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 2 

Abstract 36 

 37 
Ancient DNA (aDNA) has emerged as a powerful technology for learning about history and 38 

biology, but unfortunately it is highly susceptible to contamination. Here we report a method 39 

called ContamLD for estimating autosomal aDNA contamination by measuring the breakdown of 40 

linkage disequilibrium in a sequenced individual due to the introduction of contaminant DNA, 41 

leveraging the idea that the contaminant should have haplotypes that are uncorrelated to those 42 

of the studied individual. Using simulated data, we confirm that ContamLD accurately infers 43 

contamination rates with low standard errors (e.g. less than 1.5% standard error in cases with 44 

<10% contamination and data from at least 500,000 sequences covering SNPs). This method is 45 

optimized for application to aDNA, leveraging characteristic aDNA damage patterns to provide 46 

calibrated contamination estimates. Availability: https://github.com/nathan-47 

nakatsuka/ContamLD. 48 

 49 
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 54 

Background 55 

 56 
Ancient DNA (aDNA) has emerged as a powerful technology for inferring population history, 57 

allowing direct study of the genomes of individuals who lived thousands of years in the past (1-58 

3). Unfortunately, these inferences can be distorted by contamination during the excavation and 59 

storage of skeletal material, as well as the intensive processing required to extract the DNA and 60 

convert it into a form that can be sequenced. 61 
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 62 

Accurate measurement of the proportion of contamination in ancient DNA data is important, 63 

because it can provide guidance about whether analysis should be restricted to sequences that 64 

show the characteristic C-to-T damage pattern of authentic aDNA (if contamination is high) (4), 65 

or carried out at all. When analysis is restricted to focus only on damaged sequences, large 66 

fractions of authentic sequences are usually removed from the analysis dataset, as only a 67 

fraction of genuinely ancient sequences typically carry characteristic damage. In addition, if a 68 

sample is contaminated by another individual with damaged DNA—which can arise for example 69 

as a result of cross-contamination from other specimens handled in the same ancient DNA 70 

laboratory—it is impossible to distinguish authentic sequences from contaminating ones based 71 

on the presence or absence of characteristic ancient DNA damage. 72 

 73 

Current methods for estimating contamination have significant limitations. Methods based on 74 

testing for heterogeneity in mitochondrial DNA sequences (which are expected to be 75 

homogeneous in an uncontaminated individual) can be biased, because there are several 76 

orders of magnitude of variation in the ratio of the mitochondrial to nuclear DNA copy number 77 

across samples. Thus, samples that have evidence of mitochondrial contamination can be 78 

nearly uncontaminated in their nuclear DNA, while samples that have no evidence of 79 

mitochondrial contamination can have high nuclear contamination (5). Another reliable method 80 

for estimating rates of contamination in ancient DNA leverages polymorphism on the X 81 

chromosome in males (ANGSD), but this method does not work in females (6-8). 82 

 83 

Several methods for estimating contamination rates in present-day nuclear DNA have been 84 

published, including ContEst (9) and ContaminationDetection (10). However, these methods 85 

generally assume access to uncontaminated genotype data from the individual of interest or 86 

access to all possible contaminating individuals, which is rarely available for aDNA. Another 87 
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method developed specifically for aDNA, DICE, jointly estimates contamination rate and error 88 

rate along with demographic history based on allele frequency correlation patterns (11). 89 

However, this method requires both explicit demographic modeling and high genome coverage. 90 

While this may be effective for estimation of contamination in archaic genomes like 91 

Neanderthals and Denisovans that are highly genetically diverged from likely contaminant 92 

individuals, it is not optimized for study of contamination among closely related present-day 93 

human groups with complex demographic relationships or individuals from the same population. 94 

In Racimo et al. 2016 (11), DICE required over 3x genome sequence coverage and solved the 95 

distinctive problem of measuring contamination of present-day human in a Neanderthal 96 

genome. 97 

 98 

We report a method for estimating autosomal aDNA contamination using patterns of linkage 99 

disequilibrium (LD) within a sample. This approach, called ContamLD, is based on the idea that 100 

when sequences from one or more contaminating individuals are present in a sample, LD 101 

among sequences derived from that sample is expected to be diminished, because the 102 

contaminant DNA derives from different haplotypes and therefore should have no LD with the 103 

authentic DNA of the ancient individual of interest. Thus, the goal of the algorithm is to 104 

determine the LD pattern the ancient individual would have had without contamination and 105 

compare it to the LD pattern found in the sample. The LD patterns of ancient individuals are 106 

determined using reference panels from 1000 Genomes Project populations to compute 107 

approximate background haplotype frequencies where haplotypes are defined as pairs of SNPs 108 

with high correlation to each other. Contamination is then estimated by fitting a maximum 109 

likelihood model of a mixture of haplotypes from an uncontaminated individual and a proportion 110 

of contamination (to be estimated from the data) from an unrelated individual. ContamLD 111 

corrects for mismatch of the ancestry of the ancient individual with the reference panels using 112 

two different user-specified options. In the first option, mismatch is corrected using estimates 113 
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from damaged sequences (which, in principle, lack present-day contaminants). In the second 114 

option, ContamLD performs an “external” correction by subtracting the sample’s contamination 115 

estimate from estimates for individuals of the same population believed to have negligible 116 

contamination (the user could obtain this value from a ContamLD calculation on a male 117 

individual with a very low estimate of contamination based on ANGSD). The second option has 118 

more power than the first option and allows detection of cross-contamination by other ancient 119 

samples, but it could have biases if a good estimate of an un-contaminated individual from the 120 

same population is not available for the external correction. 121 

  122 

We show that ContamLD accurately infers contamination in both ancient and present-day 123 

individuals of widely divergent ancestries with simulated contamination coming from individuals 124 

of different ancestries. The contamination estimates are highly correlated with estimates based 125 

on X chromosome analysis in ancient samples that are male, as assessed using the tool 126 

ANGSD (12). ContamLD run with the first option has standard errors less than 1.5% in samples 127 

with at least 500,000 sequences covering SNPs (~0.5x coverage for data produced by in-128 

solution enrichment for ~1.2 million SNPs (2, 13), or ~0.1x coverage for data produced using 129 

whole-genome shotgun sequences), while the second option has standard errors less than 130 

0.5% in these situations, allowing users to detect samples with 5% or more contamination with 131 

high confidence so they can be removed from subsequent analyses. 132 

 133 

Results 134 

 135 
 136 
Simulations of Contamination in Present-Day Individuals: 137 

To test the performance of ContamLD, we simulated sequence level genetic data. For our first 138 

simulations, each uncontaminated individual was based on genotype calls from a present-day 139 
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individual from the 1000 Genomes Project dataset. To determine the sequence coverage at 140 

each site, we used genome data from a representative ancient individual of 1.02x coverage and 141 

in each case generated the same number of simulated sequences at each site, with allele type 142 

corresponding to that of the present-day individual (i.e. if the present day individual is 143 

homozygous reference at a site, all simulated alleles are of the reference type, while if the 144 

present day individual is heterozygous, simulated alleles are either of the reference or 145 

alternative type, with 50% probability of each). The damage status (i.e. whether it carries the 146 

characteristic C-to-T damage often observed in ancient DNA sequences) of each sequence was 147 

also determined based on the status of the ancient reference individual. Contaminating 148 

sequences were then “spiked-in” at varying proportions (0 to 40%), using an additional present-149 

day individual from the 1000 Genomes Project to determine the contaminating allele type (see 150 

Methods). All contaminating sequences were defined to be undamaged, consistent with 151 

contamination coming from a non-ancient source. 152 

 153 

For most of the analyses reported in this study, we simulate data for SNP sites defined on the 154 

1.24 million SNP capture reagent (2, 13) that intersect with 1000 Genomes sites, after removing 155 

sex chromosome sites (leaving ~1.1 million SNPs). However, our software allows users to make 156 

panels based on their own SNP sets, and in a later section we report results from a larger panel 157 

(~5.6 million SNPs) provided with the software that can be used with shotgun sequenced 158 

samples, which has more power to measure contamination. 159 

 160 

We first analyzed data generated using a reference individual from the 1000 Genomes CEU 161 

population (Utah Residents (CEPH) with Northern and Western European Ancestry) and the 162 

SNP coverage profile of a 1.02x coverage ancient West Eurasian individual (I3756; see 163 

Methods). Supplementary Figure 1 illustrates the distribution of LOD (logarithm of the odds) 164 

scores generated when the algorithm is run on samples with 0%, 7% and 15% simulated 165 
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contamination. Supplementary Figure 2 shows all the estimates from 0 to 40%. At very high 166 

contamination (above 15%) ContamLD often overestimates the contamination rate, but in 167 

practice samples with above 10% contamination are generally removed from population genetic 168 

analyses, so inaccuracies in the estimates at these levels are not a concern in our view (the 169 

importance of a contamination estimate in many cases is to flag problematic samples, not to be 170 

able to accurately estimate the contamination proportion). ContamLD assumes that the 171 

individual making up the majority of the sequences is the base individual, so we do not explore 172 

contamination rates greater than 50% in these simulation studies. 173 

 174 

We observe a linear shift in the contamination estimates such that most estimates are biased to 175 

be slightly higher than the actual value, with even greater overestimates occurring at higher 176 

contamination rates (Supplementary Figure 2). This is likely due to the difference between the 177 

haplotype distribution of the test individual and that of the haplotype panel, as the magnitude of 178 

this shift increases as the test individual increases in genetic distance from the haplotype panel. 179 

Even in cases where the test individual is of the same ancestry as the haplotype panel (as in 180 

Supplementary Figure 2) there is expected to be a shift, because the test individual’s haplotypes 181 

are a particular sampling of the population’s haplotypes, and the difference between having only 182 

frequencies of the haplotype panel and a particular instantiation of those frequencies in the test 183 

individual will lead to the artificial need for an external source (“contaminant”) to fit the model 184 

properly. Further, we observe negative shifts for inbred individuals, as expected because the 185 

algorithm assumes the paternal and maternal copy of a chromosome are unrelated; if they are 186 

related, then extra LD will be induced and more contamination will be necessary to lead to the 187 

expected LD pattern. In principle, this inbreeding effect be corrected explicitly by estimating the 188 

total amount of ROH in each individual and applying this as a correction, although we do not 189 

provide such functionality as part of our software as there is not yet a reliable methodology for 190 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.938126doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.938126
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8 

quantifying the proportion of the genome that is affected by inbreeding in ancient individuals. In 191 

any case, a correction will always be necessary to address these biases. 192 

 193 

In our implementation, we correct for these shifts in two ways, implemented as different options 194 

in ContamLD. The first option leverages sequences that contain C-to-T damage that is 195 

characteristic of ancient sequences. This option assumes these sequences are authentically 196 

ancient and not derived from a contaminating source (assumed to be from present-day 197 

individuals), so the ContamLD estimate based on un-damaged sequences is corrected by 198 

estimates based on the damaged sequences (see Methods for more details). In the second 199 

option, we allow the user to subtract the contamination estimate from the estimate of an 200 

individual of the same ancestry assumed to be uncontaminated. The second option has smaller 201 

standard errors than the first option (Figure 1), because it does not rely on estimates from 202 

damaged sequences (which have less power since they are a much smaller subset of the data). 203 

In addition, the second option allows one to estimate contamination in cases where the source 204 

of contamination is also ancient in origin (i.e. a contamination event that occurred anciently or 205 

due to cross contamination with other ancient samples), while the first option will likely produce 206 

an underestimate in these cases, since it assumes that sequences that contain C-to-T damage 207 

are not contaminated. However, the second option will generally not be reliable unless there is a 208 

relatively high coverage, ancestry-matched external sample for correction (with no inbreeding in 209 

either the sample of interest or the external sample). The rest of the analyses were based on 210 

the first option, but ContamLD includes both methods as options, and the uncorrected score 211 

forms the basis for warnings outputted by the software (e.g. high contamination or possible 212 

contamination with another ancient sample leading to an inaccurate damage correction 213 

estimate). 214 

 215 

 216 
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A)        B) 217 

        218 

Figure 1. ContamLD estimates when the uncontaminated source, contaminant source, and 219 

haplotype panel are all from the same population (CEU). Contamination estimates when the simulated 220 

contamination rate is between 0.00-0.15. A) Estimates with damage restricted correction (option 1). B) 221 

Estimates with external correction from an uncontaminated sample (option 2). The black dotted line is 222 

y=x, which would correspond to a perfect estimation of contamination. Error bars are 1.96*standard error 223 

(95% confidence interval). 224 

 225 

Simulated Contamination of Ancient Samples with Present-Day Samples: 226 

ContamLD is designed to work on ancient individuals, so we simulated contamination of real 227 

ancient individuals with present-day individuals from the 1000 Genomes Project, a scenario that 228 

would occur when skeletal material from ancient individuals is contaminated by present-day 229 

individuals during excavation or some point of the processing of the material. We used male 230 

individuals with very low contamination rates (less than 1% based on X chromosome estimates 231 

using ANGSD (12), which we subtracted from the ContamLD estimates to correct for any 232 

underlying contamination). Figure 2A shows results from an Iberian Bronze Age sample (14) 233 

(I3756) that has approximately 1.02x coverage at the targeted ~1.24 million SNP positions, 234 
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demonstrating that ContamLD produces highly accurate contamination estimates for this 235 

simulation.  236 

 237 

Effect of Different Haplotype Panels 238 

There are many potential cases in which ancient individuals can come from populations with 239 

very different genetic profiles to present-day 1000 Genomes populations, leading to an ancestry 240 

mis-match to the haplotype reference panels. ContamLD provides panels from all 1000 241 

Genomes populations as well as tools to identify the panel most closely matching to the 242 

ancestry of their ancient individual, which they can then select for the analysis. However, due to 243 

the potential for ancestry mis-match to still occur, we tested the effect of choosing haplotype 244 

panels that are genetically diverged from the individual of interest (Figure 2A). For the ancient 245 

Iberian sample, the CEU and TSI (Toscani in Italia) panels—representing northern and southern 246 

European ancestry, respectively—yielded contamination estimates that are close to the true 247 

contamination rate, especially for rates below 5%. However, ContamLD underestimates 248 

contamination by ~2% when the CHB (Han Chinese in Beijing, China) and YRI (Yoruba in 249 

Ibadan, Nigeria) panels were used instead (though we view these as unlikely cases, because 250 

the user should usually be able to choose a panel more closely related to their ancient individual 251 

than these scenarios). We thus recommend that users take care to choose an appropriate panel 252 

that is within the same continental ancestry as their ancient individual. Nevertheless, we note 253 

that we were able to obtain reasonably accurate estimates for Upper Paleolithic European 254 

hunter-gatherers, such as the Kostenki14 individual (15), who is ~37,470 years old, even when 255 

using present-day European panels that have significantly different ancestry from the hunter-256 

gatherers (Supplementary Figure 3). 257 

 258 

 259 

A)        260 
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    261 

B) 262 

    263 
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Figure 2. Genetic distance between uncontaminated individual and contamination sources or 264 

haplotype panels impacts ContamLD estimates A) Ancient Iberian (I3756, 1.02x coverage) 265 

contaminated with CEU with haplotype panels generated from CEU, TSI, CHB, and YRI populations. B) 266 

Contamination estimates from the same ancient Iberian contaminated with TSI, CHB, or YRI and 267 

analyzed with a CEU panel, from an ancient East Asian (DA362.SG, 1.10x coverage) contaminated with 268 

CEU and analyzed with a CHB panel, or from an ancient South African (I9028.SG, 1.21x coverage) 269 

contaminated with CEU and analyzed with a YRI panel. The black dotted line is y=x, which would 270 

correspond to a perfect estimation of the contamination. All samples had damage restricted correction 271 

applied (option 1). 272 

 273 

Effect of Mismatch Between the Ancestry of the True Sample and Contaminating Individual 274 

Contamination can come from a wide variety of sources, including, but not limited to, different 275 

members of the archaeological excavation team, the aDNA laboratory, or even residual human 276 

DNA on the plastic and glassware. Thus, we sought to understand the effect of mismatch in the 277 

ancestry of the true sample and the contaminating individual in our contamination estimates. We 278 

found that as the ancestry of the two diverged, ContamLD over-estimated contamination (Figure 279 

2B). This effect occurred when we tested an ancient European with different contaminant 280 

ancestries as well as when we tested ancient East Asian (16) and ancient South African (17) 281 

samples contaminated with European DNA. Nevertheless, the over-estimation was not severe 282 

at contamination levels below 5 percent, and samples above this proportion would likely be 283 

flagged as problematic. We also explored scenarios where the ancestry of the panel matches 284 

the contaminant rather than the true sample (Supplementary Figure 4) and found a ~2% under-285 

estimate at low levels of contamination and an over-estimate at high levels of contamination, 286 

which we view as not problematic in practice for the same reasons as in the scenarios above. 287 

When we tested the effect of having multiple contaminant individuals (Supplementary Figure 5), 288 

we found no significant difference relative to having a single contaminant individual. 289 
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 290 

Effect of Coverage: 291 

We tested the power of our procedure at different coverages (Figure 3). We found that while our 292 

estimates were not biased to produce estimates consistently above or below the true value, the 293 

standard errors increased significantly at lower coverages, as expected for the decreased power 294 

for accurate estimation in these scenarios. We provide a much larger panel with ~5.6 million 295 

SNPs (vs. ~1.1 million for the 1240K panel) that improves accuracy and usually decreases 296 

standard errors for samples that are shotgun sequenced (Supplementary Figure 6). This panel 297 

increases ContamLD’s compute time and memory requirements, though, so we recommend 298 

that it only be used for individuals with lower than 0.5x coverage. In addition, we provide users 299 

tools to create their own panels to meet their specific needs. 300 

 301 

 302 

Figure 3. ContamLD estimates for ancient European samples of different coverages after damage 303 

restricted correction (option 1). An ancient Iberian of 0.46x coverage, an ancient Hungarian of 0.27x 304 
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coverage, and an ancient Ukranian of 0.015x coverage (~16,000 snps) were contaminated with CEU and 305 

analyzed using a CEU panel with ContamLD option 1 (damage restricted correction). The black dotted 306 

line is y=x. Error shading is 1.96*standard error (95% confidence interval). 307 

 308 

Estimating Contamination in Admixed Individuals 309 

ContamLD relies on measuring the difference between the LD pattern of the sample and that 310 

expected from an uncontaminated individual. However, individuals from groups recently 311 

admixed between two highly divergent ancestral groups have LD patterns, in principle, similar to 312 

that of an unadmixed individual with contamination from a group with ancestry diverged from 313 

that of the individual of interest. To determine how this would impact ContamLD, we ran the 314 

software on an ASW (Americans of African Ancestry in Southwest USA) individual with different 315 

levels of added CEU contamination. When we ran ContamLD with a YRI panel and no 316 

correction on an individual with no contamination, the individual was inferred to have a 317 

contamination of ~20% (likely because the individual had ~15% European ancestry, and this 318 

was interpreted by the software as contamination). Using an ASW panel did not perform any 319 

better. However, the concerns were mostly addressed by the damage-restricted correction 320 

(option 1) at low contamination levels (Supplementary Figure 7). The simulation with African-321 

Americans represents an extreme of difficulty, because the individual is from a group with very 322 

recent admixture (~6 generations (18)) of ancestries highly divergent from each other with one 323 

of the ancestries very genetically similar to the reference panel. It highlights how the damage-324 

restricted correction is still able to produce accurate estimates in these difficult cases. 325 

 326 

Simulations to Compare ContamLD to ANGSD X Chromosome Estimates 327 

We performed simulations where we randomly added sequences at increasing levels from 0 to 328 

15% from an ancient West Eurasian individual (I10895) into the BAM files of 65 ancient male 329 

individuals of variable ancestries and ages (we set the damaged sequences to be only from the 330 
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non-contaminant individual; see Methods). We chose ancient male individuals that had average 331 

coverage over 0.5X and X chromosome contamination estimates under 2% (using method 1 of 332 

ANGSD) when no artificial contamination was added (and also corrected even for this baseline 333 

contamination by setting damaged reads to be a 5% down-sampling of the files that had no 334 

artificial contamination; see Methods). We then analyzed the individuals with ContamLD and 335 

ANGSD and found that compared to ANGSD, ContamLD consistently had the same or lower 336 

errors relative to the real contamination level (Figure 4, Supplementary Online Table 2). 337 

 338 

  339 

Figure 4. Contamination estimates with ContamLD and ANGSD for ancient individuals with 340 

different levels of contamination added in. 65 ancient individuals with average coverage over 0.5X had 341 

increasing levels of artificial contamination added in (from I10895, an ~1200BP ancient West Eurasian 342 

individual) and were then analyzed with ContamLD (with panels most genetically similar to the ancient 343 

individual and using damage restricted correction, option 1) and ANGSD. Details of all estimates 344 

(including standard errors) are provided in Supplementary Online Table 2. The black dotted line is y=x, 345 

which would correspond to a perfect estimation of the contamination. 346 

 347 
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Comparing ContamLD, ANGSD, and Mitochondrial Estimates (ContamMix) in Ancient 348 

Individuals without Added Contamination 349 

We tested 439 ancient males with ContamLD, ANGSD (X chromosome contamination 350 

estimates), and ContamMix (mitochondrial contamination estimates) without adding additional 351 

contamination. For this analysis, we included published data generated with the ~1.24 million 352 

SNP enrichment reagent, as well as data from the same sites that failed quality control due to 353 

evidence of contamination (Supplementary Online Table 3). Similar to prior studies (5), the 354 

mitochondrial estimates often differed from the nuclear (ANGSD and ContamLD) estimates, 355 

showing high contamination in some samples that had low nuclear contamination, and low 356 

mitochondrial contamination in some samples that had high nuclear contamination (Figure 5a). 357 

In contrast, ANGSD and ContamLD had better concordance. However, we observed that some 358 

of the samples with high contamination estimates based on ANGSD had much lower ContamLD 359 

estimates, reflecting over-correction from analyzing the damaged sequences, perhaps because 360 

the contamination was actually cross-contamination from other ancient individuals, violating the 361 

assumptions of our damage-correction (Figure 5b). This problem was mitigated in part, 362 

however, because ContamLD produces a warning of “Very_High_Contamination” if the 363 

uncorrected estimate is above 15% (even in cases where the corrected estimate is very low), 364 

and all samples with X chromosome estimates over 5% were flagged with this warning and/or 365 

had estimates of over 5% contamination with ContamLD (all samples with less than 5% 366 

contamination in ANGSD had lower than 5% contamination with ContamLD). It is unfortunately 367 

not possible to know the true contamination of the samples we tested in Figure 5, but the fact 368 

that our software produced results with good correlation to X chromosome estimates shows that 369 

it works well in real ancient data. 370 

It is possible for there to be samples with moderately high contamination from another 371 

ancient individual but both a low damage restricted correction estimate and no warning 372 

generated, because these would have high uncorrected estimates, yet not high enough to reach 373 
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the threshold required for the warning. These samples would have to be identified with an 374 

external correction. Lowering the threshold for the “Very_High_Contamination” warning would 375 

produce too many false positives, because there are many cases with high uncorrected 376 

estimates that have low corrected estimates that are likely not contaminated (e.g. due to 377 

ancestry mismatches of the panel and the test individual). To understand these issues better, 378 

we performed a simulation in which an ancient Iberian (I3756) was contaminated with another 379 

ancient West Eurasian individual (I10895) and the damaged sequences were set to be a 5% 380 

down-sampling of the set of contaminated sequences (thus simulating a case in which all of the 381 

contamination is from another ancient individual who has the same damage proportion as the 382 

ancient individual of interest). We found that, as expected, the contamination from the ancient 383 

individual was not detected (the contamination estimates were always near 0%) by the damage 384 

restricted correction version of ContamLD until the contamination reached 15% at which point 385 

the “Very_High_Contamination” flag came up (Supplementary Figure 8). The contamination 386 

would have been detected with the external correction version of ContamLD (since the damage 387 

restricted correction continued to go up with increasing contamination; see Supplementary 388 

Online Table 4), but without an uncontaminated ancient individual of the same group as the 389 

target individual, this would be difficult to do without the possibility of bias in the contamination 390 

estimate. 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 
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(A)       (B) 400 

    401 

Figure 5. Contamination estimates from ContamLD, ANGSD, and ContamMix in 439 ancient 402 

individuals of variable ancestry. ANGSD estimates are plotted on the X-axis, and on the Y-axis are 403 

either (A) ContamMix or (B) ContamLD estimates. In red are samples that were flagged in ContamLD as 404 

“Very_High_Contamination” based on having uncorrected estimates over 15%. All ContamLD estimates 405 

below 0 were set to 0. 406 

 407 

Discussion and Conclusion 408 

We have presented a tool, ContamLD, for estimating rates of autosomal DNA contamination in 409 

aDNA samples. ContamLD is able to measure contamination accurately in samples of both 410 

male and female individuals, with standard errors less than 1.5% for individuals with coverage 411 

above 0.5X on the 1240K SNP set (for contamination levels less than 10%) for the damage 412 

restricted correction version (option 1). On the shotgun panel we provide, standard errors are 413 

less than 1.5% for coverages above 0.1x. ContamLD is best suited to scenarios in which the 414 

contaminant and the ancient individual of interest are similar ancestry, which is useful, because 415 

DICE (11) and many population genetic tools (e.g. PCA or ADMIXTURE (19)) are better suited 416 
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for detecting cases where the contaminant is of very different ancestry from the ancient 417 

individual of interest. ContamLD works even for recently admixed individuals. Lastly, ContamLD 418 

can detect cases of contamination from other ancient individuals, though this works best if it is 419 

large amounts of contamination that can reach the threshold required for the 420 

“Very_High_Contamination” flag. 421 

 422 

We tested ContamLD in multiple different simulation scenarios to determine when bias or less 423 

reliable results would occur. When applied to the situation with a test individual (ancient or 424 

present-day), contaminant, and haplotype reference panel all from the same continental 425 

ancestry, ContamLD provides an accurate, un-biased estimate of the contamination. When the 426 

contaminant comes from a population that is of a different continental ancestry from the 427 

population used for the base and haplotype panel, the contamination appears to be slightly 428 

overestimated, particularly for higher contaminations. This should not be a large problem in 429 

analyses of real (i.e. non-simulated) data, however, because the effect is small at the 430 

contamination levels of interest (<5%). When we varied haplotype panels, we found that the 431 

estimator is robust when applied to simulated datasets using haplotype panels that are 432 

moderately divergent from the base sample (within-continent variation). We provide users tools 433 

for automatically determining the panel that shared the most genetic drift with the sample so that 434 

the user can use the panel most closely related to the sample. In other simulations, we found 435 

that the performance of the algorithm declines as the coverage of the sample decreases. The 436 

estimates are not unbiased, but the standard errors significantly increase when fewer than 437 

300,000 sequences are available for analysis. In these cases, if the individual was shotgun 438 

sequenced, we recommend that users choose the shotgun panel, which will substantially 439 

increase power for the analyses. 440 

 441 
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We applied the algorithm to estimate contamination levels in dozens of ancient samples and 442 

compared them to X chromosome based contamination estimates. There was generally good 443 

correlation with the X chromosome estimates, except that when contamination was very high, 444 

the LD based estimates were sometimes estimated incorrectly due to over-correction from the 445 

damage estimates. This problem is mitigated, however, because the software indicates if the 446 

uncorrected estimate is very high so users can identify highly contaminated samples and 447 

remove them from further analyses. A difficult case for the software is if there is contamination 448 

in part from another ancient sample. This can cause an over-correction and lead to an under-449 

estimate of the contamination. The “Very_High_Contamination” warning catches very high 450 

contamination from other ancient samples, but it will miss cases of moderate levels of 451 

contamination from other ancient samples, because it will not reach the threshold required for 452 

the warning. In theory, the user can determine the true contamination in these cases using the 453 

external correction, but the external correction can be difficult if the user does not have an 454 

adequate sample to correct the estimate of the sample of interest. The damage correction of the 455 

software also does not work if the samples have undergone full UDG treatment (no damaged 456 

sequences), and for this case, the external correction is the only option. 457 

 458 

The software run-time is dependent on the SNP coverage. If ~1,000,000 SNPs are covered (the 459 

depth of the coverage on each SNP does not affect run-time), the full analysis for the sample 460 

will be approximately 2 hours if 3 cores are available on CentOS 7.2.15 Linux machines (~25 461 

GB of memory). The software is designed for samples to be run in parallel, so the total time for 462 

analysis even for large numbers of samples is often not much greater than the time for a single 463 

sample. 464 

 465 

In summary, ContamLD is able to estimate autosomal nuclear contamination in ancient DNA 466 

accurately with standard errors that depend on the coverage of the sample. This will be 467 
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particularly useful for female samples where X chromosome estimates are not possible. As a 468 

general recommendation for users, we believe in most cases all samples with a contamination 469 

estimate that is greater than 0.05 (5%) should be removed from further analyses, or the 470 

contamination should be explicitly modeled in population genetic tests. 471 

  472 
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Supplementary Data: 473 

 474 
Supplementary Data include an Excel spreadsheet detailing all ancient samples used and the 475 

contamination estimates for this algorithm. Also included are 8 supplementary figures. 476 

 477 

Materials and Methods 478 

 479 

Datasets: 480 
 481 
Present-day samples: 482 

Genome wide data from the 1000 Genomes Project dataset (20) were used as present-day 483 

reference samples. We restricted to sites included in the aDNA ~1.24 million SNP capture 484 

reagent (2, 13) and to SNPs at greater than 10% minor allele frequency in the 1000 Genomes 485 

Project dataset (20). However, the software allows users to make panels based on their own 486 

SNP set. In the analyses presented here, we filtered for SNPs that were present in the 1000 487 

Genomes dataset and also removed all sex chromosome SNPs leading to 1,085,678 SNPs in 488 

the final 1240K dataset and 5,633,773 SNPs in the final shotgun dataset. 489 

 490 

Ancient samples: 491 

We analyzed mitochondrial and X chromosome contamination estimates (12, 21) from ancient 492 

individuals from previous studies generated by shotgun sequencing or targeted enrichment with 493 

1.24 million SNP enrichment, including many samples that failed quality control due to 494 

contamination but were from the same archaeological sites (2, 17, 22-28). Information about the 495 

ancient individual data are detailed in Supplementary Online Table 1 and below. 496 

 497 
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Obtaining sequence information: 498 

For each ancient individual, we generated the sequence-depth data from the sample bam file, 499 

counting the number of reference and alternative alleles at each SNP site in the analysis 500 

dataset. Damage-restricted data was generated by restricting to sequences with PMD scores 501 

greater than or equal to 3 (4). Our software can accommodate both genotype call data as well 502 

as sequence data (the sequence data adds additional power to the analyses), but all analyses 503 

were performed using the sequence-based method. We provide users with tools to pull down 504 

read count data from BAM files in the format required for ContamLD. 505 

 506 

Haplotype Calculation 507 
 508 
To create haplotype panels, we obtained all SNP pairs in high LD for each 1000 Genomes 509 

population using PLINK version 1.9 (29) with r2 cut-off of 0.2. (Users can increase power slightly 510 

at the expense of increased computational time by creating their own haplotype panel with a 511 

lower r2 cutoff). We then calculated the frequencies of each SNP in all of these pairs as well as 512 

the haplotype frequencies at each of these pairs while holding out the present-day individuals 513 

used for contamination simulation.  514 

 515 

Algorithm to Estimate Contamination 516 
 517 
Our goal is to estimate α, the level of contamination, by examining the frequencies of SNP pairs 518 

that should be in LD (we term this two-SNP pair a haplotype) and determining how much their 519 

frequencies differ from what would be expected under no contamination. To estimate this, we 520 

need both the distribution underlying the haplotypes (q) that an uncontaminated test sample 521 

should have as well as the distribution of ”unrelated haplotypes” (p) that would form by chance 522 

from background allele frequencies.  523 

      524 
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To determine q we must account for the fact that the test individual’s genotypes are not phased. 525 

Due to the low sequence depths at each SNP in ancient DNA, it is difficult to make confident 526 

heterozygous calls, so instead we create pseudo-haploid calls by randomly choosing a 527 

sequence to represent the genotype at that position (this holds when we are using genotype 528 

calls or the sequence information directly, and when multiple sequences cover the same SNP, 529 

we use all of them and treat them as independent). Thus, for this analysis, when examining a 530 

pair of SNPs, it is equally likely for the SNP pair to have been formed from the true haplotype (if 531 

the same parental chromosome is sampled from in both SNPs of the haplotype) or the 532 

background distribution (if the opposite parental chromosome is sampled from). We therefore 533 

can estimate q as: 534 

 535 

 536 

where 𝑝" is the distribution of true haplotypes and p is the distribution of unrelated haplotypes 537 

that would form by chance from background allele frequencies. For inbred samples, the weight 538 

on 𝑝" is more than 1/2, because the two parental chromosomes are more related, but this can 539 

generally be corrected (see below). 540 

     541 

𝑝" can be estimated from an external reference panel using a maximum likelihood estimator 542 

(MLE). This would be:  543 

 544 

 545 

with:  546 

 547 

 548 
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 549 

where P(i, j|h) is the (unknown) diploid count distribution of the haplotypes of the test individual, 550 

n is the number of SNP pairs, c is the vector of observed haplotypes in the diploid count panel, i 551 

sums over all 4 haplotype possibilities, h(a,b) are the (also unknown) haplotype distributions of 552 

the parents of the test individual, and a, b → (i, j) implies that a1 + a2 = i and b1 + b2 = j, meaning 553 

that one adds up all cases where the haplotype combination would lead to a particular diploid 554 

count (e.g. in the notation, for example, 01,11 means the first parent contributes a haplotype 555 

that has 0 alternative alleles at the first SNP and 1 alternative allele at the second SNP, and the 556 

second parent contributes a haplotype where both SNPs have the alternative allele. The test 557 

individual with these parents would then have a 12 diploid count, which means at the first SNP 558 

the individual has 1 alternative allele and at the second SNP the individual has 2 alternative 559 

alleles. Since our observed data are not phased, both 01,11 and 11,01 would lead to a 12 560 

diploid count). This assumes independence of SNP pairs, which is not true, but because our 561 

standard errors are based on jackknife resampling across chromosomes, this assumption does 562 

not bias the error estimates.  563 

        564 

The MLE would be computationally intractable to solve due to our lack of knowledge of which 565 

parent contributed to each count, so we instead used a simple EM algorithm to obtain h. The 566 

algorithm involved an expectation step of: 567 

     568 

 569 

   570 

where n1 is the expected number of times that the (a, b) configuration of the father’s 571 

chromosome contributed to a particular diploid count (this is the same value for the mother, n2, 572 

because they are assumed to be from the same haplotype distribution). 573 
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      574 

and a maximization step of:  575 

 576 

 577 

          578 

where D(a,b) is the sum of the probabilities of a particular haplotype configuration over all 579 

diploid count configurations. 580 

      581 

We initially set all h(a,b) to be 0.25 and then iterated through the algorithm until convergence 582 

(using a squared distance summed over all SNPs and a threshold of 0.001). We then used this 583 

estimate of 𝑝" to get an estimate of q. 584 

      585 

To estimate α, we used the equation: 586 

 587 

T =(1−2α′ +2α′2)q+2α′(1−α′)p 588 

 589 

Here T is the distribution underlying the observed haplotypes of the test individual and α′ is the 590 

contamination (′ is used to indicate that this is an estimate of the real α). q is the haplotype 591 

distribution for an uncontaminated sample. A fraction (1 − α’)2 + α’2 of the distribution should 592 

look like this, where (1 − α’)2 is the probability that two uncontaminated sequences form the 593 

SNP pair and α’2 is the probability that two contaminated sequences form the SNP pair, 594 

assuming the contaminating sequences are from a single individual, which would “re-form” a 595 
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SNP pair with LD (note: this also makes the simplifying assumption that the contaminant and 596 

the test individual have the same background haplotype and SNP distribution). p is the 597 

distribution of unrelated “haplotypes” that would form by chance from background allele 598 

frequencies in the population. Contamination would form these unrelated haplotypes by 599 

breaking up LD, so 2α’(1 − α’) percent of the distribution should look like this (i.e. the probability 600 

that the SNP pair is formed from a contaminated sequence and an uncontaminated sequence). 601 

      602 

This equation can be used to solve for α′ by maximizing the LOD (log of the odds) scores under 603 

the null hypothesis that α′ = 0 and the alternative hypotheses of different α′. A LOD score is 604 

assigned to each estimate of the contamination rate (α) between -0.1 to 0.5 (negative scores 605 

are included to allow correction for inbreeding). The α′ with the highest LOD score is the best 606 

estimate of α, and is returned. When we have multiple sequences on the same SNP we assume 607 

independence of the sequences, which provides additional power. The assumption of 608 

independence does not bias the error estimation for the same reason as explained above for 609 

independence of SNP pairs. 610 

 611 

In practice, the α’ that we obtain is not equal to the true α, because the reference panel does not 612 

perfectly capture the SNP and haplotype frequencies of the test sample. We found that this 613 

difference causes a linear shift in contamination estimate where the mismatch between the 614 

sample individual and the reference panel leads to a positive shift while inbreeding leads to a 615 

negative shift. These biases can be addressed in either of two ways.  616 

 617 

First, for the “damage correction” approach, we performed an α’ estimate only on sites from 618 

sequences with evidence of damage characteristic of ancient samples. These sites do not have 619 

present-day contamination and thus the α’ calculated would be the linear shift, which can be 620 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.938126doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.938126
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 28 

subtracted out from the estimate based on all sites. We separately analyzed the following pairs 621 

of SNPs: UU (both SNPs at undamaged sequences), DU (one site damaged and the other 622 

undamaged), and DD (both SNPs at damaged sequences). For the UU pairs, the value we 623 

calculate would be α + k, where k is the linear shift. For DU pairs the value calculated would be 624 

α/2 + k, and for DD pairs the value calculated would be k. We added the likelihoods for these 625 

pairs and maximized the likelihood to solve for α and k. After solving for α, we multiply by (1-626 

damage rate) to obtain the contamination level across all sequences, because α is the 627 

contamination rate at undamaged sequences.  628 

 629 

Second, for the “external correction” approach, we took samples of the sample population that 630 

were high coverage and samples we believed had very low contamination (based on X 631 

chromosome estimates with ANGSD) and measured α’. We assumed a true contamination of 0 632 

for these samples and thus subtracted this α’ from all other contamination estimates. 633 

 634 

 635 

Data simulation: 636 
 637 
To test the accuracy of the algorithm, we applied it to a variety of scenarios with both present-638 

day DNA as well as real aDNA samples that had simulated present-day DNA contamination. In 639 

all our simulations with 1000 Genomes individuals, we removed the individual being used from 640 

our haplotype panel before performing the analyses. 641 

 642 

Simulated Contamination of Present-day Individuals: 643 

We first simulated contamination of present-day individuals with other present-day individuals as 644 

contaminants (this allowed us to be sure that there was no baseline contamination). In order to 645 

best approximate the distribution of both the damaged and undamaged sequences that is 646 
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characteristic of aDNA data, we used sequence-depth information from an ancient individual as 647 

a reference. At each SNP, the total number of simulated “damaged” and “undamaged” 648 

sequences was determined based on the number of damaged and undamaged sequences at 649 

the SNP in the reference ancient individual. The identity of each allele for the present-day 650 

“base” sample was randomly chosen based on the genotype of the “base” present-day 1000 651 

Genomes individual at each SNP, as described above for the contamination. The addition of 652 

contaminant sequences to the dataset was performed using the method described above. In 653 

order to reduce bias caused by the damage correction procedure, the damage restricted dataset 654 

was generated only once for each simulation type (which included multiple simulations across 655 

varying contamination rates) and combined with the undamaged dataset to produce the overall 656 

dataset. This method was used to generate a simulated individual using present-day CEU 657 

(NA06985) or ASW (NA19625) from the 1000 Genomes dataset as the “base” sample from the 658 

sequence distributions of a 1.02x coverage ancient Iberian individual (I3756) (the “reference”) 659 

(14). The CEU (NA06984) individual was used as “contaminant” in each case.  660 

 661 

In addition, we generated simulated data with contamination from multiple sources by adjusting 662 

the present-day contamination simulation method to randomly sample from two or more 663 

present-day source contaminant genomes with equal probability. In each case, a 1000 664 

Genomes Project CEU individual (NA06985) was used as a “base” genome with the sequence 665 

distribution of I3756 (the “reference”). In the case of 2 sources of contamination (Supplementary 666 

Figure 5), two CEU individuals from the 1000 Genomes Project dataset (NA06984 and 667 

NA06986) were used as contamination sources, and in the case of three contamination 668 

sources, an additional CEU individual was used (NA06989). Data was generated for all 669 

combinations of undamaged contamination rates, α, from 0-15%. 670 

 671 

 672 
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Simulated contamination of ancient individuals: 673 

We performed two sets of simulations contaminating different ancient individuals. In both cases 674 

we selected ancient male individuals with minimal contamination (as assessed by X 675 

chromosome contamination levels from ANGSD (12)) to act as the “base” uncontaminated 676 

genome. In the first simulation set, we tested ContamLD’s performance with different ancient 677 

individuals and different present-day contaminant individuals from the 1000 Genomes dataset 678 

(20) to assess the impact of contaminant ancestry and coverage of the ancient individual. In this 679 

case we were only using ContamLD and thus we performed the simulated contamination on the 680 

genotype level. In the second simulation set, we compared ContamLD to ANGSD and used a 681 

~1200BP ancient West Eurasian individual (I10895) to contaminate the BAM files directly.  682 

 683 

In the first simulation set, we used the fact that sequences with C-to-T damage are highly 684 

unlikely to be the product of contamination except in the context of cross-contamination by 685 

another ancient DNA sample. Thus, we exclusively added contamination to the “undamaged” 686 

fraction of sequences. At each SNP site, we classified sequences present in the damage 687 

restricted dataset as “damaged” and added to the simulated SNP data. We classified all other 688 

sequences as “undamaged” and also added them to the simulated SNP data, but for each 689 

“undamaged sequence” we added a contaminant sequence to the simulated SNP data with 690 

probability α/(1-α), where α is equal to the contamination rate (since the added sequences 691 

contribute to the total number of sequences, we needed to add a higher proportion than the 692 

contamination rate to obtain our desired contamination rate). The identity of the added 693 

contaminant allele was randomly chosen based on the genotype of the chosen “contaminant” 694 

present-day genome at the site (i.e. if the contaminant individual was homozygous at the site, 695 

the allele it possesses would be added to the simulated individual, while if it were heterozygous 696 

at the site, either the reference or alternative allele would be selected randomly and added to 697 

the simulated individual). This method maintains the underlying distribution of “uncontaminated” 698 
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reference and alternative alleles at each SNP site, while adding additional “contaminant” alleles 699 

to each site, producing an overall contamination rate of α in the undamaged sequences. For 700 

each simulation, we generated two output files: (1) a file reporting the total number of 701 

sequences carrying reference and alternative alleles at each SNP and (2) a damage restricted 702 

file reporting the total number of damaged sequences carrying reference and alternative alleles 703 

at each SNP. We used a 1.02x coverage ancient Iberian individual (I3756) (Supplementary 704 

Online Table 1) with contamination from either the 1000 Genomes CEU individual NA06984, the 705 

TSI individual NA20502, the CHB individual NA18525, or the YRI individual NA18486. We also 706 

used 5 other ancient individuals, I1845 (an ancient Iberian sample of 0.46x coverage) (14), 707 

I2743 (an ancient Hungarian of 0.27x coverage) (25), I5891 (a Neolithic Ukranian individual of 708 

0.016x coverage) (30), DA362.SG (a Russian early Neolithic Shamanka East Asian individual of 709 

1.10x coverage) (16), and I9028.SG (a South African individual of 1.21x coverage) (17). In each 710 

case, we simulated individuals with 0-15% contamination. 711 

 712 

For the second simulation set, we analyzed 65 ancient individuals of average coverage over 713 

0.5X and baseline ANGSD estimates under 2% (Supplementary Online Table 2). In these 714 

cases, we added artificial contamination with sequences from a ~1200BP ancient West 715 

Eurasian individual (I10895) into the BAM files at the amounts: (0.000, 0.005, 0.010, 0.020, 716 

0.025, 0.030, 0.040, 0.050, 0.060, 0.070, 0.080, 0.090, 0.100, 0.150). We removed two base 717 

pairs from the end of each sequence of partial UDG treated samples and ten nucleotides for 718 

non-UDG treated samples and pulled down the genotypes by randomly selecting a single 719 

sequence at each site covered by at least one sequence in each individual to represent the 720 

individual’s genotype at that position (“pseudo-haploid” genotyping). To ensure that the damage 721 

sequences were only from the non-contaminant individual (so that we could use the damage 722 

restricted correction mode, option 1, of ContamLD without bias), we created the “damaged” 723 

sequence set as a randomly chosen 5% of the sequences from the non-contaminant individual. 724 
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We then analyzed the data with ContamLD (damage restricted correction version, option 1) and 725 

ANGSD using default settings (Method 1). 726 

 727 

As a last simulation, we tested the case of an ancient individual contaminating another ancient 728 

individual where some of the damaged sequences would also come from the contaminating 729 

individual. In this simulation, we analyzed a 1.02x coverage ancient Iberian individual (I3756) 730 

and contaminated the BAM with sequences from a ~1200BP ancient West Eurasian individual 731 

(I10895) at the amounts: (0.000, 0.005, 0.010, 0.020, 0.025, 0.030, 0.040, 0.050, 0.060, 0.070, 732 

0.080, 0.090, 0.100, 0.150, 0.200, 0.300). We then down-sampled the BAM, taking a random 733 

5% of the sequences of these contaminated BAM files to act as the “damaged” sequences, 734 

because this would naturally correct for any baseline contamination in the I3756 individual yet 735 

would simulate additional contamination of I3756 by an ancient individual with the same 736 

damage rate as I3756 (i.e. if there is 5% contamination, then also 5% of the damaged 737 

sequences would be from the contaminant individual in this simulation). We then performed the 738 

standard pull-down on both the full contaminated BAMs and the 5% down-sampled BAMs 739 

(simulated to be “damaged” sequences), removing two base pairs from the end of each 740 

sequence and doing a “pseudo-haploid” genotype pulldown. We ran ContamLD on the resulting 741 

data with damage restricted correction, option 1. 742 

 743 

Direct Analyses of Contamination Levels in Ancient Individuals: 744 

As our last set of analyses, we directly measured contamination levels in ancient individuals 745 

without simulated contamination. We used ContamLD to analyze shotgun sequenced 746 

individuals pulled down onto the 1240K SNP set and the shotgun panel created using all 747 

variants above 10% frequency in the 1000 Genomes dataset. The ancient shotgun sequenced 748 

individuals were of 0.1-0.5x coverage from Allentoft et al., 2015 (26), Damgaard et al., Nature 749 

2018 (31), and Damgaard et al., Science 2018 (16). In addition, we analyzed 439 individuals 750 
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from a variety of ancestries with ContamLD (damage corrected version), ANGSD (12, 32) using 751 

default settings (we report the results from Method 1), and contamMix (33) with the settings: 752 

down-sampling to 50X for samples above that coverage, --trimBases X (2 bases for UDG-half 753 

samples and 10 bases for UDG-minus samples), 8 threads, 4 chains, and 2 copies, taking the 754 

first one that finishes. Supplementary Online Table 1 includes all information from these 755 

individuals. 756 
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Supplementary Figures 857 

 858 

A)        B)     859 

 860 

C) 861 

 862 

Supplementary Figure 1. Distribution of LOD scores in simulated data. The distribution of LOD 863 

scores is depicted for samples with A) 0%, B) 7%, and C) 15% simulated contamination. These data were 864 

generated as part of tests using 1000 Genomes CEU individuals as the sample and contaminant DNA 865 

and for the haplotype panel. 866 

867 
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   868 

Supplementary Figure 2. Contamination estimates when the individual, contaminant, and 869 

haplotype panel are all from the same population (CEU) with no correction. The black dotted line is 870 

y=x, which would correspond to a perfect estimation of the contamination. Error bars are 1.96*standard 871 

error (95% confidence interval). 872 

  873 
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 874 

  875 

Supplementary Figure 3. Contamination estimates for Upper Paleolithic European individual after 876 

damage restricted correction (option 1). Kostenki14 (2.81x coverage) was contaminated with CEU and 877 

analyzed using a CEU panel with ContamLD using damage correction and ANGSD (12) (Method 1). The 878 

black dotted line is y=x, which would correspond to a perfect estimation of the contamination. Error 879 

shading is 1.96*standard error (95% confidence interval). 880 

 881 

  882 
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  883 

Supplementary Figure 4. Contamination estimates with an ancient European as the sample and 884 

ancestry matched contaminants and haplotype panels with damage restricted correction (option 885 

1). An ancient Iberian of 1.02x coverage (I3756) is analyzed in 3 different situations: 1) contaminated with 886 

TSI and analyzed with a TSI panel, 2) contaminated with CHB and analyzed with a CHB panel, and 3) 887 

contaminated with YRI and analyzed with a YRI panel. The black dotted line is y=x, which would 888 

correspond to a perfect estimation of the contamination. 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 
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A)       B) 897 

    898 

Supplementary Figure 5. Contamination estimates with CEU as the sample and multiple CEU 899 

individuals as contaminants analyzed with CEU haplotype panels with damage restricted 900 

correction (option 1). A CEU individual of 1.02x coverage (from the sequence distribution of the ancient 901 

Iberian above) is contaminated with A) two CEU individuals or B) three CEU individuals. The black dotted 902 

line is y=x, which would correspond to a perfect estimation of the contamination. Error bars are 903 

1.96*standard error (95% confidence interval). 904 

 905 

 906 

 907 
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  908 

Supplementary Figure 6. Contamination estimate standard errors of shotgun sequenced ancient 909 

individuals comparing the 1240K panel to the shotgun panel. Ancient shotgun sequenced individuals 910 

of 0.1-0.5x coverage from Allentoft et al., 2015 (26), Damgaard et al., Nature 2018 (31), and Damgaard et 911 

al., Science 2018 (16) were analyzed with ContamLD damage restricted correction (option 1) using the 912 

1240K SNP set and a shotgun panel created using all variants above 10% frequency in the 1000 913 

Genomes dataset.  This test shows that analyses with the shotgun panel generally have smaller error 914 

bars relative to those done with the 1240K panel, though it is unclear why there are two outliers with high 915 

standard errors on the shotgun panel and low standard errors on the 1240K panel. All estimates are in 916 

Supplementary Online Table 1. 917 

 918 

 919 

 920 
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  921 

Supplementary Figure 7. ContamLD estimates with an ASW (African-American) individual and YRI 922 

panel using damage restricted correction (option 1). The black dotted line is y=x, which would 923 

correspond to a perfect estimation of the contamination. Error bars are 1.96*standard error (95% 924 

confidence interval). 925 

 926 

 927 
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 928 

Supplementary Figure 8. ContamLD estimates with an ancient Iberian (I3756) individual 929 

contaminated with an ancient Iberian (I10895) including its damaged sequences analyzed with IBS 930 

panel using damage restricted correction (option 1). The damaged sequences were simulated as a 931 

5% down-sampling of each respective contaminated BAM file. IBS are 1000 Genomes Project present-932 

day Iberians from Spain. The black dotted line is y=x, which would correspond to a perfect estimation of 933 

the contamination. Error bars are 1.96*standard error (95% confidence interval). Points in red are those 934 

flagged with “Very_High_Contamination” by the software. See Supplementary Online Table 4 for all 935 

values. 936 
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