Abstract
Brown rats (Rattus norvegicus) thrive in urban environments by navigating the anthropocentric environment and taking advantage of human resources and by-products. From the human perspective, rats are a chronic problem that causes billions of dollars in damage to agriculture, health and infrastructure. Did genetic adaptation play a role in the spread of rats in cities? To approach this question, we collected whole-genome sequences from 29 brown rats from New York City (NYC) and scanned for genetic signatures of adaptation. We tested for (i) high-frequency, extended haplotypes that could indicate selective sweeps and (ii) loci of extreme genetic differentiation between the NYC sample and a sample from the presumed ancestral range of brown rats in northeast China. We found candidate selective sweeps near or inside genes associated with metabolism, diet, the nervous system and locomotory behavior. Patterns of differentiation between NYC and Chinese rats at putative sweep loci suggests that many sweeps began after the split from the ancestral population. Together, our results suggest several hypotheses on adaptation in rats living in close proximity to humans.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* P.S.P. and J.M.-S. jointly supervised this work