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Abstract: 47 

Climate drives population dynamics, but when the underlying mechanisms are 48 

unresolved, studies can lead to seemingly contradictory effects of climate on natural 49 

populations. Climate-sensitive vector-borne diseases such as dengue, chikungunya, and 50 

Zika are one example where climate appears to have opposing effects in different 51 

contexts. In this study, we use a mathematical model to directly connect climate-driven 52 

mosquito physiology measured in laboratory studies to observed vector and disease 53 

dynamics in the field across ecologically and culturally distinct settings in Ecuador and 54 

Kenya. We show that temperature, rainfall, and humidity predict Aedes aepgyti 55 

abundances and laboratory-confirmed arboviral incidence across ecologically distinct 56 

settings. Further, this trait-based approach resolves seemingly contradictory results from 57 

prior field studies and highlights climate conditions where mechanisms remain 58 

unresolved. Using this mechanistic model, we tested several intervention strategies and 59 

found that reducing immature mosquito habitat or contact rate between mosquitoes and 60 

humans are more effective interventions than killing adult mosquitoes. These results can 61 

help guide intervention efforts and improve climate change predictions for vector-borne 62 

diseases.   63 

 64 

Introduction: 65 

Climate is a major driver of species interactions and population dynamics, but the 66 

mechanisms underlying these relationships are often poorly understood and rarely tested 67 

in the field [1]. One of the primary ways that climate impacts populations is through its 68 

effects on species’ vital rates [2]. However, these mechanistic effects can lead to 69 
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seemingly contradictory results in the field because multiple climate variables may act 70 

synergistically, with each climate variable potentially affecting multiple vital rates, and 71 

their impacts may be nonlinear, changing direction and relative importance across a 72 

gradient of conditions. Vector-borne diseases provide an interesting case study to test 73 

whether climate sensitive traits measured in controlled, laboratory settings can reconcile 74 

seemingly contradictory results from field studies. For example, mosquito-borne 75 

arboviral diseases such as dengue, chikungunya, and Zika are clearly climate-sensitive: a 76 

body of field research has consistently identified temperature, rainfall, and humidity as 77 

important predictors of disease, but sometimes with opposite conclusions about the 78 

magnitude and direction of effects of climate on mosquito and disease dynamics [3–8]. 79 

For example, dengue incidence correlated with temperature positively in Mexico [9] but 80 

negatively in Thailand [10]. We hypothesize that such opposing effects could be 81 

simultaneously correct if disease dynamics are context-dependent or nonlinear, and each 82 

model describes true disease dynamics but only within a small subset of conditions (e.g., 83 

specific locations or seasons). 84 

 85 

Understanding the mechanisms that drive disease dynamics is particularly important for 86 

arboviruses like dengue, chikungunya, and Zika because they are a major public health 87 

burden, vector control is the main method for breaking transmission cycles, and the 88 

burden and distribution of these diseases are projected to shift geographically in the 89 

future [11–13]. Half of the world’s population is currently at risk of contracting dengue 90 

[14]. With no widely available vaccine, vector control remains the primary method for 91 

preventing arboviral disease transmission. Existing vector control methods focus on 92 
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reducing immature habitat, reducing adult populations, or employing personal protection 93 

to reduce contact between infected mosquitoes and people [15]. Like other vector-borne 94 

diseases with complex transmission dynamics, model simulations can help guide 95 

effective intervention efforts [16,17]. Further, mechanistic models are better suited to 96 

predict how climate change will impact future disease burden and distribution, as 97 

projected climate conditions are outside the current arboviral climate niche space.  98 

 99 

Dengue, chikungunya, and Zika are climate-sensitive diseases because of the ecology of 100 

Aedes aegypti, the primary disease vector. Ae. aegypti are anthropophilic, globally 101 

distributed mosquitoes that breed in artificial containers with standing water [18,19]. All 102 

mosquito and parasite traits that are important for transmission and linked to metabolism, 103 

such as reproduction, development, survival, biting rate, and extrinsic incubation period, 104 

are temperature dependent with a thermal optima [20–22]. Humidity is positively 105 

associated with mosquito survival because the high surface area to volume ratio of 106 

mosquitoes exposes them to desiccation [23,24]. Standing water from rainfall provides 107 

essential larval and pupal habitat for mosquitoes, but the relationship is complex because 108 

heavy rainfall can flush away breeding habitats [25–27] and water storage practices 109 

during droughts can increase water availability, mosquito abundance, and contact 110 

between mosquitoes and people [28–30].  111 

 112 

In this study, our goal was to test the extent to which climate-driven mosquito traits drive 113 

disease dynamics across two geographically distinct regions and to characterize the 114 

effectiveness of different intervention strategies in those regions. Specifically, we asked: 115 
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1) how accurately do mechanistic model predictions reproduce observed mosquito and 116 

disease dynamics in the field, 2) are there conditions where the model systematically fails 117 

to reproduce observed disease dynamics, and 3) what is the relative effectiveness of 118 

different intervention strategies given different levels of intervention effort? To answer 119 

these questions, we adapted a mechanistic model for arboviral transmission as a function 120 

of climate and independently validated the models with data collected on Ae. aegypti 121 

abundances and laboratory-confirmed dengue, chikungunya, and Zika cases from two 122 

equatorial countries with distinct socioeconomic, geographic, cultural, and disease 123 

transmission settings: Ecuador and Kenya (Fig. 1, Table S1). The study sites within each 124 

country were distributed across a temperature gradient with similar ranges of humidity 125 

and rainfall. Previous studies have found that Ae. aegypti and dengue were positively 126 

associated with warm and wet conditions in Ecuador and Kenya [31–34], although other 127 

Ae. aegpyti-vectored arboviruses in Kenya such as chikungunya have been associated 128 

with warm and dry conditions [35]. In addition to similar climate conditions, both 129 

countries have hyperendemic transmission of all four dengue serotypes and have recently 130 

experienced outbreaks of chikungunya; yet, arboviral transmission dynamics differ in 131 

each country. In Ecuador, dengue is a re-emerging disease with large seasonal epidemics 132 

that frequently result in severe dengue [31]; by contrast, in Kenya, dengue has low levels 133 

of year-round transmission [36] and intermittent self-limiting outbreaks that are often 134 

undetected [37]. Further, compared with South America, sub-Saharan Africa lacks severe 135 

dengue, perhaps because African strains of Ae. aegpyti have lower susceptibility to all 136 

four dengue serotypes [38], and/or because people of African ancestry are less 137 

susceptible to severe dengue [39].  138 
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 139 

Figure 1: Study sites with distinct socioeconomic, geographic, cultural, and disease 140 

transmission settings. Study sites within a) Ecuador in South America and b) Kenya in 141 

East Africa. See Table S1 for additional site characteristics. 142 

 143 

Results:  144 

Relationship between model predictions and observed disease dynamics 145 

The dynamic susceptible, exposed, infectious – susceptible, exposed, infectious, removed 146 

(SEI-SEIR) compartmental model (Fig. 2) parameterized with temperature-, rainfall-, and 147 

humidity-dependent mosquito life history traits was strongly associated with mosquito 148 

abundances and disease dynamics across sites and through time. Model-predicted 149 

mosquito abundances and field-collected observations of mosquito abundances 150 

corresponded with each other in 65% of the surveys (sample size N = 277 site-months) 151 

(Table 1), based on whether the z-scores of predictions and observations were within one 152 

standard deviation of each other. Based on surveys conducted across all vector life stages 153 

in Kenya (only adult mosquitoes were collected in the Ecuador surveys), the SEI-SEIR 154 
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model had similar correspondence with the abundance of adult mosquitoes (60%, N = 155 

217) to pupae (60%, N = 217), late instars (57%, N = 217), early instars (56%, N = 217), 156 

and eggs (50%, N = 216), likely because the dynamics were consistent across life stages. 157 

Model-predicted disease cases corresponded with laboratory-confirmed arboviral 158 

incidence in 83% of the surveys (N = 388 site-months) (Table 1). We used z-scores for 159 

comparison because the model predictions represent total population estimates whereas 160 

observations come from sub-samples of the mosquito and human population.  161 

 162 

 163 

Figure 2: SEI-SEIR epidemiological model framework. The mosquito population (top 164 

panel, orange) is split among susceptible (Sm), exposed (Em), and infectious (Im) 165 

compartments (squares) and the human population (bottom panel, blue) is split among 166 

susceptible (Sh), exposed (Eh), infectious (Ih), and recovered (Rh) compartments. Solid 167 

arrows indicate the direction individuals can move between classes and dashed arrows 168 

indicate the direction of transmission. Transitions among compartments are labeled by 169 
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the appropriate processes and corresponding rate parameters (see Methods for more 170 

detail). 171 

 172 

Table 1: Model accurately predicted mosquito abundances and arboviral cases for 173 

majority of surveys. Rows correspond to comparisons between model predictions and 174 

field observations for mosquito abundances or arboviral cases. Correspondence indicates 175 

that z-scores of model predictions and field observations fell within one standard 176 

deviation of each other. Overprediction indicates that the z-score of the model predictions 177 

were more than one standard deviation above the z-score of the observations, and vice 178 

versa for underprediction. The percent of total surveys are presented in parentheses 179 

beside the total number of surveys (N) in each category. Table S2 shows the same data 180 

separated by site. 181 

Comparison Correspondence Overprediction Underprediction N 

Mosquitoes 179 (65%) 52 (19%) 46 (16%) 277 

Arboviral cases 322 (83%) 30 (8%) 36 (9%) 388 

 182 

 183 

We explored three additional aspects of model fit and found that the model predicted the 184 

magnitude of observations moderately well and detected trends through time and 185 

differences across sites. Model-predicted mosquito abundances were positively correlated 186 

with field-collected observations of mosquito abundances (Pearson’s correlation 187 

coefficient r = 0.35, sample size N = 277) (Fig. 3) and predictions and observations 188 

synchronously increased and decreased through time within sites (Exact two-tailed sign 189 

test, p < 0.05), but the annual proportion of observations predicted by the model differed 190 

across sites (F(7,24) = 10.75, p < 0.001). Similarly, model-predicted disease cases 191 
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correlated positively with laboratory-confirmed arboviral incidence (r = 0.19, N = 388) 192 

(Fig. 3) and predictions and observations synchronously increased and decreased through 193 

time within sites (Exact two-tailed sign test, p < 0.001), but the annual proportion of 194 

observations predicted by the model differed across sites (F(7,18) = 358.8, p < 0.001). 195 

Chikungunya and Zika incidence were only confirmed in Huaquillas and Machala, 196 

Ecuador (Ndengue = 366, Nchikungunya = 35, NZika = 14); in those sites, arboviral incidence for 197 

each disease peaked at different times and corresponded better with model predictions 198 

than dengue alone (Fig. 4). 199 

 200 

 201 

Figure 3: The SEI-SEIR model positively correlated with field observations of 202 

mosquito abundances and arboviral cases across all sites. a) Scatterplot of the z-score 203 

of the total modeled mosquito population versus the z-score of the mean number of adult 204 

Ae. aegypti trapped per house, across sites and months between 2014 and 2018. b) 205 

Scatterplot of the z-score of predicted disease cases in the human population versus the z-206 

score of laboratory-confirmed dengue, chikungunya, and Zika cases, across sites and 207 

months between 2014 and 2018. The solid black lines are regression lines. Pearson’s 208 
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correlation coefficient, r, based on the raw data, and the sample size, N, are presented in 209 

the top right corner of the plots. 210 

  211 

212 

Figure 4: Model-predicted disease cases reproduced general patterns of arboviral 213 

transmission. Solid grey line and shaded grey region shows median and 95% confidence 214 

interval for model-predicted disease cases, blue dots and lines show laboratory-confirmed 215 

dengue cases, yellow dots and lines show laboratory-confirmed chikungunya cases, and 216 

red dots and lines show laboratory-confirmed Zika cases (note that the y-axes scales 217 

differ for the three diseases). The 95% confidence intervals are based on 50 model 218 

simulations using different c, T0, and Tmax estimates (see Methods) for temperature-219 

dependent traits from the posterior distributions found in [20]. 220 

 221 

We tested three hypothesized functional relationships between rainfall and mosquito 222 

carrying capacity in the SEI-SEIR model (Fig. S1) and found that the rainfall function 223 

that correlated most strongly with field observations differed by response variable 224 

(mosquito abundance and arboviral incidence) and site (Table 2). We used correlation to 225 

determine the best rainfall function because correlation is the most sensitive metric for 226 
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magnitude and the rainfall function in the model affects the magnitude of mosquitoes via 227 

carrying capacity. The model with the left-skewed unimodal (Brière) rainfall function 228 

(Fig. S1a), which indicates that mosquito abundances increase with increasing rainfall 229 

until some threshold where flushing occurs, described observed mosquito and disease 230 

dynamics most often (Table 2). 231 

 232 

Table 2: Rainfall differentially affects mosquito and disease dynamics across sites.  233 

Each row corresponds to a study site and indicates the rainfall function that correlated 234 

most strongly with field observations of Ae. aegpyti abundances and arboviral cases, and 235 

the associated Pearson’s correlation coefficient. The left-skewed unimodal Brière rainfall 236 

function (Fig. S1a) indicates that mosquito abundances increase with increasing rainfall 237 

until some threshold where flushing occurs. The symmetric unimodal quadratic rainfall 238 

function (Fig. S1b) indicates that mosquito abundances peak with intermediate amounts 239 

of rainfall and are reduced with low and high rainfall values. The exponentially 240 

decreasing inverse rain function (Fig. S1c) indicates that mosquito abundances peak 241 

when there is no or low rainfall, likely as a result of water storage practices. All measures 242 

of model fit (i.e., correspondence, correlation, sign tests, and ANOVAs) were based on 243 

models where the different rainfall functions listed in this table were used. 244 

 Aedes aegpyti Arboviruses 

Country Site Rain function Correlation Rain function Correlation 

Ecuador Huaquillas Brière 0.36 Inverse 0.63 

Ecuador Machala Quadratic 0.63 Brière 0.12 

Ecuador Portovelo Brière 0.66 Brière 0.07 

Ecuador Zaruma Brière 0.41 Brière 0.30 

Kenya Chulaimbo Brière 0.21 Quadratic 0.02 

Kenya Kisumu Brière 0.50 Brière 0.25 

Kenya Msambweni Inverse 0.28 Quadratic 0.28 

Kenya Ukunda Brière 0.31 Inverse 0.07 
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 245 

Identifying conditions that systematically lead to divergence between predictions and 246 

observations 247 

To determine if climate-based, geographical, and urbanization factors could explain 248 

conditions where the models consistently over- or underpredicted mosquito abundances 249 

and arboviral cases (Table 1), we used classification and regression tree (CART) models. 250 

We found that the model systematically overpredicted mosquito abundances when there 251 

was low to moderate rainfall (<55 mm) and moderate to high humidity (>1.2 kPA) (Fig. 252 

5a). The model systematically overpredicted arboviral cases when there was high mean 253 

temperature (>29°C) or high minimum temperature (>24°C) (Fig. 5b). We did not find 254 

evidence of any conditions that systematically led to underpredicting mosquito 255 

abundances or arboviral cases, likely because there were many predicted and observed 256 

zeros. The 29°C breakpoint that we identified for arboviral cases aligns with the point at 257 

which the model predicts that the relative basic reproductive number (R0) declines (Fig. 258 

6). However, the CART results suggest that temperature-dependent mosquito traits may 259 

be more constrained at high temperatures than previously estimated from laboratory 260 

studies, potentially because of daily temperature variation. Previous field studies 261 

estimating the effects of temperature on dengue transmission further support this finding 262 

where, in general, locations with mean temperature below 29°C show a positive 263 

relationship with dengue incidence whereas locations with mean temperatures above 264 

29°C show negative relationships (Fig. 6).  265 

 266 

 267 
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 268 

Figure 5: High rainfall, humidity, and temperature were associated with the model 269 

systematically overpredicting mosquito abundances and arboviral cases. 270 

Classification and regression trees for a) mosquito abundances and b) arboviral cases. 271 

Climate conditions represent values within the month prior to a survey. The Saturation 272 

Vapor Pressure Deficit (SVPD) is a measure of humidity (see Methods). 273 

 274 
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 275 

Figure 6: Independently predicted relative R0 from an empirically derived model 276 

explains differences in the magnitude and direction of the effects of temperature on 277 

dengue transmission across varied settings from previous field studies. The black line 278 

shows the relative basic reproductive number (R0, normalized to a 0-1 scale) plotted 279 

against temperature based on all temperature-dependent traits from [20] used in the SEI-280 

SEIR model. Points indicate mean temperature values from previous field-based 281 

statistical analyses that related dengue cases with minimum, maximum, or mean ambient 282 

temperature; arrows correspond to the direction (up = positive, down = negative) and 283 

relative effect size of the temperature-dengue relationship based on coefficient values 284 

from studies in Bangladesh, China, Colombia, Guadeloupe, Mexico, Taiwan, Thailand, 285 

and Vietnam [9,10,40–49]. See Methods and Table S3 for more detail. As expected, the 286 

largest observed positive effects of temperature occurred in the rapidly increasing portion 287 

of R0 curve (~22-25C) and the largest observed negative effects occurred well above the 288 

predicted optimum, near the upper thermal limit (~33-35C). 289 
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Evaluating the effectiveness of different intervention scenarios 290 

We simulated three intervention strategies at three intensity levels and found that 291 

reducing immature mosquito habitat or contact rate between mosquitoes and humans are 292 

far more effective intervention strategies than reducing adult mosquito abundance (Fig. 293 

7). Even with high intensity intervention efforts that reduce mosquito abundance by 90% 294 

(e.g., spraying large amounts of insecticide), the model indicates that we would expect 295 

only 11% fewer human disease cases (Fig. 7; approximately 12 disease cases per 100,000 296 

population). By contrast, a 10% reduction in immature mosquito habitat (e.g., removing 297 

containers from the environment that create pools of standing water from rain) or contact 298 

rate (e.g., using window screens, mosquito repellent, or wearing protective clothing) 299 

would decrease disease cases by approximately 16% and 19%, respectively (Fig. 7; 300 

approximately 110 and 187 disease cases per 100,000 population, respectively). Higher 301 

intensity efforts that reduce immature mosquito habitat or contact rate by 50% or 90% 302 

provides even greater protection, resulting in predicted decreases in disease cases by as 303 

much as 96% (Fig. 7; approximately 2,087 disease cases per 100,000 population).  304 
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 305 

Figure 7: Reducing contact rate or immature mosquito habitat leads to the largest 306 

reductions in disease cases. Barplots show the predicted decrease in arboviral cases 307 

across three intervention strategies (reduce contact rate, reduce immature mosquito 308 

habitat, reduce mosquito abundance) and three intervention intensities (10%, 50%, and 309 

90% reductions). Bars indicate the mean across study sites of the difference between the 310 

number of predicted disease cases in a population (e.g., number of cases at one site over a 311 

one-year time period) and the number of predicted disease cases in the same population 312 

and time period given a specific intervention strategy at a specific intensity level). The 313 

error bars indicate the standard error of the mean across all eight study sites.  314 

 315 

Discussion: 316 

Directly observing the influence of climate on species interactions and population 317 

dynamics is often challenging because of interacting and nonlinear relationships; here, we  318 
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directly and quantitatively connect laboratory-based climate relationships to observed 319 

mosquito and disease dynamics in the field, supporting the mechanistic role of climate in 320 

these disease systems. The trait-based modeling approach helps to reconcile some long-321 

standing inconsistencies in the literature on the effects of climate on arboviral 322 

transmission dynamics. Temperature, rainfall, and humidity are commonly correlated 323 

with arboviral transmission, but with apparently inconsistent conclusions about which 324 

climate variables best predict disease, in what direction, and at what time lags [3–8]. For 325 

example, some studies indicate that mean temperature best predicts disease [50–54], 326 

while others indicate that minimum temperature [32,45,55,56] or maximum temperature 327 

[7,57–59] are better predictors. Rainfall metrics associated with arboviruses vary widely 328 

as well, from cumulative rainfall [6,42,53,59] to number of rainy days [60,61] to rainfall 329 

rates and thresholds [27,55], and these relationships are difficult to measure in the lab 330 

(but see [25]). Further, time lags between climate conditions and dengue incidence are 331 

variable rather than static: for example, as temperature and daily rainfall increase, the 332 

time lags associated with arboviral incidence decrease [55]. A trait-based model allows 333 

these varying time lags to emerge from the nonlinear dynamics of transmission, rather 334 

than assuming static time lags. Our results highlight that we should not expect the same 335 

climate conditions and lags to be important in all settings, but that their combined, 336 

nonlinear effects can predict disease dynamics across different ecological and socio-337 

economic settings.  338 

 339 

Understanding the mechanisms that drive disease dynamics can help address two 340 

critically important research priorities: assessing intervention strategies and projecting 341 
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impacts from climate change on disease dynamics. While phenomenological models 342 

often replicate arboviral disease dynamics remarkably well [62], mechanistic models that 343 

capture mosquito population dynamics and interactions between mosquitoes and humans 344 

will provide more accurate predictions for the effects of different interventions or 345 

projected changes in climate. In this study, we assessed intervention efforts and found 346 

that efforts to reduce immature mosquito habitat or contact rate between mosquitoes and 347 

people should be much more effective than approaches targeted to removing adult 348 

mosquitoes. Further, the intervention simulations suggest that even low and moderate 349 

intervention intensity (10% and 50% reductions) will result in a large percentage of 350 

disease cases averted. These results are promising for supporting integrated disease 351 

control efforts for dengue, chikungunya, and Zika. To help policymakers in Kenya 352 

interpret how these results can guide local intervention efforts, we created a shiny app 353 

based on the SEI-SEIR model (https://jms5151.shinyapps.io/shiny/).  354 

 355 

Comparisons between the model predictions and field observations highlighted several 356 

knowledge gaps about climate-disease relationships. While the model generally 357 

reproduced patterns of field observations of mosquitoes and disease cases (based on 358 

correspondence between z-scores) and observations increased and decreased in unison 359 

with the model predictions (based on sign tests), the relative magnitudes only aligned 360 

moderately well (based on Pearson’s correlations) and there was significant variation 361 

across sites (based on Table 1 and ANOVA results) indicating that climate may be a 362 

more powerful predictor for differences across a spatial climate gradient (i.e., across 363 

sites) than through time within a site, which supports previous findings [63]. Further, we 364 
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found evidence that rainfall influences transmission dynamics via its effects on mosquito 365 

carrying capacity. However, incorporating this effect in a dynamic model requires some 366 

knowledge of how humans differentially influence immature mosquito habitat 367 

availability across regions. We show support for three hypothesized relationships 368 

between rainfall and mosquito carrying capacity in the field, indicating that the 369 

relationship between rainfall and immature habitat is highly heterogenous, which has 370 

been found in previous research in Ecuador [28] and Kenya [64]. By examining 371 

conditions where the SEI-SEIR model systematically under- and overpredicted mosquito 372 

abundances and arboviral cases, we identified additional specific climate conditions that 373 

warrant further empirical experimentation. In particular, a variety of traits important for 374 

transmission are not well understood towards the physiologically relevant limits of 375 

temperature [65,66] and humidity [67]. 376 

 377 

Future research can build on this study to better predict the location, magnitude, and 378 

timing of arboviral outbreaks and to assess additional intervention strategies. This study 379 

builds on previous mechanistic and semi-mechanistic models [50,61,68–71] by 380 

combining a suite of temperature, rainfall, and humidity dependent trait functions into 381 

one epidemiological model. However, there were several factors that we did not include 382 

in this study, such as existing vector control programs, gradients in land use and land 383 

cover, infrastructure, and preexisting immunity in the population (Table S1). For 384 

instance, in Ecuador, factors such as distance to abandoned properties, interruptions in 385 

access to piped water, shaded patios, and use of vector control are also known to 386 

influence arbovirus transmission [72], whereas in the study sites in Kenya, factors 387 
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associated with arboviral transmission are less well studied and there are currently no 388 

vector control or local arboviral surveillance programs employed. Future studies could 389 

further improve the model by incorporating human immune dynamics associated with 390 

interactions among different dengue serotypes [73] or cross-reactivity among viral 391 

antibodies [74], differential susceptibility across human age classes [75], and 392 

heterogeneity in contact rates between mosquitoes and people based on human behavior 393 

and movement [50,76]. This study suggests that climate is a key determinant of disease 394 

dynamics via its nonlinear effects on mosquito and pathogen traits, and that those 395 

relationships can be used to predict the timing and locations of disease outbreaks and to 396 

assess intervention strategies. Such mechanistic, climate-driven models will become 397 

increasingly important to support public health efforts in the face of novel climate 398 

regimes emerging due to climate change.  399 

 400 

Materials and Methods: 401 

Climate data 402 

We collected in situ measurements of daily mean temperature, relative humidity, and 403 

rainfall at each study site and interpolated missing data where necessary, as described 404 

below. We used temperature and humidity measurements from HOBO loggers and 405 

rainfall measurements from rain gauges for sites in Kenya. We used temperature, 406 

humidity, and rainfall measurements from automatic weather stations operated by the 407 

National Institute of Meteorology and Hydrology in Ecuador. For Kenya, we interpolated 408 

missing temperature data from NOAA Global Surface Summary of the Day (Table S4, 409 

Fig. S2) and interpolated missing rainfall data from NOAA Climate Prediction Center 410 
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Africa Rainfall Climatology dataset (Table S4, Fig. S3). For Ecuador, we interpolated 411 

missing temperature (Table S4, Fig. S2) and rainfall (Table S4, Fig. S3) data using the 412 

nearest study site where possible and otherwise based on long term mean values for the 413 

corresponding Julian day. To interpolate missing data, we linearly regressed all 414 

measurements taken on the same day in two datasets and then used the linear model to 415 

interpolate temperature for the site with missing data based on the climate measurement 416 

from the secondary source for the date when the data was missing (Fig. S2-3). For 417 

rainfall, we first calculated a moving window of 14-day accumulated rainfall (following 418 

[77]) for each day before interpolation. For both Kenya and Ecuador, we interpolated 419 

missing relative humidity data based on long term mean values for the corresponding 420 

Julian day (Table S4). We then calculated the saturation vapor pressure deficit (SVPD) 421 

from temperature and humidity to use in the humidity function because previous research 422 

suggests SVPD is a more informative measure of the effect of humidity on mosquito 423 

survival compared with relative humidity [67]. To calculate SVPD, we first calculated the 424 

saturation vapor pressure as:  425 

𝑆𝑉𝑃 =  610.7 ∗  107.5∗𝑇/(273.3+𝑇) (1) 

where (𝑇) is temperature in degrees Celsius. We then calculated SVPD (in kilopascals) as  426 

𝑆𝑉𝑃𝐷 =  1 −
𝑅𝐻

100
∗ 𝑆𝑉𝑃 (2) 

where RH is relative humidity. The final dataset had no missing values for temperature 427 

(Fig. S4), rainfall (Fig. S5), and humidity (Fig. S6).  428 

 429 

 430 

 431 
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Vector surveys 432 

We collected, counted, sexed, and classified mosquitoes by species, and aggregated the 433 

data to mean number of Aedes aegypti per house, month, and year to account for 434 

differences in survey effort across months and sites. We collected adult mosquitoes using 435 

Prokopack aspirators [78]. In Ecuador, we collected mosquitoes from approximately 27 436 

houses per site (range = 3-57 houses across four sites) every one-to-two weeks during 437 

three, four-month sampling periods between July 2016 and August 2018 (N = 147 438 

sampling weeks across four sites) to capture different parts of the transmission season. 439 

We aggregated the Ecuador vector data to monthly values (N = 60 site-month 440 

observations) to correspond with the temporal resolution of surveys in Kenya. In Kenya, 441 

we collected mosquitoes from approximately 20 houses per site (range = 1-47 houses 442 

across four sites) every month between January 2014 and October 2018 (N = 217 site-443 

month observations). In Kenya, we also collected pupae, late instars, and early instars 444 

from containers with standing water around the home and collected eggs by setting 445 

ovitraps for an average of four days in and around each house monthly. We brought 446 

pupae, late and early instars, and eggs to the insectary and reared them to adulthood to 447 

classify individuals by sex and species. 448 

 449 

Arboviral surveys 450 

For Ecuador, we analyzed laboratory-confirmed dengue, chikungunya, and Zika cases 451 

provided by the Ministry of Health (MoH) of Ecuador. The MoH collects serum samples 452 

from a subset of people with suspected arbovirus infections, and samples are tested at the 453 

National Public Health Research Institute by molecular diagnostics (RT-PCR) or 454 
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antibody tests (IgM ELISA for dengue), depending on the number of days of illness. 455 

Results are sent to the MoH Epidemiological Surveillance and Control National 456 

Directorate (SIVE Alerta system). Laboratory-confirmed dengue cases were available for 457 

all four sites from 2014 to 2018. Laboratory-confirmed chikungunya cases were available 458 

for Machala and Huaquillas from 2015 to 2018. Laboratory-confirmed Zika cases were 459 

available for Machala from 2016 to 2018.  460 

 461 

For Kenya, we used laboratory-confirmed dengue cases aggregated by site and month 462 

between 2014 and 2018 collected in a passive surveillance study on childhood febrile 463 

illness in Kenya (NIH R01AI102918, PI: ADL). The study population consisted of 7653 464 

children less than 18 years of age with undifferentiated febrile illness. Children with fever 465 

enrolled in the study when attending outpatient care in one of the four study sites (Mbaka 466 

Oromo Health Centre in Chulaimbo, Obama Children’s Hospital in Kisumu, Msambweni 467 

District Hospital in Msambweni, and Ukunda/Diani Health Center in Ukunda). Local 468 

health officers collected comprehensive clinical and demographic data and phlebotomy at 469 

the initial visit. We tested each child’s blood for dengue viremia by molecular diagnostics 470 

(conventional PCR [79] or targeted multiplexed real-time PCR when available [80]), or 471 

serologic conversion at a follow up visit (IgG ELISA [81]). 472 

 473 

SEI-SEIR model 474 

We adapted an SEI-SEIR model parameterized for dengue transmission in Ae. aegypti 475 

mosquitoes [82] (Fig. 2) to simulate mosquito abundance and arboviral cases through 476 

time based on daily weather conditions in eight study locations. The model (equations 3-477 
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9), created independently from the observed data described above, allows mosquito life 478 

history traits and viral development rate to vary with temperature (𝑇) following [82], 479 

mosquito carrying capacity to vary with accumulated 14-day rainfall (𝑅) following [77], 480 

and mosquito mortality to vary with humidity (i.e., saturation vapor pressure deficit) (𝐻) 481 

following [67]. 482 

𝑑𝑆𝑚

𝑑𝑡
= 𝜑(𝑇, 𝐻) ∗

1

𝜇(𝑇, 𝐻)
∗ 𝑁𝑚 ∗ (1 −

𝑁𝑚

𝐾(𝑇, 𝑅, 𝐻)
 ) – (𝑎(𝑇) ∗ 𝑝𝑀𝐼(𝑇) ∗

𝐼ℎ

𝑁ℎ

+ 𝜇(𝑇, 𝐻)) ∗ 𝑆𝑚 (3) 

𝑑𝐸𝑚

𝑑𝑡
= 𝑎(𝑇) ∗ 𝑝𝑀𝐼(𝑇) ∗

𝐼ℎ

𝑁ℎ

∗ 𝑆𝑚 − (𝑃𝐷𝑅(𝑇) + 𝜇(𝑇, 𝐻)) ∗ 𝐸𝑚 (4) 

𝑑𝐼𝑚

𝑑𝑡
= 𝑃𝐷𝑅(𝑇) ∗ 𝐸𝑚 − 𝜇(𝑇, 𝐻) ∗ 𝐼𝑚 (5) 

𝑑𝑆ℎ

𝑑𝑡
= −𝑎(𝑇) ∗ 𝑏(𝑇) ∗

𝐼𝑚

𝑁ℎ

∗ 𝑆ℎ + 𝐵𝑅 ∗ 𝑆ℎ − 𝐷𝑅 ∗ 𝑆ℎ + 𝑖𝑒 ∗ 𝑁ℎ −  𝑖𝑒 ∗ 𝑆ℎ  (6) 

𝑑𝐸ℎ

𝑑𝑡
= 𝑎(𝑇) ∗ 𝑏(𝑇) ∗

𝐼𝑚

𝑁ℎ

∗ 𝑆ℎ − 𝛿 ∗ 𝐸ℎ − 𝐷𝑅 ∗ 𝐸ℎ −  𝑖𝑒 ∗ 𝐸ℎ  (7) 

𝑑𝐼ℎ

𝑑𝑡
= 𝛿 ∗ 𝐸ℎ − 𝜂 ∗ 𝐼ℎ − 𝐷𝑅 ∗ 𝐼ℎ −  𝑖𝑒 ∗ 𝐼ℎ  (8) 

𝑑𝑅ℎ

𝑑𝑡
= 𝜂 ∗ 𝐼ℎ − 𝐷𝑅 ∗ 𝑅ℎ −  𝑖𝑒 ∗ 𝑅ℎ  (9) 

where 483 

𝜑(𝑇, 𝐻) = 𝐸𝐹𝐷(𝑇) ∗ 𝑝𝐸𝐴(𝑇) ∗ 𝑀𝐷𝑅(𝑇) (10) 

 484 

The mosquito population (Nm) was separated into susceptible (Sm), exposed (Em), and 485 

infectious (Im) compartments and the human population (Nh) was separated into 486 

susceptible (Sh), exposed (Eh), infectious (Ih), and recovered (Rh) compartments (Fig. 2). 487 

Climate-independent model parameters (Table 3) included the intrinsic incubation period 488 

(𝛿), human infectivity period (𝜂), birth rate (𝐵𝑅), death rate (𝐷𝑅), and 489 

immigration/emigration rate (𝑖𝑒). The temperature-dependent SEI-SEIR model was 490 

developed by Huber et al. [82] and allows mosquito life history traits and viral 491 

development rates to vary according to thermal response curves fit from data derived in 492 
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laboratory experiments conducted at constant temperatures (Table 4). The temperature-493 

dependent traits include eggs laid per female per day (𝐸𝐹𝐷), the probability of egg-to-adult 494 

survival (𝑝𝐸𝐴), mosquito development rate (𝑀𝐷𝑅), mosquito mortality rate (lifespan-1; 𝜇), 495 

biting rate (𝑎), probability of mosquito infection per bite on an infectious host (𝑝𝑀𝐼), 496 

parasite development rate (𝑃𝐷𝑅), and probability of mosquito infectiousness given an 497 

infectious bite (𝑏). We modified the mosquito mortality rate equation to vary as a function 498 

of temperature and humidity by fitting a spline model based on a pooled survival analysis 499 

of Ae. aegypti [67] (Fig. S7): 500 

𝜇(𝑇, 𝐻) =  
1

𝑐 ∗ (𝑇 − 𝑇0) ∗ (𝑇 − 𝑇𝑚)
+ (1 − (0.01 + 2.01 ∗ 𝐻)) ∗ 𝑦 𝐻 < 1 (11) 

𝜇(𝑇, 𝐻) =  
1

𝑐 ∗ (𝑇 − 𝑇0) ∗ (𝑇 − 𝑇𝑚)
+ (1 − (1.22 + 0.27 ∗ 𝐻)) ∗ 𝑦 𝐻 ≥ 1 (12) 

where the rate constant (𝑐), minimum temperature (𝑇0), and maximum temperature (𝑇𝑚) 501 

equal -1.24, 16.63, and 31.85 respectively (Table 4), humidity (𝐻) is the saturation vapor 502 

pressure deficit, and 𝑦 is a scaling factor that we set to 0.005 and 0.01, respectively, to 503 

restrict mosquito mortality rates within the range of mortality rates estimated by other 504 

studies [20,67]. The linear humidity function has a steeper slope at lower humidity values 505 

(equation 11) compared with higher humidity values (equation 12) based on previous 506 

research [67] (Fig. S7).  507 

 508 

We modeled mosquito carrying capacity, 𝐾, as a modified Arrhenius equation following 509 

[82,83]:  510 

𝐾(𝑇, 𝐻, 𝑅) =
𝐸𝐹𝐷(𝑇0) ∗ 𝑝𝐸𝐴(𝑇0) ∗ 𝑀𝐷𝑅(𝑇0) ∗ 𝜇(𝑇0, 𝐻0)−1 − 𝜇(𝑇0, 𝐻0)

𝐸𝐹𝐷(𝑇0) ∗ 𝑝𝐸𝐴(𝑇0) ∗ 𝑀𝐷𝑅(𝑇0) ∗ 𝜇(𝑇0, 𝐻0)−1
∗ 𝑁𝑚

∗ 𝑒
−𝐸𝐴∗(𝑇−𝑇0)2

𝜅𝐵∗(𝑇+273)∗(𝑇0+273) ∗ 𝑓(𝑅) 

(12) 
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with 𝑇0 and 𝐻0 set to the temperature and humidity where carrying capacity is greatest 511 

(29°C and 6 kPA) and the Boltzmann constant, (𝐾𝐵), is 8.617 x 10-5 eV/K. We set the 512 

activation energy, 𝐸𝐴, as 0.05 based on [82]. Since there were no experimental data from 513 

which to derive the functional response of mosquito carrying capacity across a gradient 514 

of rainfall values, we tested several functional relationships based on hypothesized 515 

biological relationships between freshwater availability and immature mosquito breeding 516 

habitat, modeling the effect of rainfall on carrying capacity, f(R), as either: 517 

𝑓(𝑅Brière) =  𝑐 ∗ 𝑅 ∗ (𝑅 − 𝑅𝑚𝑖𝑛) ∗  √(𝑅𝑚𝑎𝑥 − 𝑅) ∗ 𝑦 (12) 

𝑓(𝑅𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐) = 𝑐 ∗ (𝑅 − 𝑅𝑚𝑖𝑛) ∗ (𝑅 − 𝑅𝑚𝑎𝑥) ∗ 𝑦 (13) 

𝑓(𝑅Inverse) =  
1

𝑅
 

(14) 

where minimum rainfall (𝑅𝑚𝑖𝑛) equaled 1 mm and maximum rainfall (𝑅𝑚𝑎𝑥) equaled 123 518 

mm based on the high probability of flushing [27]. The quadratic function is similar to 519 

the rainfall function found in [27] and the inverse function is based on the rainfall 520 

function used in [77]. We used rate constants (𝑐) of 7.86e-5 and -5.99e-3 for the Brière and 521 

quadratic functions respectively, based on rate constants for other parameters with similar 522 

functional forms (Table 4). We scaled the Brière and quadratic functions by 𝑦 (0. 268 and 523 

0.045, respectively) so that the maximum carrying capacity was approximately equal 524 

across all three functions.  525 

  526 

 527 

 528 
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Table 3: Values of temperature-invariant parameters used in the model. We derived 529 

daily birth and death rates in the model by dividing the per capita birth and death rates by 530 

360 days. The World Bank Open Data can be found at https://data.worldbank.org/. 531 

Parameter Definition Value Source 
𝛿−1 Intrinsic incubation period (days) 

 

5.9 [82] 

𝜂−1 Human infectivity period (days) 

 

5.0 [82] 

𝐵𝑅 Annual birth rate (per 1000 people) 

 

 

31.782 (Ecuador) 

20.175 (Kenya) 
The World Bank 

Open Data  

𝐷𝑅 Annual death rate (per 1000 people) 

 
 

5.284 (Ecuador) 

5.121 (Kenya) 
The World Bank 

Open Data 

𝑖𝑒 Immigration/emigration rate 0.01 Expert opinion 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 
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Table 4: Fitted thermal responses for Ae. aegypti life history traits. Traits were fit to a 545 

Brière [𝑐𝑇(𝑇 − 𝑇0)(𝑇𝑚 − 𝑇)
1

2] or a quadratic [𝑐(𝑇 − 𝑇𝑚)(𝑇 − 𝑇0)] function where T 546 

represents temperature. T0 and Tm are the critical thermal minimum and maximum, 547 

respectively, and c is the rate constant. Thermal responses were fit by [20] and also used 548 

in [82]. Parasite development rate was measured as the virus extrinsic incubation rate. 549 

Trait Definition Function c T0 Tm 

a Biting rate (day-1) 

 

Brière 2.71x10-04 14.67 41.00 

EFD Eggs laid per female per day 

 

Brière 2.08x10-02 14.06 32.03 

pEA Probability of mosquito egg-to-adult 

survival 

 

Quadratic -3.36x10-03 7.68 38.31 

MDR Mosquito egg-to-adult development 

rate (day-1) 

 

Brière 1.49x10-04 15.12 37.67 

Lf Adult mosquito lifespan (days) 

 

Quadratic -1.24 16.63 31.85 

b Probability of mosquito 

infectiousness 

 

Brière 9.86x10-04 12.05 32.79 

pMI Probability of mosquito infection 

 

Brière 5.23x10-04 1.51 34.74 

PDR Parasite development rate (day-1) Brière 1.04x10-04 11.50 38.97 

 550 

To initiate the model, we used site-specific values for human population size and 551 

randomly selected one set of values for all sites for the proportion of mosquitoes and 552 

humans in each compartment. For Ecuador, we used population estimates from official 553 

population projections produced by Proyección de la Población Ecuatoriana, por años 554 

calendario, según cantones 2010-2020 555 

(https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/) with population sizes 556 

of 57,366, 279,887, 13,673, and 25,615 for Huaquillas, Machala, Portovelo, and Zaruma, 557 

respectively, based on 2017 projections. For Kenya, we estimated the population sizes 558 
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served by each outpatient care facility by creating a polygon around all the geolocations 559 

of study participants’ homes enrolled at each outpatient care facility and summed 560 

population count data from NASA’s Socioeconomic Data and Applications Center 561 

Gridded Population of the World v4 (https://doi.org/10.7927/H4JW8BX5) within each 562 

polygon using ArcGIS v 10.4.1. We estimated population sizes of 7,304, 547,557, 563 

240,698, and 154,048 for Chulaimbo, Kisumu, Msambweni, and Ukunda respectively. 564 

We used the following values as the initial proportion of mosquitoes and humans in each 565 

model compartment: Sm = 0.22, Em = 0.29, Im = 0.49, Sh = 0.58, Eh = 0.22, Ih = 0.00, and 566 

Rh = 0.20. We determined that the model was invariant to initial proportion values after a 567 

short burn-in period (90 days) based on a sensitivity analysis (Fig. S8).  568 

 569 

We ran all model simulations using the deSolve package in R statistical software v 3.5.3. 570 

Model codes is available at https://github.com/jms5151/SEI-SEIR_Arboviruses.  571 

 572 

Model validation 573 

To validate the SEI-SEIR model, we quantified the relationships between predicted and 574 

observed mosquitoes and laboratory-confirmed disease cases by comparing z-score 575 

values, Pearson’s correlations, sign tests, and Analysis of Variance (ANOVAs). To 576 

determine whether there was overall correspondence between model predictions and 577 

field-collected observations of Aedes aegypti abundances (N = 277 site-months) and 578 

laboratory-confirmed arboviral incidence (N = 388 site-months), we categorized 579 

observations of mosquito abundance or disease cases as corresponding to the model 580 

predictions if the observation fell within one standard deviation above or below the 581 
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prediction (using z-scores of observations and predictions), overpredicted if the 582 

observations were below one standard deviation below the prediction, and underpredicted 583 

if the observations were above one standard deviation above the prediction. To assess the 584 

correlation of individual survey points through time within sites, we calculated Pearson’s 585 

correlation coefficient, r, between model predictions of observations using the cor 586 

function in base R, excluding missing data. To determine whether the model predicted 587 

directional trends in the dynamics, we determined whether model predictions and 588 

observations increased and decreased in unison by first calculating the number of time 589 

points between surveys where predictions and observations of mosquito abundances or 590 

disease cases synchronously increased, decreased, or stayed constant between surveys 591 

and then used the number of time points in agreement and the total number of time points 592 

in a two-tailed exact sign test using the binom.test function in R. To test whether climate 593 

effects were more important for determining differences across sites or whether climate 594 

was differentially predictive in some sites over others, we calculated the yearly 595 

percentage of mosquito and disease case observations predicted by the model and used 596 

those site-year values in a one-way ANOVA using the aov function in R. 597 

 598 

CART model 599 

To investigate conditions where the model systematically over- or underpredicted 600 

mosquito abundances and arboviral cases, we used classification and regression tree 601 

(CART) models. For each CART model, we used the three correspondence categories 602 

(corresponded, overpredicted, underpredicted) as the response variable and a suite of 603 

predictor variables. The predictor variables included site (proxy for socioeconomic status 604 
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and potential prior exposure to disease), country (proxy for genetic, cultural, healthcare, 605 

and infrastructure differences), urban/rural, inland/coastal, and climate conditions in the 606 

month prior to each survey, a time interval commonly associated with arboviral 607 

transmission [6,42,53]. The climate conditions we investigated in the month prior to each 608 

survey were minimum, maximum, mean, and variance of daily temperature and humidity 609 

and 14-day cumulative rainfall. We conducted the CART analysis using the rpart package 610 

in R.  611 

 612 

Comparison of R0 with prior studies 613 

We collected effect sizes of temperature on dengue incidence from 12 peer-reviewed 614 

studies from the literature (Table S3). We selected studies with mean temperatures across 615 

the predicted temperature range where arboviral transmission can occur. We scaled the 616 

coefficient values to visualize the relative effect of temperature across studies given that 617 

the original analyses were conducted with different temperature metrics and across 618 

different temperature ranges. We provide additional information and sources in Table S3. 619 

 620 

Intervention simulations 621 

We simulated different intervention strategies by adapting the SEI-SEIR model and 622 

simulating disease cases over a one-year time period. We simulated three intervention 623 

strategies (reducing contact rate between mosquitoes and humans, reducing immature 624 

mosquito habitat, and reducing mosquito abundance) at three intensity levels (10%, 50%, 625 

and 90% reduction). Each of these simulation strategies preserves the temperature-, 626 

rainfall-, and humidity-dependence of each parameter but modifies the magnitude of one 627 
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or more parameters. To simulate a reduction in contact rate, we multiplied the mosquito 628 

biting rate, 𝑎, by 0.10, 0.50, or 0.90. To simulate a reduction in immature mosquito 629 

habitat, we multiplied the carrying capacity function equation, 𝐾 (equation 12), by 0.10, 630 

0.50, or 0.90. To simulate a reduction in mosquito abundance, we reduced the proportion 631 

of mosquitoes in the susceptible, exposed, and infectious compartments by 0.10, 0.50, or 632 

0.90. In contrast to the first two interventions that are considered relatively “static” (e.g., 633 

adding screens to windows will consistently reduce contact rate), the third intervention 634 

represents an activity that is labor intensive and is applied at a single time point (e.g., 635 

spraying insecticide). Therefore, for the third intervention, we ran simulations where the 636 

intervention occurred once a year and we varied the timing of the intervention by month 637 

(e.g., 12 simulations per intensity level). 638 
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