60 120 180 240 300

Time [min]

0 60 120 180 240 300 360 420 480 540 600 660

Absent plasmids

Signal transduction

plasmids Fitness evaluation circuit

Present plasmids

Fitness evaluation circuit

Signal transduction

plasmids
Temperature

sensing Absent plasmids

Present plasmids

Initiation circuit

Signal mid-concentration detection circuit

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 22

live cells maintaining their state or dead cells coming to life). This second module is the one that

keeps the CA running afterwards.

DISCUSSION

We presented a new framework that proposes a mapping to associate MH to genetic circuits to be

encoded in a growing cell colony. The idea behind this proposal is to bring the inspiration from

evolution, used for EA (and more broadly MH), back to its origins – an evolving and growing cell

colony – for assessing its viability as an implementation testbed. One of the advantages of this

approach is that several intrinsic processes involved in the cell and necessary for evolution, such

as growth, gene circuit operation, or intercell communication need not be artificially imposed on

the model. However, it is their integration into the model, and the level of control which must be

studied and adapted to be a suitable element within the mapping. One example of such features

may be mutations that occur in the DNA sequence: although this is a process that can be directly

linked to mutations in the definition of SGA, for instance, it is also practically impossible to

guarantee a mutation rate (as a parameter for SGA). This leads to a couple of possible options.

First, a redefinition of MH within a different paradigm immersed in a biological context.

Adaptation of MH to a context in which some parameters and/or elements are not fixed,

controllable or can be mapped. Second, a direct and artificial mapping of the MH, forcing

relationships and mappings to maintain a strict link to their original definition. Since our testbed

was a simulation platform, we took a hybrid approach, leaving some of the processes, such as

colony growth, to be controlled by the simulator and to be interpreted within the MH execution.

This flexibility can be observed, for example, in the implementation of the original version of SA,

where there is no mention of “growth” in its definition. Our implementation maps it to the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 23

evolution of the temperature function, and thanks to mechanical shoving of the cells outwards of

the colony, acts as temperature decrease (aTc concentration is a candidate to represent the

temperature measure). However, a strict link was maintained to the evolution of the solution itself

and encoded in the cells as a boolean function based on plasmid and/or protein presence. This

could have been modeled in a different manner and only have relied on intrinsic mutation. In sum,

we propose a framework and one possible mapping for relating MH to synthetic circuits, however,

other possible mappings are also valid. Concerning CA, QS is a key player in our implementation,

driving the simulation of the model, as it relies heavily on the signal diffusion and degradation

parameters. It is very difficult to faithfully reproduce an original Moore neighborhood using QS,

since it is not guaranteed that the neighborhood includes a specific number of neighbors or that

diffusion can be parametrized, in-vitro or in-vivo, to an extent that an immediate neighborhood

can be detected with a very low concentration of AHL. However, we have shown that it is possible

to simulate a CA using (simulated) cell colonies. Characterizing the power of CA in cell colonies

and specifying the limits of the expressivity for these models becomes an important matter, as

there are cases of CA that are Turing-complete models40,41.

We believe that the model proposed in this work can be directed towards solving problems

involving a large number of variables and in which many solutions need to be evaluated. This is

based on the fact that cell colonies have very large counts and large-scale parallelism in the solution

evaluations is possible. We think that the number of solutions that is evaluated in parallel within

this context is not something that can be achieved by a traditional computer. However, it is also

true that even though the proposed model is extensible, a lack of well-characterized synthetic parts

may pose a problem in terms of orthogonal intercell communication42–45 and variety of elements to

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 24

construct large synthetic circuits. Future in-vivo implementations can be assisted by software to

help select the proper parts for the design46,47. Typical SGA and SA algorithms running in a

computer use a relatively “low” number of solutions with respect to our proposal (and our testbed

is still low on cell counts). Cell colonies are capable of evaluating orders of magnitude more

solutions. One constraint to which our work is subjected at this stage is that the current version of

the gro simulator works with digital proteins. We are aware that this is a large limitation and that

the power of the proposed framework would increase greatly by extending its definition to work

with analog values of protein expression instead of digital values.

An existing and common related technique is directed evolution. We believe that including rules

defined by a MH, evolution can be controlled further and more precisely. Also, it is our opinion

that the process is made autonomous, since the selection machinery can be programmed and

expressed in terms of synthetic circuits. Also, if multicellular distributed circuits with intercell

communication are taken into account, complex computation and conditions can be described48,49.

Protein engineering50 is an application to which this research could be applied in that the properties

or functionalities of the protein are encoded as a fitness function, establishing the selection

mechanism for desired proteins to be evolved.

Future work

Current research is being invested into relating different AI algorithms such as Neural Networks,

Reinforced Learning (Q-Learning) and other MH, such as Ant Colony Optimization, to our

framework. Also, a related direction would be to further study the proposed framework by

broadening the tools used to implement the underlying synthetic circuits. An idea in this direction

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 25

would be to include bacteriophage infection as an intercell communication method51 in the

framework definition. The current renewed interest in AI, and its need of powerful computational

resources, offers a huge opportunity for directing the potential of Synthetic Biology towards

satisfying those needs and providing an alternative paradigm (and more natural, since inspiration

for most MH actually comes from biology) for solving difficult problems. The goal of this ongoing

and future research is to reach the definition of a global AI framework52. Characterizing CA

computational power in cell colonies is another interesting and important topic to study. Another

long-standing debt of our research group is the linkage of the gro simulator to accept SBOL53,54

specifications as input. In the context of the work presented in this paper, the association of SBOL

to Agent/Individual based Model (AbM/IbM) simulators such as gro can go further and entail an

AI toolkit within SBOL for immediate implementation of such algorithms in cell colonies. A more

distant direction is to use the framework to internally implement EA for Xenobots55 using division

of labor56 to perfect and automate their functionality.

Materials and Methods

We used a new version of gro developed by AI-UDP for the simulations. This new version can

be found at https://github.com/AI-UDP/GRO63. All simulations (gro, C, and C++) were run in

MacOS Catalina version 10.15.2 and in Windows 10. The interpreter to generate the gro

simulation files was written in C++ and can be found at https://github.com/AI-

UDP/MHInterpreter. Machines used for simulations were two MacBook Pro core i5 2.7 GHz and

2.5 GHz with 8GB RAM and a Pentium G4560 3.GHz with 16GB RAM.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 26

ASSOCIATED CONTENT

Supporting Information.

The following files are available free of charge.

Text S1. Data for both implementations of SA and SGA, and Conway’s Game of Life. More

information on the interpreter is also provided.

SA.mp4. Video of the Simulated Annealing execution in gro.

SGA.mp4. Video of the Simple Genetic Algorithm execution in gro.

CA.mp4. Video of the Cellular Automaton in gro.

SA.gro – This is the file generated (.gro) by the interpreter and used in the gro simulator for

Simulated Annealing (SA).

SGA.gro – This is the file generated (.gro) by the interpreter and used in the gro simulator for

Simple Genetic Algorithms (SGA).

CA.gro – This is a file we implemented (.gro) and used in the gro simulator for Conway’s Game

of Life.

SA.c – This is a source file implemented in C to generate data and compare with SA.gro data.

SGA.cpp – This is a source file implemented in C++ to generate data and compare with SGA.gro

data.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 27

gameOfLife.c – C implementation of a cellular automaton (Game of Life) to compare its execution

with CA.gro.

AUTHOR INFORMATION

Corresponding Author

Martín Gutiérrez (martin.gutierrez@mail.udp.cl)

Author Contributions

Framework design: MGP, Interpreter design and implementation: JCR, Design and

implementation of the gro versions of the algorithms: MGP, JCR, Design and implementation

of C and C++ versions of the algorithms: YOM, Synthetic circuit designs: MGP, JCR, YOM,

Simulation executions and data processing: JCR, YOM, Wrote the paper: MGP, Supplementary

information document: YOM, MGP

The manuscript was written through contributions of all authors. All authors have given approval

to the final version of the manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

ACKNOWLEDGMENT

The authors thank Luciano Ahumada, Marco Clavero, Sebastián Antón and Pablo Ramos for their

comments and valuable discussions, Guillermo Iglesias for helping in automating and running the

SA gro simulations, Aaron Adler and Fusun Yaman for their valuable insight in the initial stages

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 28

of this work at the AI for Synthetic Biology Workshop, 2018. The authors are also grateful for all

feedback received at IWBDA 2019 for developing this work.

REFERENCES

(1) Bäck, T. (1996) Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford Univ. Press.

(2) De Jong, K. (2016) Evolutionary computation: a unified approach, in GECCO 2016

Companion - Proceedings of the 2016 Genetic and Evolutionary Computation Conference, pp

185–199. Association for Computing Machinery, Inc.

(3) Arnold, F. H. (1998) Design by Directed Evolution. Acc. Chem. Res. 31, 125–131.

(4) Arnold, F. H. (2018) Directed Evolution: Bringing New Chemistry to Life. Angew. Chemie -

Int. Ed. 57, 4143–4148.

(5) Glover, F., and Kochenberger, G. (2006) Handbook of metaheuristics. Vol. 57. Springer

Science & Business Media.

(6) Talbi, E.-G. (2009) Metaheuristics: from design To implementation. Vol. 74. John Wiley &

Sons, Ltd.

(7) Sörensen, K. (2015) Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22, 3–18.

(8) Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983) Optimization by Simulated Annealing.

Science 220, 671–680.

(9) van Laarhoven, P. J. M., and Aarts, E. H. L. (1987) Simulated annealing, in Simulated

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 29

Annealing: Theory and Applications, pp 7–15. Springer Netherlands, Dordrecht.

(10) Aarts, E., and Korst, J. (1988) Simulated annealing and Boltzmann machines.

(11) Kennedy, J., and Eberhart, R. (1995) Particle Swarm Optimization, in Proceedings of

ICNN’95-International Conference on Neural Networks, pp 1942–1948. IEEE.

(12) Shi, Y. (2001) Particle swarm optimization: Development, applications and resources, in

Proceedings of the 2001 congress on evolutionary computation, pp 81–86. IEEE.

(13) Poli, R., Kennedy, J., and Blackwell, T. (2007) Particle swarm optimization An overview.

Swarm Intell. 1, 33–57.

(14) Dorigo, M., and Di Caro, G. (1999) Ant colony optimization: a new meta-heuristic, in

Proceedings of the 1999 congress on evolutionary computation, pp 1470–1477. IEEE.

(15) Dorigo, M., Birattari, M., and Stützle, T. (2006) Ant Colony Optimization. IEEE Comput.

Intell. Mag. 1, 28–39.

(16) Sörensen, K., Sevaux, M., and Glover, F. (2018) A history of metaheuristics, in Handbook of

Heuristics, pp 791–808. Springer International Publishing.

(17) Jang, S. S., Oishi, K. T., Egbert, R. G., and Klavins, E. (2012) Specification and simulation

of synthetic multicelled behaviors. ACS Synth. Biol. 1, 365–374.

(18) Gutiérrez, M., Gregorio-Godoy, P., Pérez Del Pulgar, G., Muñoz, L. E., Sáez, S., and

Rodríguez-Patón, A. (2017) A New Improved and Extended Version of the Multicell Bacterial

Simulator gro. ACS Synth. Biol. 6, 1496–1508.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 30

(19) Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W.,

Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas

systems. Science 339, 819–823.

(20) Xu, X., and Qi, L. (2019) A CRISPR–dCas toolbox for genetic engineering and synthetic

biology. J. Mol. Biol. 431, 34–47.

(21) Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C., and de la Cruz, F. (2010)

Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452.

(22) Cabezón, E., Ripoll-Rozada, J., Peña, A., de la Cruz, F., and Arechaga, I. (2015) Towards an

integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39, 81–95.

(23) Goñi-Moreno, A., Amos, M., and de la Cruz, F. (2013) Multicellular computing using

conjugation for wiring. PLoS One 8, e65986.

(24) Nealson, K. H., Platt, T., and Hastings, J. W. (1970) Cellular Control of the Synthesis and

Activity of the Bacterial Luminescent System. J. Bacteriol. 104, 313–322.

(25) Miller, M. B., and Bassler, B. L. (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol.

55, 165–199.

(26) Waters, C. M., and Bassler, B. L. (2005) Quorum sensing: cell-to-cell communication in

bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346.

(27) Papenfort, K., and Bassler, B. L. (2016) Quorum sensing signal–response systems in Gram-

negative bacteria. Nat. Rev. Microbiol. 14, 576–588.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 31

(28) Pearl, J. (1984) Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley.

(29) Rechenberg, I. (1978) Evolutionsstrategien, in Simulationsmethoden in der Medizin und

Biologie, pp 83–114. Springer Verlag.

(30) Holland, J. (1992) Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. MIT Press.

(31) Davis, L. (1991) Handbook of genetic algorithms. CumInCAD.

(32) Koza, J. (1992) Genetic programming: on the programming of computers by means of natural

selection. MIT Press.

(33) Darwin, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation

of Favoured Races in the Struggle for Life. London: Jonh Murray.

(34) Burks, A. W. (1970) Essays on cellular automata. University of Illinois Press.

(35) Wolfram, S. (2018) Cellular automata and complexity: collected papers. CRC Press.

(36) Wolfram, S. (1986) Theory and applications of cellular automata. World Scientific.

(37) Gardner, M. (1970) MATHEMATICAL GAMES The fantastic combinations of John

Conway’s new solitaire game “life.” Sci. Am. 223, 120–123.

(38) Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss, R. (2005) A synthetic

multicellular system for programmed pattern formation. Nature 434, 1130–1134.

(39) Rodríguez Regueira, M., Daza García, J., and Rodríguez-Patón Aradas, A. (2019) The

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 32

multicellular incoherent feedforward loop motif generates spatial patterns. bioRxiv.

(40) Smith, A. R. (1971) Simple Computation-Universal Cellular Spaces. J. ACM 18, 339–353.

(41) Berlekamp, E., Conway, J., and Guy, R. (1982) Winning Ways for your Mathematical Plays.

Vol. 2. New York: Academic Press.

(42) Garcillán-Barcia, M. P., and de la Cruz, F. (2008) Why is entry exclusion an essential feature

of conjugative plasmids? Plasmid 60, 1–18.

(43) Scott, S. R., and Hasty, J. (2016) Quorum Sensing Communication Modules for Microbial

Consortia. ACS Synth. Biol. 5, 969–977.

(44) Kylilis, N., Tuza, Z. A., Stan, G. B., and Polizzi, K. M. (2018) Tools for engineering

coordinated system behaviour in synthetic microbial consortia. Nat. Commun. 9, 1–9.

(45) Grant, P. K., Dalchau, N., Brown, J. R., Federici, F., Rudge, T. J., Yordanov, B., Patange, O.,

Phillips, A., and Haseloff, J. (2016) Orthogonal intercellular signaling for programmed spatial

behavior. Mol. Syst. Biol. 12, 849.

(46) Huynh, L., and Tagkopoulos, I. (2014) Optimal part and module selection for synthetic gene

circuit design automation. ACS Synth. Biol. 3, 556–564.

(47) Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A.,

Ross, D., Densmore, D., and Voigt, C. A. (2016) Genetic circuit design automation. Science 352,

aac7341.

(48) Amos, M. (2014) Population-based microbial computing: A third wave of synthetic biology?

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 33

Int. J. Gen. Syst. 43, 770–782.

(49) Kamm, R. D., Bashir, R., Arora, N., Dar, R. D., Gillette, M. U., Griffith, L. G., Kemp, M. L.,

Kinlaw, K., Levin, M., Martin, A. C., McDevitt, T. C., Nerem, R. M., Powers, M. J., Saif, T. A.,

Sharpe, J., Takayama, S., Takeuchi, S., Weiss, R., Ye, K., Yevick, H. G., and Zaman, M. H. (2018)

Perspective: The promise of multi-cellular engineered living systems. APL Bioeng. 2, 040901.

(50) Poluri, K., and Gulati, K. (2016) Protein engineering techniques: Gateways to synthetic

protein universe. Springer.

(51) Ortiz, M. E., and Endy, D. (2012) Engineered cell-cell communication via DNA messaging.

J. Biol. Eng. 6, 16.

(52) Grozinger, L., Amos, M., Gorochowski, T. E., Carbonell, P., Oyarzún, D. A., Stoof, R.,

Fellermann, H., Zuliani, P., Tas, H., and Goñi-Moreno, A. (2019) Pathways to cellular supremacy

in biocomputing. Nat. Commun. 10, 1–11.

(53) Madsen, C., Goñi Moreno, A., Palchick, Z., Roehner, N., Atallah, C., Bartley, B., Choi, K.,

Sidney Cox, R., Gorochowski, T., Grünberg, R., Macklin, C., McLaughlin, J., Meng, X., Nguyen,

T., Pocock, M., Samineni, M., Scott-Brown, J., Tarter, Y., Zhang, M., Zhang, Z., Zundel, Z., Beal,

J., Bissell, M., Clancy, K., Gennari, J. H., Misirli, G., Myers, C., Oberortner, E., Sauro, H., and

Wipat, A. (2019) Synthetic Biology Open Language (SBOL) Version 2.3. J. Integr. Bioinform. 16.

(54) Mısırlı, G., Taylor, R., Goñi-Moreno, A., Alastair McLaughlin, J., Myers, C., Gennari, J. H.,

Lord, P., and Wipat, A. (2019) SBOL-OWL: An Ontological Approach for Formal and Semantic

Representation of Synthetic Biology Information. ACS Synth. Biol. 8, 1498–1514.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

 34

(55) Kriegman, S., Blackiston, D., Levin, M., and Bongard, J. (2020) A scalable pipeline for

designing reconfigurable organisms. Proc. Natl. Acad. Sci. U. S. A. 117, 1853–1859.

(56) Gregorio-Godoy, P., Pérez Del Pulgar, G., Rodríguez-Regueira, M., and Rodríguez-Patón, A.

(2018) Deriving general conditions and mechanisms for division of labor using the cell-based

simulator gro. bioRxiv.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 11, 2020. ; https://doi.org/10.1101/2020.02.06.937979doi: bioRxiv preprint

https://doi.org/10.1101/2020.02.06.937979
http://creativecommons.org/licenses/by-nc/4.0/

