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Abstract

One particularly promising feature of nanopore sequencing is the ability to reject reads,
enabling real-time selection of molecules without complex sample preparation. This is based
on the idea of deciding whether a molecule warrants full sequencing depending on reading
a small initial part. Previously, such decisions have been based on a priori determination
of which regions of the genome were considered of interest. Instead, here we consider more
general and complex strategies that incorporate already-observed data in order to optimize
the rejection strategy and maximise information gain from the sequencing process. For
example, in the presence of coverage bias redistributing data from areas of high to areas of
low coverage would be desirable.

We present BOSS-RUNS, a mathematical and algorithmic framework to calculate the
expected benefit of new reads and generate dynamically updated decision strategies for
nanopore sequencing. During sequencing, in real time, we quantify the current uncertainty
at each site of one or multiple reference genomes, and for each novel DNA fragment be-
ing sequenced we decide whether the potential decrease in uncertainty at the sites it will
most likely cover warrants reading it in its entirety. This dynamic, adaptive sampling allows
real-time focus of sequencing efforts onto areas of highest benefit.

We demonstrate the effectiveness of BOSS-RUNS by mitigating coverage bias across and
within the species of a microbial community. Additionally, we show that our approach leads
to improved variant calling due to its ability to sample more data at the most relevant
genomic positions.
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Dynamic, adaptive sampling during nanopore sequencing

1 Introduction

Third-generation sequencing provides the unprecedented ability to generate reads consisting of

multiple kilo- or even megabases (Payne et al. 2019) compared to previous approaches which are

limited to sequencing fragments of several hundred bases (after which the error rate increases

significantly: Tan et al. 2019). This technological advance has critical implications for many

applications in genomics. For example, ultra-long reads are highly useful in increasing assembly

contiguity and even allow the construction of telomere-to-telomere assemblies of entire chromo-

somes (Jain et al. 2018; Miga et al. 2020). Moreover, they can be used to interrogate variation

in regions of a genome that are hard to decipher, such as repeats, centromeres or segmental

duplications (Shafin et al. 2021), or to generate fully-phased chromosome-level epigenetic maps

(Lee et al. 2020).

One way of generating long sequencing reads is through the use of nanopores. This concept

was first explored in the 1980s and commercialized in 2014 by Oxford Nanopore Technologies

(ONT; Deamer et al. 2016). It relies on the idea of using a protein nanopore as a biosensor

that measures the fluctuations of an ionic current across the pore caused by the presence of

nucleotides of a translocating DNA or RNA molecule.

Besides providing long reads, ONT’s instruments offer several additional advantages. First,

single-molecule real-time sequencing of molecules is possible without the need for prior amplifi-

cation and can also be used to directly read RNA without reverse transcription (Garalde et al.

2018). The generation of sequencing reads in real time, which in combination with fast library

preparation immensely reduces the time needed to go from biological sample to data analysis, en-

ables (e.g.) intraoperative decision making (Djirackor et al. 2021), improved global food security

by rapid identification of plant viruses (Boykin et al. 2018) and portable genomic surveillance

(Quick et al. 2016).

The most notable drawback of sequencing using nanopores is the elevated rate of sequencing

errors compared to previous technologies. However, ONT’s nanopores, sequencing chemistry

and basecallers, which are used to translate electrical signal into nucleobases, have been steadily

improved and initial error rates of almost 40% (Goodwin et al. 2015) have decreased to as low

as ∼1% (Sereika et al. 2021) approaching the accuracy of >99% offered by short-read platforms.

A particularly exciting and unique feature of sequencing using nanopores is the ability to
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Dynamic, adaptive sampling during nanopore sequencing

reverse the voltage across the pores in order to reject fragments before reading them in their

entirety, termed adaptive sampling or “Read Until” in its original implementation (Loose et

al. 2016; Oxford Nanopore Technologies 2020). This enables real-time selection of molecules

during sequencing based on a small initial part of a read without the need for complex sample

preparation. Initially, identifying the genomic origin of these small fragments was achieved

by matching the electrical signal (‘squiggles’: Loose et al. 2016) directly to reference genomes

translated into simulated current traces. Recent improvements, however, harness the computing

power of GPUs for real-time basecalling, making it possible to utilize optimized bioinformatics

tools for further processing, e.g. for alignment of reads to reference genomes in base-space (Payne

et al. 2021). This has led to much interest in experiments that can be aided by real-time selection

of molecules for sequencing (e.g. Miller et al. 2020; Patel et al. 2021; Marquet et al. 2022;

Stevanovski et al. 2022).

In current implementations, underlying decisions about which reads to sequence completely

are based on a priori choice, e.g. of regions of interest (ROIs) in a sequenced genome (Loose et al.

2016; Payne et al. 2021). This restricts their application to a narrow range of problems, where

considerable background information is available in advance of sequencing a (potentially poorly

characterised) sample. We propose that, in addition, such decisions could also incorporate the

information obtained from already-sequenced fragments generated in the current sequencing run.

This would allow for optimised, dynamic decisions that maximise the information gain during

sequencing, leading to various potential advantages such as reduced time-to-answer, reduced

cost, and increased confidence in variation calling.

More specifically, during a sequencing experiment we might observe a distribution of coverage

depth that does not correspond well to the aim of the experiment (observed vs. ideal coverage

in Fig. 1A, B). For example, for resequencing or variant calling most positions in a genome will

match a known reference and their genotype can therefore be confirmed by observing only few

reads. In contrast, some sites or regions will be different and their detection and identification

might be the goal of such experiments. At these sites we ideally want to sample more sequencing

data. Commonly at present, the overall coverage of the target genome would have to be increased

in order to ensure sufficient sampling in biased regions. This leads to wasteful data acquisition

in regions that are not of continued interest. In this work we address this issue by generating

dynamic decision strategies that redistribute sequencing coverage to positions of greatest value
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at any point during an experiment.
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Figure 1: Methodological overview.

Caption on the following page.
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Dynamic, adaptive sampling during nanopore sequencing

Fig. 1 cont.: A) When re-sequencing a genome, different sites might require different levels
of coverage. For example, sites without variation are resolved by few reads (low ideal coverage).
Additional accumulation of coverage at those positions is wasteful, whereas other sites with higher
uncertainty (e.g. due to the presence of variation or lower-quality reference genome, marked
by black triangles and rectangles) would benefit from more observations. B) Another reason
for reduced efficiency of sequencing could be local fluctuations in the distribution of fragments’
origins, resulting in uneven coverage. C) We quantify the uncertainty about the genotype at each
site by calculating posterior probabilities of all possible genotypes, based on prior probabilities
and the sequence data observed so far. The expected shift in genotype uncertainty caused by
observing a new read at that position is expressed as a “positional benefit score”. D) Next, we
calculate the total expected benefit from a hypothetical read starting at each location, i.e. the
sum of the positional scores that such a novel read might accumulate (depicted by the height of
the expected benefit plots), weighted by the probability of reaching those positions (depicted by
the color-gradients). As an example, the benefit of both forward (red) and reverse-oriented reads
(blue) starting at two positions are shown. E) Finally, we derive a decision strategy for each
position, shown as zeros and ones, that instructs the sequencer to either continue sequencing (1)
or reject from the pore (0) a read that starts at that position. Stages C–E can be updated and
iterated throughout the sequencing experiment. F) Overview of our model of the sequencing
process. Since we parameterize time by the speed of bases translocating through pores we use
number of bases and sequencing time interchangeably. At first (t = 0), a novel read is acquired
by a nanopore and sequencing commences. After its initial µ bases are sequenced they are used
to identify its starting position and orientation along the reference genome, which determines the
fate of the nascent fragment according to the current decision strategy (E). Upon rejection (upper
path), an additional time of ρ sequenced bases later the pore is freed, a new read is acquired
after further time α, and the model iterates from the beginning. Conversely, upon acceptance
(lower path), the molecule translocates through the pore until all l of its nucleotides (i.e. l − µ
additional bases) have been read. A new read can then be acquired and the model iterates from
the start.

We call our novel method BOSS-RUNS, for “Benefit-Optimising Short-term Strategies for

Read Until Nanopore Sequencing”. In brief, we quantify uncertainty at each site during a re-

sequencing experiment, calculate the expected benefit of new reads, and dynamically adapt the

sequencing effort to focus on fragments from areas of highest uncertainty. Our implementation

efficiently communicates with the sequencing device through the readfish toolkit (Payne et al.

2021) and the Read Until API (Oxford Nanopore Technologies 2020) to incorporate the streamed

sequencing data and provide updated decision strategies in real-time.

One promising application of our strategy is the possibility to compensate for the inherent

tendency of some genomic regions to be sequenced at higher coverage than others, possibly due

to GC content or other factors (Ross et al. 2013; Krishnakumar et al. 2018). In this scenario

our method could lead to more homogeneous distribution of sequencing reads across a genome,

with the benefit of increasing accuracy of genotype calling and reducing uncertainty in regions
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of low coverage. On the other hand, our method can also be used to focus the sequencing effort

on ROIs or sites that show variation without the need for prior information about their location.

We demonstrate our novel method by mitigating coverage bias in a microbial mock community

leading to higher coverage depth of low-abundance species, an increased limit of detection, as

well as improved variant calling. To summarize, our approach of dynamic, adaptive sampling

allows us to change what is sampled during an ongoing sequencing experiment as a result of the

data that has already been collected and enables redistribution of coverage to sites of highest

biological interest without a priori knowledge of coverage bias or variant sites.

2 Results

2.1 Quantifying information content of sequencing reads

In this work we present a framework that enables dynamic decisions during sequencing using

nanopores. By calling it dynamic, adaptive sampling we describe our extension compared to

current approaches, which are limited to a priori choice of target regions. In this section we give

an overview of the decision framework, with further details and formal explanations provided in

the Supplement (Suppl. Sect. 1.1).

First, we capture the amount of information we have at each site of a genome under investi-

gation by considering a probability distribution over all possible genotypes of that site. We then

update this probability distribution as we collect data throughout the experiment, i.e. we cal-

culate a posterior distribution that includes the observed nucleotides from reads that cover that

position. Next, we calculate the remaining uncertainty and how much information we might gain

from one further sequencing read covering that site. By combining these scores over adjacent

sites we can quantify the expected information gain from a sequencing read solely by knowing its

starting location and its orientation. Finally, by ranking the expected benefit of reads and taking

into account the expected time of sequencing them we can calculate the optimal subset of sites

to accepts reads from in order to increase the gain of benefit at that moment in the experiment.

The following paragraphs give more details on the individual steps involved to arrive at such a

dynamic decision strategy.
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Probability distribution of genotypes at each site of a genome. We start by defining

a probability distribution of possible genotypes at each position of one or multiple genomes.

Briefly, the genotype probability distribution takes both prior information about the genotype,

e.g. from a reference genome, and already observed bases at a position into account. (Throughout,

we use reference genome to describe any assembly used for a resequencing experiment and not

necessarily a reference assembly that is representative of the investigated species.) Additionally,

ploidy and probabilities of sequencing errors are considered.

Given already observed read data D, containing n reads covering position i, we denote by

dj,i ∈ B, with B = {A,C,G,T}, the nucleotide in read j that maps to i. For a haploid genome,

the set of possible genotypes is G = B, whereas for diploid genomes G instead consists of

unordered pairs g = {b1, b2}, with b1, b2 ∈ B. For simplicity we present the case of genetic

diversity and sequencing errors only occurring as SNPs; an extension that includes deletions

and is used in our applications is provided in the Supplement (Suppl. Sect. 1.2). We define prior

probabilities for genotype g at position i as πi(g), and the probability of calling base dj,i assuming

genotype g as ϕ(dj,i|g), which represents a matrix of observation probabilities given assumptions

about ploidy and sequencing errors (details in Suppl. Sect. 1.1). The posterior probability of

genotype g ∈ G at i, conditional on D, is then

fi(g|D) =
πi(g)

∏n
j=1 ϕ(dj,i|g)
Zi(D)

, (1)

where Zi(D) represents a normalising constant, i.e. the likelihood of the data, that ensures the

posterior probabilities sum to 1.

This model allows us to quantify the uncertainty about the genotype at each site (Fig. 1C)

and in turn makes it possible to calculate the expected reduction in uncertainty resulting from

observing a newly sequenced read. We call this expected reduction of uncertainty the positional

benefit score of a site. This quantity summarizes the expected change in the genotype proba-

bility distribution given one additional observation at that position and is calculated as follows:

given the current data (D) we imagine that we observe one additional nucleotide n at position

i, i.e. dn+1,i, calling this augmented data D′. We then measure the difference between the dis-

tribution of genotype probabilities resulting from D and D′ by the Kullback-Leibler divergence

(DKL; Kullback and Leibler 1951). Lastly, we sum over the different possible nucleotides dn+1,i,
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weighting their contributions by the estimated probability of observing them in the next read,

to compute the expected reduction in uncertainty:

Si =
∑

dn+1,i∈B
P (dn+1,i|D)DKL(fi(g|D′) || fi(g|D)), (2)

where the estimated probability of observing nucleotide dn+1,i in the next read is given by

P (dn+1,i|D) =
∑
g∈G

fi(g|D)ϕ(dn+1,i|g) . (3)

A practical way of calculating the positional benefit scores and some examples at different

coverage patterns are given in the supplementary material (Suppl. Sect. 1.3, Suppl. Fig. 1).

Broadly speaking, positions that are already covered by many agreeing reads will receive a low

score and, conversely, positions covered by few, or possibly contradictory reads will score highly

as individual observations have higher potential of influencing the probability distribution. This

technique of defining the information gain in terms of the Kullback-Leibler divergence of two

distributions is used in Bayesian experimental design (Chaloner and Verdinelli 1995) and is

equivalent to evaluating the expected reduction in Shannon entropy (Shannon 1948) brought by

a new read.

Estimating the expected benefit of sequencing reads. Since we want to quantify not

only the remaining uncertainty at individual sites but also the potential information gain of

future sequencing reads, we consider the fact that reads are derived from contiguous sections of a

genome. So, as a next step, we combine the positional benefit scores across sites that a sequencing

read might span, in order to evaluate the expected benefit of such a read (Fig. 1D). We assume

that a sequenced read will cover a number of consecutive sites of a reference genome equal to the

molecule’s length l. The expected benefit is then calculated as the sum of consecutive positional

scores, beginning from the read’s mapping starting position i, weighted by the distribution of

previously observed read lengths, L(l). In other words, we form the sum Sl
i,o of consecutive

positional benefit scores of a read of length l starting at position i with orientation o (o = 1

indicating a read in the forward direction relative to the reference genome, and 0 indicating the

reverse direction); and then combine these, weighted by the probability that the read will reach

that position (Fig. 1D). For a forward-oriented read Sl
i,1 will be:
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Sl
i,1 =

i+l−1∑
j=i

Sj (4)

(see Suppl. Sect. 1.4 for the reverse-oriented case), leading to the expected benefit:

Ui,o =
∑
l∈DL

L(l)Sl
i,o . (5)

Here, DL represents the domain of L(l), i.e. all read lengths observed so far. In reality we use

a truncated normal distribution as a prior for read lengths, which we continuously update with

observed lengths of full-length sequencing reads throughout an experiment. More details about

Sl and L(l) are given in Suppl. Sect. 1.4.

With this, we can quantify the expected information gain of a sequencing read solely on the

basis of its genomic origin and orientation. Ultimately, a sequencing read that is expected to give

a higher sum of scores, i.e. a greater reduction in the uncertainty of genotypes at the positions it

covers, will be considered more useful than a read with a limited potential to alter the previously

defined posterior probabilities. We provide an approximation to calculate this quantity efficiently

based on a piece-wise approximation of the read length distribution in the Supplement (Suppl.

Sect. 1.4).

2.2 Decision framework to enable dynamic, adaptive sampling

Using the expected benefit of reads we can now define a framework for making decisions about

which fragments to sequence fully and which to reject from nanopores. Note that in line with

common usage we refer to fragments, i.e. DNA molecules, and reads, their translation into

sequence space, interchangeably. Overall, our aim is to optimise the rate of accumulation of

information, i.e. of expected benefit, across all pores and over time. As we collect data throughout

the sequencing experiment the value of reads at different positions will change, and therefore the

decision strategy will have to adapt to these changes dynamically in real-time. Such strategies

are stored as Boolean vectors and indicate the decision to be made about a sequencing read

starting at any genomic position (Fig. 1E).

To define our decision strategies we parameterize the duration of individual steps in the

sequencing process. As our time unit we use the amount of time it takes one base to translocate
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through a pore (Fig. 1F). Analogous to Read Until and readfish, we start sequencing a DNA

fragment and use µ initial bases to determine its genomic origin and orientation. The value of µ

is assumed constant in our model and can be adjusted to ensure mappings of sufficient quality,

e.g. depending on the complexity or repeat content of the used reference genome. In reality

µ depends on the size of individual data chunks used for real-time base-calling. The smallest

useful setting is 0.4 seconds of input data, which corresponds to ∼180 nucleotides assuming a

translocation speed of 450nt/s. In our applications we used 0.8s of data and observed a mean

length of 348nt for real-time base-called data chunks used to determine the origin of fragments.

We further assume some constant time is needed to effect the rejection of a read (ρ) and to acquire

a new read at a pore (α). In line with measurements from sequencing experiments our model

assumes ρ = 300 and α = 300 by default. The effects of real-life conditions and constraints on

these parameters are discussed in the Discussion. If a fragment is sequenced fully, time equal to

its length l passes and benefit Sl
i,o is accrued (with expectations λ = E[L] and Ui,o, respectively);

by rejecting a read, time equal to l − µ − ρ can be saved and the expected gain of benefit is

limited to the position scores of its initial fragment, i.e. Sµ
i,o (see Fig. 1F and Suppl. Fig. 2).

Finding an optimal decision strategy to maximise information gain. With this pa-

rameterization of the sequencing process we determine an optimal sequencing strategy that max-

imises the expected benefit per unit of sequencing time given the currently available data. Such

a strategy, denoted as S, can also be seen as an indicator function that returns 0 or 1 for all

combinations of genomic position and fragment orientation, e.g. ISi,1 = 0 indicates the rejection

of a forward-oriented read at position i and ISi,0 = 1 the acceptance of a reverse-oriented read.

Our aim is therefore to find an optimal strategy Ŝ that maximises the benefit per unit time

ŪS/t̄S given the current data D:

Ŝ= argmax
S

ŪS

t̄S
. (6)

Here ŪS is the average expected benefit. Given a genome with a total length N and the

average expected benefit of the initial parts of reads, i.e. the benefit accrued from the initial

fragment used in the decision process, denoted S̄µ, it takes the form:

ŪS = S̄µ +
1

2N

∑
o=1,0

N∑
i=1

ISi,o
(
Ui,o − Sµ

i,o

)
. (7)
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In other words, it is the sum of the average expected benefit from a read of µ bases and the average

of a fully sequenced read, which adds further benefit of Ui,o−Sµ
i,o if the indicator function for that

position-orientation combination returns 1. Then, t̄S is the expected time needed to complete

the processing (whether accepted or rejected) of a read:

t̄S = α+ µ+ ρ+
|S|
2N

(λ− µ− ρ) , (8)

where |S| denotes the size of the strategy, i.e. the number of position-orientation pairs for which

the indicator function will return 1, and λ is the mean read length (E[L], as above).

For simplicity, here we assume uniformity of the distribution of read origins; we present a

generalisation used in our implementation in the Supplement (Suppl. Sects. 1.5 and 1.6).

To compute the optimal strategy, we rank all of the position-orientation combinations (i, o) in

decreasing order of the expected benefit gain from sequencing them in their entirety (Ui,o−Sµ
i,o).

Starting with an empty strategy (one that rejects all reads) we successively include the ranked

sites and test after each one whether its contribution results in an improvement over the previous

strategy, i.e. whether the current iteration achieves higher gain of benefit per time unit (ŪS/t̄S)

than the preceding strategy that included one fewer site (position-orientation pair).

We call our approach of finding an optimal strategy BOSS-RUNS: “Benefit-Optimising Short-

term Strategy for Read Until Nanopore Sequencing”. For further details, an overview of param-

eters and variables in the model and proof of optimality please see Suppl. Sects. 1.5 and 1.7 and

Suppl. Table 1.

2.3 Real-time implementation

Our novel method is implemented to interact with a version of readfish (Payne et al. 2021) modi-

fied to read updated target lists throughout the experiment (available from https://github.com/

LooseLab/readfish/tree/BossRuns/V0.0.1). The sequencing device performs real-time basecall-

ing and deposits fastq files containing batches of reads (4000 by default). BOSS-RUNS monitors

the device’s output and periodically (by default every 30 seconds) includes all new data in an

updated decision strategy. In this process new coverage counts are incorporated after mapping

basecalled reads to one or more reference genomes using mappy, the python wrapper of min-

imap2 (Li 2018). If a read maps to more than one position, the best alignment is chosen based
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on mapping quality or the alignment score of the dynamic programming algorithm in case of

a tie. Observed lengths of fully sequenced reads and their mapping positions are continuously

used to update the empirical distributions of read lengths L(l) and read start locations and ori-

entations Fi,o. To prevent the strategy from getting too greedy updates are only applied when a

region surpasses a threshold of average coverage (default: ≥5× in 20kb windows).

In order to keep up with the real-time data stream and to ensure optimality of the strategy at

any point in time, new results need to be calculated quickly. For this we use several optimisations

including a fast algorithm to find approximate decision strategies, described in Suppl. Sect. 1.8.

Our method can use either single or multiple reference chromosomes/genomes as input and

optional masks to indicate initial ROIs, similarly to current approaches to adaptive sampling

(Payne et al. 2021; Martin et al. 2022). In that case the scope of the dynamically updated

strategies is limited to the ROIs and flanking regions around them and reads originating outside

will always be rejected. If multiple references are considered, the expected benefit of reads is

calculated separately per reference and then used to derive a common decision strategy across all

considered references. This is to ensure that we can account for differences in the distributions

of read lengths and read starting positions between genomes, while also sequencing the most

informative reads of a mixture instead of focusing on the most informative reads of each individual

genome or chromosome.

BOSS-RUNS is implemented in python and available at https://github.com/goldman-gp-ebi/

BOSS-RUNS. We provide a conda environment for its dependencies: readfish (Payne et al. 2021),

ONT’s MinKnow API (4.2.4; Oxford Nanopore Technologies 2021), numpy (1.21.1; Harris et al.

2020), numba (0.53.1; Lam et al. 2015), scipy (1.7.1; Virtanen et al. 2020), mappy (2.22; Li

2018), pandas (1.3.3; McKinney 2010), toml (0.10.2; Pearson 2022), and natsort (7.1.1; Morton

2021).

2.4 Dynamic enrichment of differentially abundant species

Experimental setup. Enrichment of ROIs by rejecting unwanted reads has been previously

demonstrated (Loose et al. 2016; Kovaka et al. 2021; Payne et al. 2021). BOSS-RUNS can be

applied more generally, and makes use of targeted rejections even in the absence of specific ROIs.

Here we consider a scenario of whole-genome resequencing where the entire genome is considered

of interest, while we showcase a scenario with ROIs in the Supplement (Suppl. Sect. 2.1).
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One situation where the possibility of redistributing data is very effective is in the presence

of coverage bias. This can be the case when sequencing either a single organism or multiple

genomes. Our first experiment had two major goals. Firstly, we aimed to mitigate bias in

coverage across multiple differentially-abundant genomes. Secondly, we demonstrate that using

a dynamic approach to adaptive sampling can increase the sampling of sequencing reads from

variant or difficult-to-resolve sites without prior knowledge of their location. We therefore sought

to sequence eight bacterial species of the well-characterised zymoBIOMICS microbial mixture

(ZymoBIOMICS DNA Standard II D6311, Zymo Research). The abundance of the organisms

in this mixture is logarithmically distributed with the most abundant species, Listeria mono-

cytogenes, comprising 90% of total DNA, the second most abundant P. aeruginosa circa 9%,

the third (B. subtilis) 1%, etc. (Fig. 2A). To measure the effects of BOSS-RUNS we divided the

available pores on the flowcell and used our new method on one half while the remaining pores

did not perform any read rejections and therefore acted as control.

To mimic a realistic sequencing experiment where we do not have prior knowledge about

the exact bacterial strains contained in the mixture we used assemblies of closely-related strains

instead of accurate assemblies generated from the strains known to be present in the community

(see Sect. 4.2 for accessions). Additionally, this allowed us to evaluate the performance of our

method in focusing on sites that differed between the reference genomes we used and the true

genomes. Priors of genotype probabilities were also initialised using these references.

BOSS-RUNS’ strategy. During the sequencing experiment we can observe how the decision

strategy changes over time. As the genomes of individual bacteria are continuously resolved,

i.e. we become more certain about the genotype at many sites, the proportion of positions at

which we still require more information decreases. Due to the differential abundance of the

considered species, L. monocytogenes is considered mostly resolved after only a few minutes

followed later by P. aeruginosa and B. subtilis (Fig. 2B). Accordingly, the proportion of accepted

reads demonstrates that the focus switches from the most abundant bacteria towards rarer species

(Fig. 2C). Interestingly, the rate at which individual genomes are resolved is not equal across all

bacteria in the mixture. For example, the proportion of fragment start sites from which reads

would be accepted from L. monocytogenes or B. subtilis decreases to values close to 0. On the

other hand, P. aeruginosa approaches a level of ∼5.8% at the end of the experiment and does
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so at a slower rate. In other words, some sites in the genome of P. aeruginosa require more

data to be confidently resolved and a portion of sites remains uncertain despite sampling data

throughout the run. This is in part due to different levels of divergence between the strains in

the zymo community and the reference genomes we used during the experiment, and in part due

to differential effects of coverage bias also within each species’ genome.
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Figure 2: Caption on the following page.
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Dynamic, adaptive sampling during nanopore sequencing

Fig. 2 cont.: BOSS-RUNS can dynamically adapt to the differential abundance of bacteria in
a mixture. A) We sequenced eight bacterial species of the zymoBIOMICS mixture with loga-
rithmically distributed abundances covering seven orders of magnitude. E. coli and S. enterica
are equally abundant at 0.1% of total DNA in this microbial community. Colors correspond to
species as in (B–C) and (E–F). B) Starting with a strategy that accepts reads from any position
in all considered genomes, we quickly observe rejections of reads from the most abundant bacte-
ria L. monocytogenes, followed by P. aeruginosa and B. subtilis. The plot shows the proportion
of position in each species’ genome for which a read starting there is accepted by the current
BOSS-RUNS strategy, over the duration of the experiment. C) The proportion of the accepted
fragments that derive from each of the different bacterial strains demonstrates the effect of the
changing decision strategy in (B). The inset plot, focusing on the start of the experiment, shows
how the strategy rejects almost all L. monocytogenes reads after the first 10min. D) The distri-
bution of read lengths confirms that BOSS-RUNS rejects the majority of sequencing reads, with
a clear peak that corresponds to the initial part of a sequencing read used in the decision process.
E and F) The coverage distribution across all species using BOSS-RUNS (E) shows depletion
of DNA from more abundant genomes in turn for enrichment of information from rare species,
compared to the control section on the flowcell (F). Plots show the distribution of coverage
depths over sites, with different layers within a plot indicating different time points within the
experiment. Accumulation of coverage over time is shown by the distributions’ shift to the right
within each panel; note the decreased, but still very high, coverage of L. monocytogenes using
BOSS-RUNS, and the increased coverage for the other (less abundant) species. Results from the
three least abundant bacterial species are omitted due to the differences not being obvious in
this type of visualisation.

Given the large difference in abundance and the prompt resolution of L. monocytogenes, we

expect the majority of sequencing reads to be rejected throughout the experiment. Indeed, the

distribution of observed read lengths confirms that BOSS-RUNS ejects most molecules resulting

in a peak at ∼480bp (Fig. 2D). The bimodality of the read length distribution after separating

the sequencing data by target species also corresponds to our expectations given the proportion

of rejected reads from each species (Suppl. Fig. 3). Interestingly, the presence of a peak at around

480bp in the read length distribution of rare species indicates that some reads from these species

are also rejected. The majority of these false rejections (84%) was due to inability to determine

the source species from the initial fragment. Notably, sequencing reads in this experiment were

generally relatively short due to the necessity of preceding amplification.

Improved sequencing of bacterial species. The effect of the changing decision strategy

becomes evident when looking at the distribution of coverage depth over time. Sequencing

coverage from the most abundant species is effectively redistributed to the other scarcer species

compared to the control (Fig. 2E, F). For example, for E. coli and S. enterica, which comprise
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only 0.1% of the input DNA, we achieve 3.9 and 4 times the coverage compared to the control.

Changes in mean coverage over time confirm these observations regarding the overall shape

of the coverage distributions. Indeed, sacrificing data from heavily sampled organisms enables

us to obtain more DNA from rare species (Fig. 3A). For example, BOSS-RUNS achieves between

4.1 and 5.8 times more coverage of the scarce bacteria (E. coli , S. enterica, L. fermentum,

E. faecalis). Focusing on low-coverage sites rather than mean coverage, the proportion of sites

with coverage less than 5× also highlights the advantage gained by using our dynamic decision

strategies. This quantity decreases quicker, and reaches lower final levels, compared to the control

for all but the most abundant genome (Fig. 3B). The redistribution of sampled sequencing data

from regions already well-covered to areas of low coverage is one of the main features of BOSS-

RUNS. In the case of B. subtilis, for example, this leads to less than 5% of sites with coverage less

than 5× with BOSS-RUNS, against ∼44% for the control. In rare species we checked whether

the sites with a coverage of more than 5× were caused by reads mapping to repeats or other

regions of low complexity. Analysing the overlap of these sites and the respective repeat-masked

genomes revealed that this was not the case and the observed coverage at these sites was not

artefactual but true enrichment (Suppl. Table 2).
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Dynamic, adaptive sampling during nanopore sequencing

Fig. 3 cont.: Various metrics demonstrate the improvements in sequencing the bacterial com-
munity using BOSS-RUNS (solid lines) and control (dashed lines) on the same flowcell in an ex-
periment lasting 10h. A) The mean coverage depth across the genomes of all considered species.
Sequencing coverage of more abundant species will generally be traded-off by BOSS-RUNS to
collect more data from rare species. Upon (mostly) resolving individual genomes a change in the
rate of data accumulation is visible, e.g. after ∼180min for B. subtilis. B) The proportion of sites
that remain at <5× depth reveals that data is efficiently redistributed by BOSS-RUNS to areas
of low coverage. C) Using the genotype posterior probability distribution, we can classify sites
as resolved if the probability of one genotype is >0.99. Across all species BOSS-RUNS achieves
lower numbers of unresolved sites throughout the experiment owing to both sampling more data
from rarer species and redistributing data within each genome. D) Coverage evenness describes
the homogeneity of observed data across a genome independent of absolute coverage. By focusing
the sequencing effort on sites with low coverage our method leads to more even distribution of
coverage. Note the different scales on the y-axes of all plots, to allow for the sampling statistics
of species of widely varying abundances.

We can also use the uncertainty about each sites’ genotype, as defined in our model, to classify

sites into two groups, unresolved and resolved. When the posterior probability of one genotype at

a site surpasses 0.99 we declare that site as resolved, and can count the sites which still require

more data to reach that level of certainty. Again BOSS-RUNS shows higher performance by

reaching lower numbers of unresolved sites in a shorter time (Fig. 3C).

Balancing coverage bias across genomes is not the only benefit of our new method though,

as data is also redistributed within individual genomes. This effect is partly responsible for the

gains described so far, but is overshadowed by the stark species abundance differences. By using

a measure of evenness that describes the uniformity of coverage distribution and is relatively

independent of the absolute coverage (Mokry et al. 2010), we observe that BOSS-RUNS not only

boosts the coverage of rare species, but also ensures that coverage is more uniform in all species,

including those of higher abundance (e.g. P. aeruginosa and B. subtilis, Fig. 3D). Even in cases

where the total collected coverage of a bacterial strain might be lower it is possible that this

more uniform distribution of coverage and focus on sites with higher uncertainty could achieve

a more desirable outcome of the experiment with BOSS-RUNS, although in our experiment this

effect is not readily visible in Fig. 3 for L. monocytogenes, we note that the improved precision

of SNP detection for this species (see below; Fig. 5B) could be due to these effects.

Redistributing coverage to under-sampled sites Another way to explore the redistribu-

tion of data within genomes is to examine the already observed coverage at the sites that a read
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maps to when the decision about that read was made. If our method indeed successfully focuses

on reads from areas with highest uncertainty we expect the mean coverage at sites spanned by

accepted reads to be lower than sites spanned by rejected reads. An even bigger effect might be

visible when looking at the minimum coverage within those spans, since the decision to accept

reads might be driven by low coverage at individual sites as opposed to low average coverage in

an area. To investigate this, we separated the reads by the decision made during the experiment:

either to sequence them entirely or to reject them. We then record the mean and minimum

coverage of all sites that a read maps to and pool those measurements at different timepoints.

To demonstrate BOSS-RUNS’ effects, we focus on the results for a single species, B. subtilis,

for which the decision strategy accepts all reads until ∼80min into the sequencing experiment;

then rejects an increasing proportion of reads; and is rejecting most, but not all, reads from

∼200min onwards (see Fig. 2B). Looking at the background mean coverage at sites spanned

by accepted and rejected reads, we see an overlap up until the size of the strategy starts to

diminish (Fig. 4, left). Throughout the rest of the experiment, as expected, both the mean and

minimum coverage of sites spanned by accepted reads are consistently lower than for rejected

reads, albeit with larger variation due to the decreasing number of fragments sequenced in their

entirety (Fig. 4). In summary, this shows that despite this genome being mostly resolved early

in the experiment, we continue to sample fragments covering positions of low average coverage

or where we only have minimal information about individual sites. These results confirm that

BOSS-RUNS focuses on these reads not solely due to the abundance difference but also due

to the coverage variation within the data of B. subtilis. Notably, it might be surprising that

we observe a few rejections of reads originating from this species right from the start of the

experiment. This is due to reads failing to map when using only their initial parts during the

decision process.
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Figure 4: Coverage is effectively redistributed by sampling more data from sites with low
coverage. Focusing on B. subtilis, the mean observed coverage of reads’ mapping locations first
overlaps for rejected and accepted reads (left). As more fragments are rejected from pores, the
mean coverage of sites spanned by accepted reads becomes, and stays, consistently lower than
for rejected ones. We observe an even larger difference in the minimum coverage of regions reads
map to (right). In combination, these demonstrates that data is continually sampled from areas
of low coverage even after most of this species’ genome has already been resolved.

2.5 Focused sequencing leads to improved variant calls

Next, we sought to perform variant calling for five of the eight bacterial species in the microbial

mixture. (We excluded the three least abundant species from this analysis, as we did not collect

enough data to make reliable calls.) With this analysis we tried to answer the questions of

(a) whether we could successfully sample data from rare species in order to better identify

the differences between reference assemblies and the true sample genomes, and (b) whether

BOSS-RUNS can effectively focus on sites where we observe variation and therefore increased

uncertainty.

Our analysis is based on comparing inferred variants from data accumulated using BOSS-

RUNS (or the control) to a ground truth derived from deep, short read sequencing of the

same bacterial strains (see Methods, Sect. 4.3). By making comparisons at multiple timepoints

throughout our experiment, we show how knowledge of variants accumulates over time (Fig. 5); in

future, such information could be used to shorten the duration of experiments needed to achieve

particular levels of accuracy. For the most abundant species, L. monocytogenes, the decreased

coverage with BOSS-RUNS leads to slightly lower sensitivity than for the control case for that

species. Nevertheless, high sensitivity is achieved in a very short time, and the effective redistri-
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bution of coverage within this species’ genome leads to increased precision. In turn, however, for

all the other species the increased and better-targeted coverage produced by BOSS-RUNS (see

above) means more variants are discovered, with improved sensitivity and precision.

Interestingly, even for the two bacteria P. aeruginosa and B. subtilis, which are considered

mostly resolved by our method during the experiment leading to the majority of reads being

rejected, we still see an increase in sensitivity at later stages of the run (Fig. 5A). This is due

to the ability of our method to sample more data specifically at positions where it is conducive

to reducing uncertainty about the genotype. For example, after 10h of sequencing BOSS-RUNS

finds 26,481 variant sites in P. aeruginosa (sensitivity 0.79), whereas we observe 23,541 SNPs from

control data (sensitivity 0.68), despite the decision strategy rejecting fragments from >80% of

the genome after the first 3h. At the same time the precision of variant calls on the data collected

with BOSS-RUNS is either moderately higher or at a similar level to the control dataset (Fig. 5B).

In the rarer species the advantage of BOSS-RUNS simply collecting more data is evident as we

are able to call SNPs at least in some regions (119 and 80 SNPs detected after 10h for E. coli and

S. enterica, respectively), whereas the control data does not contain enough reads to produce

any variant calls.
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Figure 5: Dynamic, adaptive sampling leads to improved discovery of SNPs. We
compared the variants called from data collected without adaptive sampling (control) and with
BOSS-RUNS to a set of ground truth variants from deep, short read sequencing of the same
bacterial strains. By performing variant discovery at different timepoints we can gain further
insight into the advantages of our method. A) Whereas the sensitivity of BOSS-RUNS is slightly
lower for the most abundant species L. monocytogenes, we observe a larger number of discovered
true positives in all remaining genomes. To highlight differences, we set the y-axis ranges to
0–0.95 for the first three species, and 0–0.035 for the remaining two. B) The precision of variants
called from data generated using BOSS-RUNS is at a similar level to the control or moderately
higher.

3 Discussion

In this work we have shown that our novel approach to dynamic, adaptive sampling for nanopore

sequencing, implemented in BOSS-RUNS, provides a mathematical framework and fast algo-

rithms to generate decisions strategies that optimise the rate of information gain during rese-

quencing experiments. Compared to sequencing without adaptive sampling, this leads to an

increase in the sequencing yield of on-target regions, specifically at positions of highest uncer-

tainty. Additionally, it can effectively mitigate abundance bias or other sources of non-uniform

coverage, for example from enrichment library preparation procedures, leading to smaller propor-
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tions of sites at low coverage depth and greater evenness of coverage. Furthermore, our methods

can lead to improved discovery of variants by both sampling more data from negatively biased

regions or species in the input material and by focusing the sequencing on sites where the under-

lying genotype is not clear from the data observed up to that point in time. Overall, our method

can help to shorten the time-to-answer and reduce the cost of sequencing.

Current methods of adaptive sampling base the rejection of sequencing reads solely on whether

they cover some ROIs that were defined before starting the sequencing run. Instead, we can

change our targets throughout an experiment in order to collect data where it is most useful to

reduce the uncertainty about the underlying genotypes at each site.

We demonstrated the effectiveness of our approach by sequencing a microbial mixture affected

by coverage bias. We show that BOSS-RUNS adapts to the differential abundance of the targeted

genomes without prior knowledge about the composition of the input library. It not only reduces

the inter-species bias, but also redistributes coverage effectively within-species.

In common with any resequencing experiment, the only piece of prior knowledge we do

require is a reference genome that is related to the organism(s) we expect to observe in the

sequenced material. This is used for two purposes. Firstly, we initialise the genotype prior

probabilities according to the reference. These can either be informed by the nucleotides present

in the chosen reference or they can be uniform for all possible genotypes, perhaps depending

on how much divergence we expect in the input material. Priors signifying different amount

of confidence in the chosen reference could also be used, but are not implemented due to the

negligible effect of the priors in many cases (see Suppl. Fig. 1). Secondly, the reference genome

is used to determine the origin and orientation of nascent sequencing reads. This is the basis for

making decision: barring major structural rearrangements, moderate amounts of divergence will

not have a substantial impact on the performance of BOSS-RUNS.

Determining the mapping location of the initial part of a read using minimap2 does not

achieve perfect sensitivity or precision, and indeed we see some reads rejected due to them not

mapping with sufficient confidence (see Suppl. Fig. 3). Admittedly, using minimap2’s preset pa-

rameters for long reads is not ideal in this case and optimising parameters to better accommodate

such rather short reads but with the error profile of long reads could reduce the number of falsely

determined off-target reads. Alternatively, other methods for read classification could be used

such as the recently described ReadBouncer, based on the DREAM index (Ulrich et al. 2022).
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However, our combination with readfish, which uses GPU-accelerated high-accuracy basecalling,

seems to be affected to a lesser degree than ONT’s built-in adaptive sampling, which has been

reported to falsely reject more than one third of on-target reads in some cases (Martin et al.

2022).

In our experiment sequencing a mock bacterial community we use reference assemblies that

are closely related to the actual strains contained in the mixture but not identical, to mimic a real

setting where we do not know the true composition in advance. We measured their divergence

in terms of the percentage of aligning nucleotides and ANI values using JSpecies (Richter et

al. 2016), which range from 86.07 to 99.7% and 98.82 to 99.92, respectively (Suppl. Fig. 4).

We can see that the divergence between the chosen reference and the true experimental strain

has potential implications on the performance of BOSS-RUNS. For example, the reference we

used for P. aeruginosa harbours more differences from the true genome than there are between

the reference and true genome of L. monocytogenes, leading to the visibly different respective

plateaus of remaining unresolved sites approached during the experiment (Fig. 3C). An important

influence in the case of prokaryotes is the concept of pangenomes and the possibility of differential

composition of accessory genes (Medini et al. 2005; Ozer et al. 2014). If a mixture contains more

than one strain of a bacterial species we expect that sequences from all strains will be enriched,

so long as they are contained in the chosen reference, as we will not be able to differentiate

their origin with enough resolution. Indeed, Martin et al. (2022) have shown that targeting a

single strain of E. coli also led to the enrichment of four other strains contained in the same

gut microbiome standard. This phenomenon might also limit the advantage of BOSS-RUNS in

extreme cases, since we will not be able to resolve regions of an assembly that are missing in

the input library. We have implemented ways for BOSS-RUNS to ignore such missing areas, but

still need to improve these techniques in order to better differentiate between absent parts of the

genome and very low or spurious coverage, e.g. to prevent continuously waiting for reads from

small parts of a genome in the hopes of resolving them, as visible in Fig. 2B for P. aeruginosa.

Alternatively we could also implement the use of pan-genome graphs to account for variable

composition of strains instead of linear assemblies (Colquhoun et al. 2021). For eukaryotes this

limitation will have a much smaller impact due to the generally larger proportion of core vs.

accessory gene content (Brockhurst et al. 2019).

Another possible limitation of our method comes from the fact that strategies generated
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by BOSS-RUNS are optimised to gain the most benefit in the short term. Early on during a

sequencing run they may reject fragments that would be considered relatively more useful later

on, which might seem counter-intuitive and can make the computed strategies greedy (in the

sense described by Jones and Pevzner 2004). As an example, we might reject reads from regions

with average uncertainty at one point in time to focus instead on areas of high uncertainty;

however, regions with average uncertainty could themselves turn into regions with relatively

high uncertainty as the experiment continues: past rejection of reads from these areas might not

have been advantageous in the long term. Further work will be needed to address this issue.

As mentioned above, the read lengths in our applications (modelled by the distribution L

with mean λ) are relatively short with a mean of 3.11kb, which was in part due to the need for

amplification in order to achieve sufficiently high molecular weight DNA. But this might serve

as a proxy for the challenging nature of extracting DNA from metagenomic samples, which often

relies on harsh, multi-step procedures to ensure that cells from all contained species are lysed

and genomic material is available for sequencing (Quick 2019) and can lead to reads that are

shorter than desired. For such short fragments the time needed for processing, rejection and

acquisition of an alternative read (µ+ ρ+ α in our model) might approach the elapsed time for

fully sequencing a typical read in its entirety. If reads were even shorter, using adaptive sampling

might even be detrimental to the total amount of collected sequence. Martin et al. (2022) have

recently modeled the influence of read length of the input library on the practically achievable

enrichment (using Read Until but not dynamically updated strategies) of differentially abundant

species in a mixture. They showed that average read length is a major determinant of the

maximum level of enrichment and that the longer the reads, the larger the potential enrichment

becomes (Martin et al. 2022). This may explain the moderate level of overall enrichment of the

yield in our sequencing experiment.

Other factors that could influence the advantages of our approach include the availability of

DNA molecules for sequencing at the flowcell surface. Whereas we did not observe differences in

the acquisition time of new fragments at pores, we could imagine that experimental conditions

might influence this parameter, for example DNA concentration throughout a sequencing run.

In addition, the effects of variation of the duration and magnitude of the voltage reversal for

effecting rejections have not been well-characterised. Exploring different experimental conditions

and parameters in the context of adaptive sampling poses interesting questions for future studies
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of this technique.

A further consideration is any negative effect of repeatedly rejecting fragments on the status

of nanopores on the flowcell. Pores might get blocked by DNA molecules that are not successfully

ejected, which can reduce the number of active pores when using adaptive sampling (Loose et al.

2016). The use of nuclease flushed across the flowcell in order to free such clogged pores has

been shown to mitigate this issue and recover blocked pores for sequencing (Payne et al. 2021;

Martin et al. 2022). In our experiment, however, we did not observe any indications that the

performance of the section on the flowcell running BOSS-RUNS was degrading faster than the

control section when comparing the number of data-transmitting channels and their idling times

(Suppl. Fig. 5, Suppl. Fig. 6) and others have reported similarly small effects on pore health

(Martin et al. 2022). Depending on factors such as the proportion of rejected reads, read lengths

and most importantly the total duration of the experiment, the impact on pore health might vary

and especially for long sequencing experiments nuclease flushing could be important to retain a

high number of active pores.

In the future we would like to apply our method to a wider array of biological problems.

For example, we could adapt our model to quantify the uncertainty about the presence of epige-

netic modifications, such an methylation, which are now becoming analyzable in real time with

nanopore sequencing (Simpson et al. 2017; Leger et al. 2021; Liu et al. 2021; Zhang et al. 2021).

In that case we could also inform priors with sequence context, in order to take into account that

some modifications such as 5-methylcytosine (5mC) occur most frequently at CpG dinucleotides

(Ehrlich et al. 1982; Bird 1986). BOSS-RUNS could also be used to overcome biases that are

inevitably introduced by some library preparation methods. In whole-exome sequencing, an ex-

ample of one of the most widely used resequencing techniques, differential pull-down efficiencies

of genes and also different exons within genes can lead to substantial coverage bias (Barbitoff

et al. 2020) which BOSS-RUNS could adapt to during an experiment and therefore help mitigate.

Further, we plan to extend our model to collect additional information besides the observed

nucleotides at each site. For example, we could record the distribution of read lengths in different

areas of the genome to focus sequencing effort on covering an entire genome with sufficient

number of very long reads in order to maximise the contiguity of assembled contigs. Creating

an approximate assembly in real-time could also eliminate the need for a reference genome

when making decisions with BOSS-RUNS. We could also use linkage information from observing
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adjacent variants in the same sequencing read in order to express information about which

haplotype the observed variation comes from in diploid or polyploid samples. BOSS-RUNS

could then enrich for fragments that have the potential of bridging across variants and therefore

help construct haplotype-resolved assemblies, at least in genomic regions with enough diversity.

This could aid in the ongoing effort of obtaining completely phased de novo genomes from

single individuals, and might reduce the complexity of currently used sequencing protocols or

combinations of methods (Soifer et al. 2020; Porubsky et al. 2021).

Other innovations of nanopore sequencing in general might include the ability to repeatedly

translocate the same native genomic fragment, which has been previously demonstrated for

solid-state nanopores albeit without a nucleotide readout (Gershow and Golovchenko 2007), and

more recently also by using helicases to translocate a DNA-peptide construct through protein

nanopores (Brinkerhoff et al. 2021). If this was possible in a controlled fashion, the methods

described here could be adapted to decide dynamically which reads to recapture and how many

times to sequence them until their information content is exhausted and the sites they cover are

resolved to some desired accuracy.

To conclude, our method expands the applicability of adaptive sampling and can potentially

improve the information gain in many standard scenarios by dynamically enriching areas of

highest uncertainty, e.g. genomic regions with increased divergence, discrepancy to expectations

or simply lower coverage depth than the average. This is achieved by utilizing information derived

in real time throughout a sequencing experiment, and can be used without prior knowledge of

variation of the sample from a reference sequence. Ensuring more homogeneous coverage and

overall less uncertainty about genotypes by focusing on biologically interesting sites leads to

improved efficiency of sequencing using nanopores in a wide range of applications. The resulting

reduction in the time-to-answer might be critical in a clinical setting or in pathogen surveillance.

4 Methods

4.1 Configuration of sequencing experiments

Sequencing was conducted on an ONT GridION using R9.4 flowcells. Since the quality and

number of active nanopores can vary between flowcells it would be difficult to compare exper-

iments involving adaptive sampling performed on multiple flowcells. Therefore we separated a
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single flowcell by assigning 256 channels to each of two different conditions. One of these two

regions used a decision strategy that continuously accepts any encountered read, i.e. a control

sector not performing any adaptive sampling, whereas the other was acting according to the

decision strategies provided by BOSS-RUNS. Readfish was configured to reject reads from this

sector if they did not map or mapped to (one or more) off-target sites, i.e. sites not included

in the current decision strategy, or if no sequence was obtained from a fragment. For all our

experiments we used 0.8s of data to infer the genomic origin and orientation of fragments before

making decisions, i.e. roughly 350bp (corresponding to µ in our model, Fig. 1F), which results

in a mean read length of 482bp for rejected reads due also to the additional time (ρ) taken to

process and effect decisions. BOSS-RUNS deposits new strategies as compressed Boolean numpy

arrays for each genome or chromosome, which are subsequently reloaded by readfish upon file

modification. Communicating rejection signals to the sequencing device is performed by readfish.

4.2 Sequencing and analysis of the ZymoBIOMICS microbial reference

Input DNA from the ZymoBIOMICS Microbial Community DNA Standard II (Log Distribution

D6311, Zymo Research) was prepared using SQK-LSK110 (ONT) and PCR amplified using

the PCR expansion kit EXP-PCA001 (ONT). BOSS-RUNS and readfish depend on reference

genomes to infer the origin of sequencing reads. In order to create a more realistic scenario where

we do not know the exact bacterial strains, we decided not to use reference genomes from the

strains contained in the microbial mixture, but instead used closely-related reference genomes

identified by McIntyre et al. (2019). The employed assemblies are available in the European

Nucleotide Archive under accessions ASM14656v1, ASM584v2, ASM400627v1, ASM39716v1,

ASM30761v1, ASM51030v1, ASM25313v1, ASM810v1. Basecalling was performed using Guppy

(5.0.16), set to high-accuracy mode.

To test whether increased coverage of rare species was due to repeats or low-complexity

regions, we used RepeatMasker (4.1.2, default parameters; Smit et al. 2015).

4.3 Variant calling of bacterial species

To perform variant calling we used sequencing reads separated by their species of origin (using

minimap2; Li 2018) and further partitioned them to comprise the cumulative data from the

beginning of the experiment up to and including 20 individual timepoints, each separated by
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approximately 30min of sequencing (using custom python scripts).

To create a set of high-confidence variants we used publicly-available deep coverage short

read sequencing of the zymoBIOMICS microbial community with evenly distributed abundances,

which contains the same strains as the logarithmically distributed mixture (Zymo Research

D6306). These data are available in the European Nucleotide Archive under the accession

SRR13224035. Briefly, we mapped the separated reads to their respective assemblies (see previ-

ous section) using minimap2 (2.22; Li 2018) and samtools (1.12; Danecek et al. 2021), marked

duplicates using picard (2.26.6, default parameters; Broad Institute 2019), and called variants,

i.e. the differences between the assemblies we used and the strains contained in the sequenced

microbial community, with freebayes (1.3.5, default parameters; Garrison and Marth 2012). Vari-

ants were filtered by minimum depth of coverage of 20 and quality score 20, transformed into

their primitive constituents (vcflib, 1.0.2; Garrison et al. 2021), and sorted using bcftools. Variant

calling from nanopore data of the zymo microbial mixture was done using medaka (1.4.3, default

parameters, model r941_prom_hac_variant_g507; Oxford Nanopore Technologies 2022). For

subsequent comparisons of vcf files we used vcfeval (rtg-tools, 3.12.1; Cleary et al. 2015).

Data access

The source code of BOSS-RUNS is available at https://github.com/goldman-gp-ebi/BOSS-RUNS.

The sequencing data generated in this study have been submitted to the ENA database under

accession number PRJEB51967.
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