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Abstract

Real-time selective sequencing of individual DNA fragments, or ‘Read Until’, allows the

focusing of Oxford Nanopore Technology sequencing on pre-selected genomic regions.

This can lead to large improvements in DNA sequencing performance in many scenarios

where only part of the DNA content of a sample is of interest. This approach is based on

the idea of deciding whether to sequence a fragment completely after having sequenced

only a small initial part of it. If, based on this small part, the fragment is not deemed of

(sufficient) interest it is rejected and sequencing is continued on a new fragment. To

date, only simple decision strategies based on location within a genome have been

proposed to determine what fragments are of interest. We present a new mathematical

model and algorithm for the real-time assessment of the value of prospective fragments.

Our decision framework is based not only on which genomic regions are a priori

interesting, but also on which fragments have so far been sequenced, and so on the

current information available regarding the genome being sequenced. As such, our

strategy can adapt dynamically during each run, focusing sequencing efforts in areas of

highest uncertainty (typically areas currently low coverage). We show that our approach
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can lead to considerable savings of time and materials, providing high-confidence

genome reconstruction sooner than a standard sequencing run, and resulting in more

homogeneous coverage across the genome, even when entire genomes are of interest.

Author Summary

An existing technique called ‘Read Until’ allows selective sequencing of DNA fragments

with an Oxford Nanopore Technology (ONT) sequencer. With Read Until it is possible

to enrich coverage of areas of interest within a sequenced genome. We propose a new

use of this technique: combining a mathematical model of read utility and an algorithm

to select an optimal dynamic decision strategy (i.e. one that can be updated in real

time, and so react to the data generated so far in an experiment), we show that it

possible to improve the efficiency of a sequencing run by focusing effort on areas of

highest uncertainty.

Introduction 1

Nanopore sequencing (commercially available from Oxford Nanopore Technologies, 2

ONT) enables fast, portable and cheap long-read sequencing [1, 2]. It has a number of 3

fundamental differences to the sequencing-by-synthesis approaches due to its entirely 4

different sensing approach of detecting the sequence of DNA or RNA (and other small 5

analytes) as they translocate through a small pore (nanopore). By maintaining a 6

voltage difference across the nanopore and detecting changes in ionic current the nature 7

of the analyte can be determined. The progression of nucleic acid through the pore is 8

controlled by a motor protein ensuring enough readings can be taken to permit 9

deconvolution of the contributions of all nucleic acids to the current signal. This 10

mechanism does not change along the nucleic acid polymer, meaning that read length is 11

determined by sample preparation and the ability to deliver the sample to the pore, and 12

can be extremely large [1, 3]. As the change in current is specific to the precise 13

chemistry of the bases in the pore, the sequence of the nucleic acid polymer can be 14

determined and both DNA and RNA can be sequenced [4]. 15

One of the most promising aspects of ONT sequencing is the fact that it provides 16
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sequencing data in real time, allowing the device or operator to make decisions about 17

the DNA fragments currently being sequenced by the nanopores. In the former case, the 18

sequencer can remove analytes that may block pores. In the latter, the operator can 19

choose to reject fragments deemed uninteresting while retaining those deemed valuable. 20

This technology, called ‘Read Until’ [5] has been used, for example, for selective 21

sequencing enrichment of pre-determined areas of a genome, normalising coverage of 22

amplicons or removing off target sequences [5–8]. These developments have sparked 23

interest in technological, mathematical and algorithmic methods for optimizing the 24

decision framework for which fragments should be prioritized in Read Until [6, 9, 10]. 25

Here, we propose new techniques that expand the potential and applicability of ONT 26

and Read Until by 27

• increasing the confidence in the reconstructed genome (reducing the number of 28

genome inference errors), 29

• compensating for coverage fluctuations along the genome due to amplification and 30

sequencing biases or random chance, and deliver a more uniform coverage while 31

increasing the minimum coverage achieved, and 32

• focusing sequencing efforts on regions that are a posteriori, but not a priori, more 33

important, for example identifying regions with indels and rearrangements that 34

could cause subsequent assembly difficulties or be more biologically interesting. 35

To achieve this, we introduce a mathematical and algorithmic framework for quantifying 36

the expected value of DNA fragment reads of which only a small initial portion has 37

already been sequenced. We propose a decision strategy that rejects reads that are not 38

deemed sufficiently valuable, while accounting for the expected value of future reads and 39

the costs of the decision-making process, rejection of low-value fragments and 40

acquisition of new ones. We prove that our strategy is optimal in terms of capturing the 41

most value at any given moment in the sequencing experiment and, finally, we illustrate 42

the use and advantages of our strategy in a number of realistic scenarios. 43
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Materials and Methods 44

There are two components to this work. The first is the definition of an objective 45

function to quantify the value of a read, while considering possible regions of interest in 46

the genome and considering sample preparation as well as all the sequencing 47

information obtained so far from the sequencing run. 48

The second component is a dynamic (updatable) decision strategy that determines 49

in real time which fragments are worth sequencing and which should be rejected, based 50

on the initial portion of the fragment that has already been sequenced. 51

Objective Function 52

We propose a probabilistic framework to develop appropriate objective functions. The 53

basic idea is to consider the information gain that we expect a new read will provide, 54

i.e. its “expected benefit”, given that we know the location and orientation of the 55

considered fragment along a reference genome. We assume that we know a reference 56

genome of N positions, over which reads (or partial reads) can be mapped. We do not 57

consider cases in which a reference genome is not available — possibly these could be 58

dealt with in future with real-time de novo assembly. We further assume that reads can 59

be unambiguously mapped onto the reference, which in turn ignores complications 60

deriving from large-scale mutational events such as rearrangements or copy number 61

variations; these types of events could also be included in future versions of the methods 62

(see Supplement). 63

The expected benefit of a candidate read is determined by the expected changes in 64

posterior genotype probability distributions (measured by the Kullback-Leibler 65

divergence [11]), over positions that could be covered by the considered DNA fragment 66

if it were further sequenced. The current posterior probability of a genotype at each 67

genome location is obtained by combining prior information about the position 68

(e.g. reference genome, and possibly prior population data) with information from the 69

reads sequenced so far, as discussed below. Sequencing error rates are also taken into 70

account, and the prospective posterior genotype probabilities after sequencing the 71

candidate fragment are calculated while additionally considering the expected fragment 72

length distribution. 73
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Ultimately, a DNA fragment that is expected to give a greater reduction in the 74

uncertainty regarding the genotype being sequenced will be considered more useful than 75

a fragment with a limited potential to alter posterior probabilities. For example, if a 76

genome position has already been covered by many reads, and these reads support one 77

genotype with high confidence, then the expected benefit of further interrogation of this 78

position will usually be small. In contrast, if a genome position has been covered by 79

very few reads, or the previous reads leave high uncertainty regarding the sequenced 80

genotype, then sequencing further reads covering the position will have high expected 81

benefit. 82

Positional Score 83

Here we discuss prior and posterior probabilities of different genotypes at a position of a 84

genome and define the score for the position, which will be used later to define the 85

expected score of a new read. We make a few simplifying assumptions to ease 86

presentation, and discuss extensions in the Supplement. Our first simplification is that 87

we assume that genetic diversity and sequencing errors occur only in the form of 88

substitutions (SNPs), while in the Supplement we discuss ways to account for indels and 89

rearrangements. We further assume that all positions in all reads are subject to 90

sequencing errors with the same probability, independently of the genotype or particular 91

read considered, and that sequencing errors across read positions are independent of one 92

another. 93

We denote the set of possible genotypes for the considered individual at the 94

considered genome position by G. For example, for a haploid genome, g ∈ G is just one 95

of the four bases b ∈ B = {A,C,G,T}; that is, G = B. For an unphased diploid 96

genome, g ∈ G is one of the unordered pairs g = {b1, b2}, with b1, b2 ∈ B. For a phased 97

diploid genome (which we do not consider further), g ∈ G is an ordered pair of alleles 98

(b1, b2) ∈ B ×B. Similar definitions are possible also for polyploid genomes. In some 99

circumstances, ploidy might not be known a priori ; in such case, even more complex 100

definitions of G would be needed. 101

For each position i of a reference genome of length N , we denote πi(g) the 102

location-specific prior on genotypes g ∈ G before any data have been observed. In all 103

applications below, when considering a haploid genome, we define the prior of reference 104
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nucleotide bR at position i as πi(bR) = 1− θ, with θ the genetic diversity of the 105

considered population. Conversely, πi(g) = θ/3 if g 6= bR. 106

When considering diploid sequenced genomes, we still assume a haploid reference 107

genome, with reference nucleotide at a given position denoted bR. In the case of a 108

diploid unphased genome being sequenced, we define πi({bR, bR}) = 1− θ, and 109

πi({g, g}) = phomoθ/3 if g 6= bR, with phomo being the proportion of site differences from 110

a reference that are expected to be homozygous, and πi({g, bR}) = (1− phomo)θ/3 for 111

g 6= bR. We ignore the possibility of a heterozygous genome being sequenced with both 112

alleles different from the reference genome. These prior probability definitions also 113

ignore differences in mutation rates across nucleotides and genome positions and do not 114

use prior knowledge on SNP locations derived from the population; when available, 115

these aspects could however easily be included in the definition of πi(g). 116

Assume that at a given point in an experiment we have observed data D, containing 117

n reads mapping to position i. We denote by dj,i ∈ B the nucleotide observed in read j 118

that maps to reference position i. Then, the posterior probability of genotype g ∈ G at 119

position i and conditional on data D is 120

fi(g|D) =
πi(g)

∏n
j=1 φ(dj,i|g)
Zi(D)

. (1)

Zi(D) is a normalising constant, representing the likelihood of the data and ensuring 121

that the sum of the posteriors at site i is 1: 122

Zi(D) =
∑
c∈G

πi(c) n∏
j=1

φ(dj,i|c)

 . (2)

φ(dj,i|g) is the probability of calling base dj,i assuming genotype g at position i, and 123

will depend on the assumptions being made. For example, for a haploid genome in our 124

applications below we define 125

φ(dj,i|b) =


1− e , if dj,i = b ∈ B ,

e

3
, if dj,i 6= b ∈ B .

(3)

where e denotes the per-base sequencing error probability, meaning that any position 126
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along a read has a probability e of mis-representing the corresponding nucleotide of the 127

sequenced genome. 128

In the scenario of an unphased diploid genome we will instead consider 129

φ(dj,i|{b1, b2}) =


1− e , if dj,i = b1 = b2 ,

1− e
2

+
e

6
, if dj,i = b1 6= b2 or dj,i = b2 6= b1 ,

e

3
, if dj,i 6= b1, b2 .

(4)

From the posterior probabilities fi(g|D) of genotypes g at position i, conditional on

data D, we can define the ‘expected benefit’ of one new base covering position i. First,

if D contains n reads covering position i with bases dj,i for j = 1 . . . n, we denote the

base from a new hypothetical read at position i by dn+1,i. We represent D′ as the union

of D with the new hypothetical read, so that D′ contains n+1 reads covering position i,

with bases dj,i for j = 1 . . . n+ 1. After observing the new read, the updated posterior

probabilities become:

fi(g|D′) =
πi(g)

∏n+1
j=1 φ(dj,i|g)∑

c∈G

(
πi(c)

∏n+1
j=1 φ(dj,i|c)

)
=

fi(g|D)Zi(D)φ(dn+1,i|g)∑
c∈G fi(c|D)Zi(D)φ(dn+1,i|c)

=
fi(g|D)φ(dn+1,i|g)∑
c∈G fi(c|D)φ(dn+1,i|c)

. (5)

The Kullback-Leibler (KL) divergence (or relative entropy [11]) is a measure of how 130

different two distributions are. We want to use, as a measure of expected benefit, the 131

KL divergence between the posterior probability distributions before (fi(g|D)) and after 132

(fi(g|D′)) observing a new read, as this tells us how much informative the new read is 133

about the genotype being sequenced. However, we don’t know which base dj,i will be 134

the next one observed, so, instead, we average out over the possible values of dj,i. 135

P (dn+1,i|D), the probability of observing dn+1,i, is given by 136

P (dn+1,i|D) =
∑
g∈G

fi(g|D)φ(dn+1,i|g) . (6)

February 8, 2020 7/31

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.938670doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938670
http://creativecommons.org/licenses/by-nd/4.0/


Si, the current expected benefit of a new read at position i, is the expected KL

divergence DKL between distributions fi(b|D) and fi(b|D′):

Si =
∑

dn+1,i∈B

P (dn+1,i|D)DKL(fi(g|D′) || fi(g|D))

=
∑

dn+1,i∈B

P (dn+1,i|D)

∑
g∈G

fi(g|D′) log
fi(g|D′)
fi(g|D)


=

∑
dn+1,i∈B

∑
g∈G

P (dn+1,i|D)fi(g|D′) log fi(g|D′)

−
∑
g∈G

log fi(g|D)

 ∑
dn+1,i∈B

P (dn+1,i|D)fi(g|D′)


=

∑
dn+1,i∈B

∑
g∈G

P (dn+1,i|D)fi(g|D′) log fi(g|D′)

−
∑
g∈G

log fi(g|D)

 ∑
dn+1,i∈B

P (dn+1,i|g,D)fi(g|D)


=

∑
dn+1,i∈B

∑
g∈G

P (dn+1,i|D)fi(g|D′) log fi(g|D′)

−
∑
g∈G

fi(g|D) log fi(g|D)

 ∑
dn+1,i∈B

P (dn+1,i|g,D)


=

∑
dn+1,i∈B

∑
g∈G

P (dn+1,i|D)fi(g|D′) log fi(g|D′)−
∑
g∈G

fi(g|D) log fi(g|D) . (7)

Defining the expected benefit in terms of KL divergence as above is a technique used in 137

Bayesian experimental design [12], and is equivalent to defining it in terms of expected 138

reduction in Shannon entropy [13] of the posterior genotype probability distribution 139

after observing one more read base at the position considered. 140

As the size of D grows, the benefit of sequencing a new base dn+1,i at a position i 141

will usually become smaller and smaller. If a position i is instead covered by few, 142

possibly discordant reads in D, then new information in the form of dn+1,i can shift the 143

posterior probability considerably, leading to much higher expected benefit. The values 144

are, or course, modified by the priors for a given case: data that tend to confirm the 145

prior lead to decreased benefit expected from further reads; data that conflict with the 146

prior require more reads before relative certainty is achieved. Table 1 shows different 147
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values of expected benefit Si for a number of examples. Table 2 lists the key parameters 148

and variables used in our methods. 149

Table 1. Example benefit scores

Observed Counts Posteriors Score

nA nC nG nT fi(A|D) fi(C|D) fi(G|D) fi(T|D) Si
0 0 0 0 0.99 0.0333 0.0333 0.0333 0.0347
1 0 0 0 0.9998 7.2× 10−5 7.2× 10−5 7.2× 10−5 7.6× 10−4

3 0 0 0 1− 10−7 3.2× 10−8 3.2× 10−8 3.2× 10−8 3.4× 10−7

0 1 0 0 0.8584 0.1358 0.0029 0.0029 0.3296
0 1 2 0 0.1163 0.0184 0.8649 3.9× 10−4 0.3364
0 1 2 5 1.3× 10−6 2.0× 10−7 9.6× 10−6 1− 1.1× 10−5 3.9× 10−5

Some examples of scores Si and posteriors fi(g|D) for given counts (nA, nC, nG, nT) of
observed bases at position i. Here we assume that the reference genome has bR = A at this
position, that we have no indels, and that θ = 0.01 and e = 0.06. For the first line, i.e. in
the absence of read data, posteriors and priors are identical: fi(g|D) = πi(g).

Read Utility 150

Now that we have defined a score Si for each individual genome position i, we need to 151

combine the scores of multiple positions into a scoring system for reads, assuming that 152

each read maps to a series of contiguous bases in the reference genome. For simplicity, 153

we describe our methods in the context of a circular chromosome, as typical for bacteria; 154

in the Supplement we relax this assumption and consider the case of one or more linear 155

chromosomes. We assume the circular genome has length N : fragments that extend 156

beyond position N continue from position 1 – in effect Sj = Sj−N for j > N ; more 157

generally, Sj = Sj modN = Sj %N . 158

First, we define Sli,1 as the sum of l consecutive Sj values starting at position i, that 159

is, the score of a forward-oriented read of length l starting at position i: 160

Sli,1 =
i+l−1∑
j=i

Sj . (8)

Similarly, for a reverse-oriented read we have 161

Sli,0 =
i∑

j=i−l+1

Sj . (9)
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Table 2. Parameters and variables.

Variable Description

N Reference genome size
B Set of observable characters (bases): B = {A,C,G,T}
G Set of observable genotypes for the sequenced genome
θ Prior probability that a site has a substitution relative to the reference genome

phomo Prior proportion of diploid genome sites different from the reference, that are homozygous
bR Reference genome nucleotide at a position
e Probability that a nuclotide is mis-read as a different nucleotide

L(l) Probability that a fragment has length l

η Number of values used to approximate
∼
CL(l)

ρ Time required to reject a fragment
α Time required to acquire a new fragment
µ Length required for mapping a fragment
S Read Until strategy

ISi,o Decision function of strategy S for a fragment starting at i with orientation o

Fi,o Probability that a fragment starts at i and has orientation o

Parameter Description

πi(g) Prior probability of genotype g at position i
fi(g|D) Posterior probability of genotype g at position i given data D
φ(d|g) Probability of a read containing character d for a position with sequence genotype g
P (d|D) Posterior probability of sequencing character d given data D (depends also on prior)
Si Score, or benefit from additional sequencing, of position i
Sli,o Cumulative score of read starting in position i, orientation o and length l

Ui,o Expected score of a read starting in position i and orientation o
∼
CL(l) Complementary prior cumulative distribution of fragment lengths

D∼
CL

Domain of
∼
CL (values where the distribution is strictly positive)

λ Mean fragment length

Ŝ Strategy with optimal score gain rate

US
i,o Expected benefit of a fragment starting at i with orientation o under strategy S

tSi,o Expected cost of a fragment starting at i with orientation o under strategy S

ŪS Expected benefit of strategy S for next fragment

t̄S Expected cost of strategy S for next fragment
S̄µo Expected benefit of a read of length µ and orientation o

Description of variables and parameters used in the methods.

If we knew in advance the total length l of the fragment under consideration starting 162

at position i, we could use the above Sli,1 or Sli,0 as a measure the expected benefit of 163

this fragment. However, we usually only only know the length of the part of the 164

fragment that has already been sequenced, and therefore we have to account for the 165

uncertainty in l. To do this, we assume a single distribution of fragment lengths applies 166

to all DNA fragments available for sequencing, irrespective of the genomic location or 167

orientation of the fragment. In the Supplement we discuss the case of linear 168

chromosomes, where this assumption does not hold. We denote the fragment length 169
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distribution by L(l) for lengths l = 1 . . . N , with mean λ =
∑N
l=1 L(l)l. Since there will 170

be lower and upper limits on the length of fragments in a given experiment, it is 171

convenient to define DL to be the domain of L, i.e. the set of values of l with L(l) > 0. 172

In many realistic sequencing scenarios, min DL (i.e. the smallest plausible fragment 173

length) will be � 1; in some scenarios (short genomes/chromosomes) it is possible that 174

max DL (longest plausible fragment) will be ≈ N ; for large genomes/chromosomes, it 175

may be � N . 176

Finally, we define the expected benefit Ui,1 of a read starting at position i, and 177

oriented in forward direction, as 178

Ui,1 =
∑
l∈DL

L(l)Sli,1 . (10)

This is, equivalently, the sum of the Sj scores for all positions j ≥ i, each weighted by 179

the probability that the read will reach position j. Considering the cumulative 180

distribution of fragment lengths CL(l) =
∑l
j=1 L(j) and its corresponding 181

complementary cumulative distribution
∼
CL(l) = 1− CL(l) =

∑N
j=l+1 L(j) (Note that 182

D∼
CL

runs from 1 to max DL), Eq. 10 can also be rewritten as 183

Ui,1 =
∑
l∈D∼

CL

∼
CL(l)Si+l−1 . (11)

Reverse reads are dealt analogously, with expected score 184

Ui,0 =
∑
l∈D∼

CL

∼
CL(l)Si+1−l . (12)

Calculating Ui,1 and Ui,0 for all genome positions with a naive algorithm would 185

require, in many scenarios, quadratic time in genome length, which would be excessive 186

for our purposes. In the next section we describe how to efficiently and accurately 187

approximate their values, with total cost linear in genome size, using an approach based 188

on approximating
∼
CL with a piecewise constant or linear function. 189
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Fast Approximation to Read Utility 190

Calculating Ui,1 as shown in eq. 11 requires time proportional to |D∼
CL
|. As Ui,1 needs 191

to be calculated for each i, the total cost for the whole genome would be in the order of 192

O(N × |D∼
CL
|), which is excessively slow in many scenarios. For this reason, we consider 193

approximations to reduce the computational demand of calculating Ui,1 and Ui,0. These 194

approximations are based on the idea of substituting
∼
CL(l) with an approximating 195

function. 196

Here, we present the simpler case of approximating
∼
CL(l) with a piecewise constant 197

function. This is also the approximation that we use in all applications considered here. 198

In the Supplement we also discuss an approximation using a piecewise linear function. 199

Assuming that
∼
CL(l) is a piecewise constant function means that there are values 200

1 = x1 < x2 < . . . < xη = max D∼
CL

+ 1 such that for all 1 ≤ ν < η and for all 201

x ∈ [xν , xν+1) we have
∼
CL(x) =

∼
CL(xν). As before, we have that 202

U1,1 =
∑
l∈D∼

CL

∼
CL(l)Sl . (13)

This still requires time proportional to |D∼
CL
|; however, calculating Ui,1 for every other 203

genome position i > 1 now requires only time O(η) for each i, with η the number of 204

different values taken by
∼
CL. In full, if we know Ui,1 we can calculate Ui+1,1 as 205

Ui+1,1 = Ui,1 − Si + Si+xη−1
∼
CL(xη−1) +

∑
2≤ν<η

( ∼
CL(xν−1)−

∼
CL(xν)

)
Si+xν−1 . (14)

The same approach can be used for efficiently calculating the scores Ui,0 of reverse 206

reads. In all following applications, we approximate
∼
CL(l) with a piecewise constant 207

function taking η = 11 different values. 208

Decision framework for accepting or rejecting fragments 209

Using the read scores Ui,1 and Ui,0 defined in the previous sections, we now define our 210

‘Read Until strategy’ for deciding which reads to reject and which reads to fully 211

sequence, and show an efficient algorithm to find this strategy in practice. Our aim is to 212

optimise the rate of accumulation of ‘expected benefit’ over pores and over time. As 213
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read scores Ui,1 and Ui,0 depend on genotype priors and on data D observed so far, our 214

strategy will do so as well. This means in particular that, as the sequencing run 215

progresses and D grows larger, the optimal strategy will also change; our aim in 216

practice will not only be to find such a strategy, but also to update it dynamically 217

during each sequencing run. 218

We assume that all fragments traverse pores at the same rate, independent of their 219

original genomic location and composition. To simplify exposition, we measure time in 220

units of fragment bases that could be read by a pore. For example, a time t is the time 221

taken by a pore to read through t bases when a fragment is already translocating 222

through that pore. This choice of time unit has the advantage for us of not requiring 223

separate parameterization of the rate at which fragments pass through pores. We 224

assume that, if the decision to reject a fragment is made, the process of rejecting a 225

fragment takes a constant time ρ. We assume that acquiring a new fragment to read, 226

either after a fragment rejection or the completion of the reading of an accepted 227

fragment, takes constant time α. 228

We also assume that the initial part of a DNA fragment that is sequenced and used 229

to assess the genomic location of a DNA fragment has a constant length µ < min DL. 230

This means that, as a new DNA fragment enters a pore, we assume we always read its 231

first µ bases, and that these µ bases from the fragment are sufficient to map the 232

fragment onto the genome, that is, to infer the genome position i at which the fragment 233

starts and its orientation. The decision of accepting or rejecting the new fragment will 234

then be based on i and on the orientation of the fragment, and not directly on the µ 235

sequenced bases of the considered DNA fragment. See Figs 1 and 2 for a graphical 236

summary of the parameters of our sequencing model. 237

We define a strategy S to be a function ISi,o returning a 0 or 1 value for all i = 1 . . . N 238

and for o ∈ {0, 1}. Boolean variable o represents the orientation of a read (1 for forward, 239

0 for reverse), and i the position along the reference genome of its first base. Here, 240

ISi,1 = 0 indicates that a forward fragment starting at position i should be rejected, 241

while ISi,0 = 1 indicates that a reverse fragment starting at position i should be read to 242

its end, and so on. We say that S includes (i, o) if ISi,o = 1, and define |S|, the size of S, 243

to be the number of position-orientation pairs (i, o) at which ISi,o = 1. Good strategies 244

S are not known a priori, and our aim here is to determine an optimal (or close to 245
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Fig 1. Graphical representation of our Read Until model, and parameters involved.
A At time 0 a new fragment is acquired by a pore. B µ bases of the fragment have been
read at time µ, and these bases are used to find the location of the fragment on the
genome and to decide whether to read or reject it. C If at step B rejection was decided
then this takes place, completing at time µ+ ρ. D Following rejection, a new fragment
is acquired at time µ+ ρ+ α, and a new iteration starts with this new fragment. E If
step B was not a rejection, then the fragment is finished reading at time l, where l is
the length of the fragment. F Following completion of fragment reading, a new
fragment is acquired at time l + α, and a new iteration starts with this new fragment.
To aid visualization, distances along the x-axis are not represented to a realistic scale.

optimal) strategy Ŝ given the current data D. We again assume that we have a circular 246

genome or chromosome and are interested in knowing the whole sequenced genotype. 247

The case of linear chromosome, the case of multiple chromosomes, and the case that one 248

is interested in knowing only part of the genome, are all presented in the Supplement. 249

Given the definitions above, the expected benefit of a DNA fragment of orientation o 250

starting at position i is 251

US
i,o = Sµi,o + ISi,o

(
Ui,o − Sµi,o

)
, (15)
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reject
acquire new 

fragmentread start of 
fragment i

acquire new 
fragment

acquire new 
fragment

time

expected 
benefit gain

read start of 
fragment j

Fig 2. Schematic plot of our model of accumulated benefit against
sequencing time. Expected benefit gain is shown on the y-axis. For simplicity, we
again use an unrealistic scale for time on the x-axis. Colors are used to show
contributions related to different DNA fragments. Starting when the pore has acquired
a fragment (blue), after time µ this is mapped, its genomic location and orientation
(i, o) determined, benefit Sµi,o recorded, and the decision made whether to read the
remainder of the fragment. If so, this takes time li − µ (where li is the fragment length,
with expectation λ) and generates further benefit Ui,o − Sµi,o, after which (green) a new
DNA fragment is acquired (taking time α), mapped (after time µ, with benefit having
expected value 1/2(S̄µ1 + S̄µ0 )), etc. Otherwise, the (blue) fragment is rejected (time ρ, no
benefit), a new fragment (mauve) acquired and mapped (time α+ µ, location j,
orientation υ, benefit Sµj,υ) and a decision on whether to continue with this fragment
made. Initial effects of other potential fragments are shown in gold and red. Filled
circles mark points where new fragments have been acquired, corresponding to labels A,
D or F in Fig 1; decision points are marked with open diamonds and correspond to label
B in Fig 1.

achieved in time 252

tSi,o = µ+ ISi,o(λ− µ) +
(
1− ISi,o

)
ρ+ α = α+ µ+ ρ+ ISi,o (λ− µ− ρ) . (16)

Calculating the strategy-wise average time cost t̄S and benefit ŪS requires knowing how

often fragments from certain positions i and orientation o are captured by pores. In all

our example applications, we assume that both orientations and all starting positions
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are equally likely. However, for generality here we use the notation Fi,o to refer to the

probability that a random fragment’s first base maps on genome position i and its

orientation is o (1 for forward and 0 for reverse as usual), so that
∑
o=1,0

∑N
i=1 Fi,o = 1.

The average benefit per fragment ŪS of strategy S then becomes

ŪS =
∑
o=1,0

N∑
i=1

Fi,oU
S
i,o

=
∑
o=1,0

N∑
i=1

Fi,o

(
Sµi,o + ISi,o

(
Ui,o − Sµi,o

))
(17)

and its average fragment-wise cost t̄S is

t̄S =
∑
o=1,0

N∑
i=1

Fi,ot
S
i,o

= α+ µ+ ρ+ (λ− µ− ρ)
∑
o=1,0

N∑
i=1

Fi,oI
S
i,o . (18)

For the special case of uniform distribution of fragments, Fi,o = 1/2N , eqs. 17 and 253

18 become 254

ŪS =
S̄µ1 + S̄µ0

2
+

1

2N

∑
o=1,0

N∑
i=1

ISi,o
(
Ui,o − Sµi,o

)
(19)

and 255

t̄S = α+ µ+ ρ+
|S|
2N

(λ− µ− ρ) , (20)

where 256

S̄µo =
N∑
i=1

Fi,oS
l
i,o . (21)

If nanopores are used for short amounts of time since a strategy S has been 257

calculated, benefit is expected to accumulate at rate ŪS/t̄S. In practice, we 258

continuously update the chosen strategy as more sequencing data is generated. To find 259

the current strategy Ŝ that maximises the expected benefit per unit time ŪS/t̄S given 260

the sequencing data already generated, we need to find 261

Ŝ= argmax
S

ŪS

t̄S
. (22)

We call our optimal strategy approach ‘BOSS-RUNS’, for Benefit-Optimizing 262
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Short-term Strategy for Read Until Nanopore Sequencing’. We now describe an 263

algorithm that finds Ŝ; in the Supplement we include a proof that this algorithm indeed 264

provides the optimal strategy. First, rank all the 2N position-orientation pairs (i, o) 265

according to decreasing value of Ui,o − Sµi,o and index them such that (i1, o1) takes the 266

highest value, (i2, o2) the next and so on: so Ui1,o1 − S
µ
i1,o1

≥ Ui2,o2 − S
µ
i2,o2

≥ . . . ≥ 267

Ui2N ,o2N − S
µ
i2N ,o2N

. Strategy Sσ is defined by setting IS
σ

ı = 1 for 268

ı = (i1, o1), . . . , (iσ, oσ) and 0 otherwise, and it is the optimal strategy of size σ. 269

Starting with σ = 0, we successively increase σ, at each stage testing whether 270

Uiσ+1,oσ+1 − S
µ
iσ+1,oσ+1

λ− µ− ρ
>
ŪSσ

t̄Sσ
(23)

to discover whether Sσ+1 gives an improvement over Sσ. Once we reach a value σ∗ 271

such that there is no further improvement, we have the optimal Ŝ= Sσ
∗
. 272

Simulations 273

To test the proposed BOSS-RUNS strategy and investigate its potential in a range of 274

plausible scenarios, we performed simulations of nanopore sequencing with and without 275

it. At present, with ONT sequencing, DNA translocates through the pore at 276

approximately 450 b/s. In line with typical performance of the devices currently 277

available to us, we simulate a rejection time cost of ρ = 500, a fragment acquisition cost 278

α = 300, and a mapping fragment length of µ = 500. Given the sequencing speed, ρ 279

equates to approximately 1 s (in reality ρ can be configured by the user from 0.1 s 280

upwards), α to approximately 0.5 s, and the mapping fragment length to approximately 281

1 s. α is dependent on properties of the library including fragment length and the 282

number of molecules available to sequence on the flowcell surface. In principle, it can be 283

estimated by measuring the proportion of time a pore on a flowcell is sequencing, taking 284

into account the mean read length. For example, with a mean read length of 4.5 kb, 285

95% occupancy would imply a fragment acquisition time of approximately 0.5 s. Choice 286

of µ is dependent on the efficiency of basecalling and mapping and µ = 500 is consistent 287

with our experiences with real time analysis using GPU basecalling [7]. Genetic 288

diversity between the reference and sequenced genomes is taken as θ = 0.01, with a 289

deletion-to-SNPs ratio of r = 0.4. See Supplement for detailed description of indel 290
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parameters. The fragment length distribution was modelled as a Normal distribution 291

centered on l = 3,000, with standard deviation 6,000, truncated to enforce l > µ = 500. 292

This results in a realistic [14] average fragment length of about λ = 6,300 bp. In 293

practical applications, a decision strategy is not required for fragments shorter than µ. 294

Throughout the first set of scenarios simulated, we assume a circular bacterial 295

genome of size 4Mb: 296

• ‘normal’ scenario: uniform (unbiased) expected coverage and the whole genome is 297

considered of interest. 298

• ‘sequencing bias’ scenario: we simulate variation in the proportions and 299

orientations of acquired fragments from different locations across the genome. We 300

modelled realistic 10-fold variation in sequencing bias (realized coverage for naive 301

sequencing) between the regions with highest and lowest sequencing bias [14], with 302

10 sequencing bias peaks and troughs, by setting Fi,1 = 5.5 + 4.5 sin(20πi/N) and 303

Fi,0 = 5.5 + 4.5 sin(20π(i− λ)/N). While the simulated Fi,o varied across the 304

genome, for selecting the strategy we still used Fi,o = 1/2N to mimic a scenario in 305

which sequencing bias is not known a priori. 306

• ‘MLST’ scenario: we assume that we are interested in sequencing only a small 307

fraction (0.25%) of the genome, consisting of 10 equally spaced loci each of 1 kb. 308

This scenario resembles the case in which one is interested in a multi-locus 309

sequence typing of a bacterial sample [15]. 310

• ‘cgMLST’ scenario: we assume that we are interested in sequencing one quarter of 311

the genome consisting of 100 equally spaced loci each of 10 kb. This scenario 312

resembles the case in which one is interested in a core-genome multi-locus 313

sequence typing [16]. 314

In a second set of simulations, we consider a genome made of 16 linear chromosomes 315

respectively of sizes 230, 813, 315, 1532, 577, 270, 1091, 563, 440, 745, 667, 1078, 924, 316

784, 1091, and 948 kb, similar to a yeast genome [17], for a total length of 12,068 kb: 317

• ‘yeast haploid’ scenario: we simulate sequencing of a haploid yeast genome with 318

no sequencing bias. 319
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• ‘yeast diploid’ scenario: we simulate the sequencing of a diploid yeast genome 320

with probability of homozygous SNPs phomo equal to the expected value from a 321

randomly mixing population of 1,000 individuals at neutrality. 322

In total, therefore, we simulate six scenarios, four bacterial and two yeast ones. 323

For each scenario we simulate reads produced by an ONT sequencer which is capable 324

of providing real time base calling (the MinIT, MK1C, GridION or PromethION). From 325

these devices, basecalls from completed fragments are written to disk in user-defined 326

batches for subsequent analysis. The default batch size is 4,000 reads per fastq file. As 327

a consequence, the BOSS-RUNS strategy is not updated on a per-read basis, but per 328

batch instead. There is a practical trade-off between batch size and total fastq file 329

number on disk. Therefore we simulate reads in batches of 4,000 to match current 330

default settings. To test possible improvements in strategy performance by reducing 331

batch size (i.e. increased frequency of updates), we also simulate 500 reads per batch. 332

These considerations only apply to analysis of reads once the molecule has finished 333

translocating through the pore — the Read Until data stream is considered on a 334

per-read basis and is not limited by these batch sizes. 335

Bacterial sequencing is then simulated up to a total pore time of 200,000,000 336

(corresponding to the time it would take one pore to read a 200 Mb fragment). For yeast 337

sequencing, we considered times up to 600,000,000. We consider four possible strategies: 338

• ‘naive’ strategy: all reads are always accepted, corresponding to a standard 339

sequencing run without Read Until. 340

• ‘full BOSS-RUNS’ strategy: our BOSS-RUNS strategy is updated every batch, or 341

after a threshold of time if batches arrive too quickly. This time threshold is 342

4,000,000 for bacterial genomes with batch size 4,000; 1,000,000 for bacterial 343

genomes with batch size 500; 12,000,000 for yeast genomes with batch size 4,000; 344

or 3,000,000 for yeast genomes with batch size 500. This threshold makes sure 345

that there is sufficient time to compute updates to the strategy. 346

• ‘partial BOSS-RUNS’ strategy: we sequence a genome using the initial Read Until 347

strategy (i.e. derived at the start of the experiment), but do not make updates to 348

that strategy for some time. We illustrate these strategies using updates only 349
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during the final half or quarter of the full simulation experiments for bacterial 350

scenarios, and during the final two-thirds or one-third for yeast. Once updating 351

starts, it follows the same methods as with full BOSS-RUNS, using all the data 352

accumulated so far. We indicate these strategies using ‘2⁄3-BOSS-RUNS’, etc. 353

These options mimic scenarios in which a first part of the sequencing run is used 354

to naturally accumulate coverage according to initial expectations of accumulating 355

benefit (dependent on regions of interest but independent of any sequencing data), 356

and the final part is used to fine-focus the sequencing effort, for example on 357

regions with low coverage or higher remaining uncertainty about the sample 358

genotype. 359

So, in total, we have two batch sizes and four strategies, giving a total of eight 360

sequencing settings. Combined with the six genomic scenarios above, this gives 48 361

simulation scenarios; for each of those we ran 30 replicates. 362

Results 363

Focusing Sequencing Efforts on Regions of Interest 364

A naive enrichment of specific regions of interest defined a priori by rejecting unwanted 365

reads has been previously demonstrated [5, 7, 8]. We began our simulations with a 366

similar goal, adding our refined BOSS-RUNS strategies to seek improvements in 367

performance over earlier approaches. We first focus on two specific scenarios, resembling 368

a bacterial MLST study (10 regions of interest, each 1 kb long, covering in total 0.25% 369

of the genome) and a bacterial core genome MLST (100 regions of interest, each 10 kb 370

long, covering in total 25% of the genome). All of our Read Until strategies enrich the 371

coverage and minimum coverage of the regions of interest, and reduce the error of 372

genotype reconstruction, compared to a naive sequencing run (see Fig 3 and 373

Supplementary Figs 1 and 2). Minimum coverage is increased approximately 5-fold in 374

the MLST scenario (Fig 3A), and about 2-fold in the cgMLST scenario (Fig 3C). This 375

in turn leads to a dramatic reduction in the uncertainty of the reconstructed genome, 376

with BOSS-RUNS strategy requiring far less sequencing to achieve the same quality of 377

genome reconstruction than naive sequencing: about one quarter of the time in the 378
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MLST scenario (Fig 3B) although more than half in the cgMLST scenario (Fig 3D). 379

In all our analyses, we simulated sequencing continuing for extended periods, to 380

enable observation of both the short- and long-term performance of each approach. 381

Indeed, BOSS-RUN strategies do seem to outperform naive sequencing in both the 382

short- and long-term. While our strategies lead to higher coverage over the regions of 383

interest than over the rest of the genome (Supplementary Figs 1C and 2C), they do not 384

necessarily lead to higher coverage in these regions than a naive sequencing run 385

(Supplementary Fig 2A) — an important feature showing that our strategies can adapt 386

during a sequencing run to reject reads from regions of interest that have already 387

achieved sufficiently high coverage compared to other regions of interest. 388

In both MLST and cgMLST scenarios, partial BOSS-RUNS (activating updates to 389

the initial strategy only for the final 1⁄2 or 1⁄4 of the sequencing run) seems preferable to 390

updating the strategy from the start (full BOSS-RUNS; see Fig 3). This might seem 391

counter-intuitive, but our strategy is optimized to gain the most benefit in the short 392

term, and so may reject fragments early on that later might be more useful. For 393

example, our strategy might reject reads from regions that have currently average 394

coverage to focus instead on regions with currently low coverage; however, regions with 395

currently average coverage might become regions with low coverage in the future, and so 396

rejecting reads from these regions might not be advantageous in the long term. 397

Compensating for Sequencing Biases 398

One promising potential application of our strategy is the possibility of compensating 399

for the inherent tendency of some genomic regions to be sequenced at higher coverage 400

than others, possibly due to GC content among other factors [18, 19]. This could deliver 401

a more homogeneous coverage, with the potential benefit of reducing genotype calling 402

error and uncertainty in regions with low coverage. To explore these potential gains, we 403

simulated bacterial genome sequencing runs with 10 peaks and troughs of coverage, and 404

with about 10-fold difference in coverage rate (the rate at which fragments from 405

different genomic regions are acquired by nanopores) between the peaks and the dips 406

(our “coverage variability” scenario, see Methods). 407

BOSS-RUNS strategies, by focusing sequencing effort on regions of higher 408

February 8, 2020 21/31

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.938670doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.938670
http://creativecommons.org/licenses/by-nd/4.0/


0 50M 100M 150M 200M

1e−56

1e−48

1e−40

1e−32

1e−24

1e−16

1e−8

1

1/4­BOSS­RUNS, 500 read batch

1/4­BOSS­RUNS, 4000 read batch

1/2­BOSS­RUNS, 500 read batch

1/2­BOSS­RUNS, 4000 read batch

Full BOSS­RUNS, 500 read batch

Full BOSS­RUNS, 4000 read batch

Naive strategy, 500 read batch

Naive strategy, 4000 read batch

Expected errors of genome reconstruction

Time

Ex
pe
ct
ed
 e
rr
or
s

0 50M 100M 150M 200M

0

10

20

30

40

50 Quarter Read Until 500 reads batch

Quarter Read Until 4000 reads batch

Half Read Until 500 reads batch

Half Read Until 4000 reads batch

Read Until 500 reads batch

Read Until 4000 reads batch

Naive strategy 500 read batch

Naive strategy 4000 read batch

Minimum coverage achieved

Time

M
in
im
um
 c
ov
er
ag
e

Time in sequencing runTime in sequencing run

M
in

im
um

 co
ve

ra
ge

Ge
no

ty
pe

 in
fe

re
nc

e 
er

ro
rsC D

0 50M 100M 150M 200M

0

50

100

150

Quarter Read Until 500 reads batch

Quarter Read Until 4000 reads batch

Half Read Until 500 reads batch

Half Read Until 4000 reads batch

Read Until 500 reads batch

Read Until 4000 reads batch

Naive strategy 500 read batch

Naive strategy 4000 read batch

Minimum coverage achieved

Time

M
in
im
um
 c
ov
er
ag
e

M
in

im
um

 co
ve

ra
ge

0 50M 100M 150M 200M

10 −216

10 −189

10 −162

10 −135

10 −108

10 −81

10 −54

10 −27

1 Quarter Read Until 500 reads batch

Quarter Read Until 4000 reads batch

Half Read Until 500 reads batch

Half Read Until 4000 reads batch

Read Until 500 reads batch

Read Until 4000 reads batch

Naive strategy 500 read batch

Naive strategy 4000 read batch

Expected errors of genome reconstruction

Time

Ex
pe
ct
ed
 e
rr
or
s

Ge
no

ty
pe

 in
fe

re
nc

e 
er

ro
rs BA

0 50M 100M 150M 200M
1e−8

1e−6

1e−4

0.01

1

100

1e+4

1/4­BOSS­RUNS, 500 read batch

1/4­BOSS­RUNS, 4000 read batch

1/2­BOSS­RUNS, 500 read batch

1/2­BOSS­RUNS, 4000 read batch

Full BOSS­RUNS, 500 read batch

Full BOSS­RUNS, 4000 read batch

Naive strategy, 500 read batch

Naive strategy, 4000 read batch

Expected errors of genome reconstruction

Time

Ex
pe
ct
ed
 e
rr
or
s

Fig 3. Different strategies’ performance in the MLST and cgMLST
sequencing scenarios. We compare the performance of different sequencing strategies
in cases where we are only interested in a small part of a bacterial genome (0.25%,
MLST scenario, plots A and B) or in a substantial portion of it (25%, cgMLST
scenario, plots C and D). Plots A and C show the minimum coverage achieved within
the regions of interest, as a function of time (x-axis). Plots B and D show the sum of
the posterior probabilities of all wrong genotypes, over the regions of interest, and thus
represent the expected total numbers of genotype reconstruction errors within those
regions. Line colors show different strategies (legend in plot D; see Methods for details).
Each color summarizes 30 replicates, with upper, central and lower boundary lines
representing respectively the 90th, 50th and 10th percentiles. Red and orange lines
represent naive strategies (respectively with batches of 4,000 and 500 reads); blue and
azure lines represent full BOSS-RUNS strategies (updates from the start; respectively
with batches of 4,000 and 500 reads); dark and light green lines represent
1⁄2-BOSS-RUNS strategies (updates only done in the final half of the sequencing run;
respectively with batches of 4,000 and 500 reads); dark and light purple lines represent
1⁄4-BOSS-RUNS strategies (updates only in the final 1⁄4 of the run; respectively with
batches of 4,000 and 500 reads).
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uncertainty and thus typically of lower coverage, can substantially increase the 409

minimum achieved coverage across the genome. While naive sequencing achieves a 410

minimum coverage of 1–3x by the end of this hypothetical experiment, our BOSS-RUNS 411

strategies achieve a minimum coverage of at least 4x (Fig 4A); the full BOSS-RUNS 412

strategy, in particular, achieves a minimum coverage between 8–10x. Regions of low 413

coverage are also typically the ones with the highest uncertainty, and, as a consequence, 414

our strategies considerably decrease the number of errors in genome reconstruction. 415

While at the end of the simulated runs naive sequencing shows about 100 errors, 416

BOSS-RUNS strategies usually have less than one error (Fig 4B). Furthermore, the full 417

BOSS-RUNS strategy is the fastest at achieving the mark of (e.g.) one error per 418

genome, reaching it while naive sequencing still has usually more than 1000 errors. In 419

this particular scenario, partial BOSS-RUNS results are not so good: it appears more 420

efficient to perform the first strategy update as early as possible, probably because 421

because now the strategy will not change much once it becomes clear which regions tend 422

to have lower coverage. These improvements come at the sacrifice of overall average 423

coverage, and in particular of coverage in regions with positive sequencing bias (regions 424

with typically higher coverage): see Fig 5. This is typically not a problem, as these 425

regions have sufficient data to infer the sequenced genotype with high confidence. 426

Whole Genome Sequencing in the Absence of Sequencing Biases 427

In the absence of inherent sequencing biases, and if we do not focus on specific regions 428

of interest, it is harder to see how a dynamically updated Read Until sequencing 429

strategy could be beneficial. However, there are some additional factors that should be 430

considered. Even in the absence of inherent sequencing biases, some areas of the genome 431

might receive higher coverage than others, simply due to random sampling of DNA 432

fragments. Also, with linear chromosomes, as in our yeast sequencing scenarios, 433

coverage tends to drop near the ends of chromosomes due to both mapping and library 434

preparation effects. Further, even with uniform coverage, some sites might be of higher 435

interest or might require more sequencing effort to genotype with certainty, for example 436

heterozygous sites in a diploid genome or sites with indels. To investigate the usefulness 437

of our strategy in this less favorable scenario and its ability to assist with the points 438
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Fig 4. Different strategies’ performance in the coverage variability
sequencing scenario. We compare the performance of different sequencing strategies
in a case where coverage varies substantially across the genome. Plot A shows the
minimum coverage achieved, over time (x-axis), across the genome. Plot B shows the
sum, over the genome, of the posterior probabilities of the wrong genotypes, and
represents expected numbers of genotype reconstruction errors, as the sequencing run
proceeds (time on the x-axis). Different line colors represent different strategies and
batch sizes (legend in plot B; see Methods for details) as in Fig 3.

above, we simulated the sequencing of a bacterial genome without either specific regions 439

of interest or inherent sequencing biases. Similarly, we simulated the sequencing of a 440

haploid yeast genome and a diploid yeast genome. 441

In all these scenarios, BOSS-RUNS strategies can lead to significant benefits over a 442

naive sequencing run, increasing minimum coverage and improving genome 443

reconstruction (Fig 6 and Supplementary Figs 3, 4 and 5). Using smaller read batches 444

(i.e. more frequent strategy updates) and performing the first strategy update later on, 445

in particular, usually lead to the best results, up to almost doubling minimum coverage 446

(Fig 6E). Overall, the benefits of all BOSS-RUNS strategies are consistent in the case of 447

yeast genome, probably because of their ability to increase coverage towards the ends of 448

chromosomes. In the case of a bacterial genome, running our full BOSS-RUNS strategy 449

consistently throughout a long sequencing run can be counter-productive, as many reads 450

are rejected early on that would have been more useful later (the strategy behaves 451

‘greedily’; see Fig 6A and B). However, performing the first strategy update later in the 452
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Fig 5. Other features of different strategies in the coverage variability
sequencing scenario. Plot A shows how average coverage (y-axis) increases over time
(x-axis) with different strategies. Plot B shows the proportion of fragments that are
accepted by each strategy over time. Plot C shows the final coverage (y-axis) along the
genome (x-axis), averaged over windows of 20 kb. Plot D shows the cumulative
computational running times for updating the BOSS-RUNS strategy (y-axis, in seconds)
throughout the sequencing run (x-axis, time in units of sequenced base pairs). Different
line colors represent different strategies and batch sizes (legend in plot A; see Methods
for details) as in Fig 3.

sequencing run (partial BOSS-RUNS) can more than compensate for this; furthermore, 453

in the short term, the full BOSS-RUNS strategy is always beneficial compared to a 454

naive sequencing run, and so can be useful even in the worst scenario if one aims to 455

sequence up to a coverage of about 15x (compare Figs 6A and 3A). 456
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Fig 6. Different strategies’ performance in the absence of coverage
variability or regions of particular interest. We compare the performance of
different sequencing strategies in the case of normal sequencing runs in bacterial (A–B),
haploid yeast (C–D) and diploid yeast (E–F) simulation cases. Plots A, C and E show
minimum coverage achieved across the genome, over time (x-axis). Plots B, D and F
show the expected numbers of genotype reconstruction errors over time. Different line
colors represent different strategies and batch sizes (legends in plots B, D and F; see
Methods for details), similarly to Fig 3 although note the use of 2⁄3- and 1⁄3-BOSS-RUNS
strategies in C–F.
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Discussion 457

We have shown that, using our dynamic Read Until strategy (BOSS-RUNS), we can 458

obtain great improvements over a naive nanopore sequencing run, in particular when 459

sequencing is intended to be focused on specified regions of interest. Good results are 460

also achieved in homogenizing coverage in the presence of inherent variability in 461

coverage. Further, we have shown that a Read Until strategy can still be advantageous 462

even in the absence of these factors, by focusing sequencing efforts in regions that, due 463

to random chance, have received low coverage during the sequencing run, or by focusing 464

on sites that have higher uncertainty in genome reconstruction. 465

In the future, we should explore the possibilities of parameterizing (or 466

reparameterizing) the duration of the sequencing run and of modeling and estimating 467

any inherent variability in coverage in real time, to further improve the strategy by not 468

rejecting early on fragments that might later be considered useful. Similarly, real time 469

updates to the regions defined as being of interest (as in the MLST and cgMLST 470

scenarios) or to inferred sequencing biases could lead to improved Read Until strategies. 471

One aspect that we do not model is the possibility that fragment rejections would 472

cause excessive pore blockage and thus loss of sequencing capacity [7]. More effort is 473

needed in this respect both on our modeling side and on an engineering side. Another 474

possible extension could be the modeling of variation in partial fragment length (µ), 475

acquisition time (α), and rejection time (ρ), each currently assumed to take a constant 476

time. 477

Our strategy works well on small genomes, for example for bacteria or yeast, but 478

would suffer from slow update speed and high memory demand with larger genomes 479

such as human. Further effort will be needed in future to devise faster, low-memory 480

strategy updates. While our current implementation (in Python) makes heavy use of 481

the NumPy package [20], and as such benefits from good computational performance, in 482

the future further optimization could be possible by coding our methods in a fast, 483

compiled language such as C or C++. However, scaling our methods to the size of the 484

human genome might require re-thinking fundamental aspects of our strategy. 485

Another aspect that would benefit our strategy is the inclusion of more complex 486

mutational events, such as insertions and rearrangements (see Supplement). These 487
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events could also be given higher scores to reflect the fact that regions with such events 488

are expected to be more important for genome assembly. Also, in some cases, a 489

reference might not be available at all, requiring a different approach, possibly based on 490

real-time de novo assembly. 491

Conclusions 492

We have shown that dynamically updated sequencing strategies that accept or reject 493

potential DNA fragments based on their expected benefit can lead to considerable 494

improvements in the performance within the context of nanopore sequencing, for 495

example using ONT technology. Our methods expand the applicability of ONT’s Read 496

Until to encompass multiple standard sequencing scenarios: beyond simple enrichment 497

in pre-selected areas of a genome, we show that it is possible, and convenient, to 498

dynamically focus on areas with higher uncertainty, for example genomic regions that 499

currently have lower coverage. This leads to sequencing runs with overall more 500

homogeneous coverage and less uncertainty and error in genome reconstruction, or 501

improved time-to-answer, or both. We think this has the potential to improve the 502

quality and efficiency of ONT sequencing in the majority of its applications. 503

Supporting information 504

Code used for this project is available at 505

https://bitbucket.org/nicofmay/readuntilstrategy/ 506

Supplement. File containing extensions of the methods and additional results. 507
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