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Abstract 
The rise of antimicrobial resistant Neisseria gonorrhoeae is a significant public health concern. 
Against this background, rapid culture-independent diagnostics may allow targeted treatment 
and prevent onward transmission. We have previously shown metagenomic sequencing of 
urine samples from men with urethral gonorrhoea can recover near-complete N. gonorrhoeae 
genomes. However, disentangling the N. gonorrhoeae genome from metagenomic samples and 
robustly identifying antimicrobial resistance determinants from error-prone Nanopore 
sequencing is a substantial bioinformatics challenge.  
 
Here we demonstrate an N. gonorrhoeae diagnostic workflow for analysis of metagenomic 
sequencing data obtained from clinical samples using R9.4.1 Nanopore sequencing. We 
compared results from simulated and clinical infections with data from known reference strains 
and Illumina sequencing of isolates cultured from the same patients. We evaluated three 
Nanopore variant callers and developed a random forest classifier to filter called SNPs. Clair was 
the most suitable variant caller after SNP filtering. A minimum depth of 20x reads was required 
to confidently identify resistant determinants over the entire genome. Our findings show that 
metagenomic Nanopore sequencing can provide reliable diagnostic information in N. 
gonorrhoeae infection. 
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Introduction 
Antimicrobial resistant Neisseria gonorrhoeae is a major public health threat, with only limited 
treatment options available.1 We have recently described that rapid long-read sequencing using 
the Oxford Nanopore Technologies (ONT, Oxford, UK) R9.4.1 platform offers the potential to 
detect and sequence near-complete N. gonorrhoeae genomes directly from urine samples.2 
This clinical metagenomic approach has the advantage that it does not require prior bacterial 
culture, which typically adds 2-3 days to diagnostic workflows and may not be available in all 
cases, particularly in settings where diagnostics are based on molecular testing alone. With 
analysis possible during sequencing,3 it could potentially offer a same day diagnostic tool for 
gonorrhoea infection that can guide antimicrobial treatment. 
 
ONT data has several potential advantages in addition to speed and the portability of the 
diagnostic platform. The long reads generated can allow taxonomic classification with greater 
specificity than is possible with short reads.4 Additionally, as reads containing antimicrobial 
resistance determinants (with the exception of those on plasmids) contain greater amounts of 
genetic context than is found with short reads, assignment of resistance determinants to a 
species is more precise. However, ONT data contains a substantial per base error rate of up to 
10% with assemblies containing open reading frame disrupting insertion or deletion errors.5 
Generation of hybrid assemblies with short-read data to mitigate the error rate6 negates the 
speed and portability available with ONT. If Nanopore sequencing is to be used alone for 
pathogen sequencing applications directly from clinical samples, e.g. for antimicrobial 
resistance prediction and transmission tracking, then this needs to be overcome. 
 
Previous work,7 demonstrates that Nanopore 2D based sequencing of N. gonorrhoeae isolates 
can be used to identify drug resistance determinants and to undertake phylogenetic inference. 
However, this work was undertaken on isolates, rather than clinical samples directly and 
Nanopore 2D sequencing has since been deprecated. This study7 also found some differences 
between the phylogenies obtained from ONT and Illumina sequencing of the same isolates as a 
result of differences in consensus sequences called by the two methods. Most of the previous 
work optimising consensus sequence calling from Nanopore data has been undertaken 
following viral sequencing, e.g. of Ebola using Nanopolish.8 Some authors have successfully 
transferred these approaches to bacterial sequence data, e.g. Escherichia coli using an 
optimised application of the GATK package.9 
 
Here, we build on this work by releasing a packaged workflow for analysis of 1D R9.4.1 
Nanopore data from N. gonorrhoeae obtained from direct sequencing of clinical samples. To 
generate a whole-genome consensus sequence, we use a variant calling approach from aligned 
reads. For resistance determinant detection we adopt multiple approaches including analysing 
reads aligned to specific genes. For more diverse genes we use assembled contigs to first select 
a reference gene before undertaking alignment. 
 

Methods 
We developed an optimised workflow to deliver several outputs from metagenomic sequence 
data containing N. gonorrhoeae: i) classification of sequence reads by species of origin to allow 
the presence/absence of N. gonorrhoeae to be determined, ii) identification of N. gonorrhoeae 
antimicrobial resistance determinants and iii) a consensus whole-genome sequence to facilitate 
comparisons between genomes for tracking transmission. 
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Data sources 
To develop and test the performance of our workflow we used ONT data generated in a 
previous study,2 from metagenomic sequencing of N. gonorrhoeae nucleic acid amplification 
test (NAAT)-negative urine samples spiked with varying concentrations of three WHO N. 
gonorrhoeae reference strains: WHO F, WHO V, and WHO X. Additional data from ONT 
sequences of isolates WHO Q10,11 and H18-20812 were also used. Details of sequences and 
accession numbers are given in Table 1. ONT data were compared with Illumina data available 
for the reference strains and clinical isolates, which was used as a gold standard together with 
published descriptions of the variants present.10,12,13 Illumina data were processed as described 
previously.14,15 
 

Strain  
(alternative 
name) 

Sample type Resistance 
present 

Resistance 
determinants 

Nanopore 
sequence data: 
N. gonorrhoeae 
gigabases / 
total gigabases 
(%) 

Accession 
numbers for 
ONT and 
matched 
Illumina data 

Reference 

WHO F Metagenomic 
(spiked urine) 

- -  
3.968 GB 
/15.729 GB 
(34%) 

ERS4214385 
(SAMEA644882
5) 
SAMN03201670 
(SRR1661324) 

16,17 

WHO V (H041) Metagenomic 
(spiked urine) 

Penicillin, high-
level 
azithromycin, 
ciprofloxacin, 
tetracycline 
 

penA variant, 
mtrR promoter 
deletion of A, 
porB, ponA, 
gyrA, parC, 23S 
rRNA A2059G, 
rpsJ variants, 
TEM1 plasmid 

9.347 GB / 
15.771 (73%) 

ERS4214375 
(SAMEA644881
5) 
SAMEA3905804 
(ERS1092938) 

16 

WHO X (F89) Metagenomic 
(spiked urine) 

Penicillin, 
ceftriaxone, 
azithromycin 
(intermediate), 
tetracycline, 
ciprofloxacin 

penA variant, 
mtrR promoter 
deletion of A, 
porB, ponA, 
gyrA, parC, rpsJ 
variants 

6.631 GB / 
10.671 (68%) 

ERS4214384 
(SAMEA644882
4) 
ERR1447937 
(SAMEA244846
8) (WGSIM) 

16 

WHO Q (G7944) Sequenced 
isolate 

Penicillin, 
ceftriaxone, 
high level 
azithromycin, 
tetracycline, 
ciprofloxacin 

penA variant, 
mtrR promoter 
deletion of A, 
mtrR, porB, 
ponA, gyrA, 
parC, 23S rRNA 
A2059G, rpsJ 
variants, tetM 
plasmid 

2.642 GB / 
2.642 GB Y 
(100%) 

ERR2560197 
(SAMEA464146
2)  
ERR2560139 
(SAMEA464105
0) 

10 

H18-209 Sequenced 
isolate 

Penicillin, 
ceftriaxone, 
azithromycin 
(intermediate), 
tetracycline, 
ciprofloxacin 

penA variant, 
mtrR promoter 
deletion of A, 
porB, ponA, 
gyrA, parC 
variants 

3.668 GB / 
3.668 GB 
(100%) 

ERS4280418 
(SAMEA651599
7) 
ERS4281303 
(SAMEA651688
3) 

12 

 
Table 1. Sequenced isolates and samples. Resistance to azithromycin, ciprofloxacin, tetracycline, penicillin and ceftriaxone is 
listed with associated genetic determinants. More details on the specific resistance variants can be found in.10,12,13 

 
In addition, we also tested our final algorithm on 10 nanopore metagenomic sequences from N. 
gonorrhoeae positive urine samples obtained from men with symptomatic urethral gonorrhoea, 
described previously.2 Cultured isolates from the same infections were sequenced with an 
Illumina MiniSeq, following the manufacturer’s instructions, to allow for comparisons. 
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Workflow 
Our end-to-end workflow is written in Nextflow’s domain specific language18 and consists of 
various open source programs and databases (see supplemental material, Figure S1). A second 
workflow was used to determine the thresholds needed to filter SNPs based on input 
sequences, truth sequences, and the variant caller used. Both workflows can also be found 
within a GitLab repository (https://GitLab.com/ModernisingMedicalMicrobiology/ngonpipe). 
 

Base calling 
Raw Nanopore reads were base called with guppy version 3.1.5+781ed57 using the high 
accuracy HAC models (dna_r9.4.1_450bps_hac.cfg, template_r9.4.1_450bps_hac.jsn). Runs had 
single barcodes per flow cell so were not demultiplexed. 
 

Read classification with Centrifuge and read binning 
Taxonomic classification of base called Nanopore reads was performed using Centrifuge version 
1.0.4-beta19, with a database built from NCBI refseq genomes including bacteria and virus 
genomes deposited as of 10 August 2018 as well as the Human HG18 reference genome. 
Centrifuge was run with a minimum hit length of 16 (--min-hitlen 16) and reporting a single 
distinct primary assignment for each read (-k 1). Reads that were classified as, or a strain of, N. 
gonorrhoeae were collected in a separate fastq file using a custom python script (bin_reads.py) 
available within the GitLab repository. 
 

Genome alignment 
To reduce errors arising from reads from other species mapping to similar genes in the N. 
gonorrhoeae genome, as observed in other metagenomic samples e.g. with Mycobacterium 
tuberculosis,20 only reads classified as N. gonorrhoeae were aligned. N. gonorrhoeae reads were 
mapped to the NCCP11945 N. gonorrhoeae reference genome (accession NC_011035.1) using 
minimap221 using settings for Nanopore data (-ax map-ont). Aligned reads were filtered to 
remove alignments with a map quality score less than 50 and sorted and indexed using 
samtools.22 
 

Subsampling genome depth 
To understand the effect of read depth on variant calling accuracy, aligned bam files for each of 
the five isolates were subsampled. A custom wrapper script (subSampleBam.py, in the GitLab 
repository) for “samtools view”22 was used to target 2, 5, 10, 20, 50 and 100x average coverage 
depths. 
 

Variant calling 
Variants were called from the aligned Nanopore reads to either the full genome, or, for variable 
genes, after remapping to the closest available resistance gene allele from the NG-STAR 
database (https://ngstar.canada.ca). Several variant callers were tested. Nanopolish version 
0.11.123 was used with the methylation aware options (--methylation-aware dcm,dam), --fix-
homopolymers, and ploidy set to 1 (--ploidy 1). Medaka version v0.10.0 
(https://github.com/nanoporetech/medaka) was used with the consensus and variant 
subcommands. Clair callVarBam (git commit 54c7dd4)24 was used with default ONT settings. 
Additional information was acquired from pysamstats version 1.1.2 
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(https://github.com/alimanfoo/pysamstats, pysam 0.15.2) using the variation strand (-t 
variation_strand) option. 
 
Variants identified by the variant callers were filtered based on metrics generated by 
pysamstats together with Nanopolish, Medaka, or Clair. Filtering was undertaken using a 
random forest classifier, using the scikit-learn package,25 by comparing Nanopore variant caller 
outputs and “truth” data from Illumina sequencing of the same isolate. As the purpose of the 
classifier was to filter potential variants identified by the variant caller, only these sites were 
used for training. However, summaries of the performance of the classifier at the whole 
genome level are provided in the results. We defined true positive (TP) SNPs as those that were 
called and passed by both methods, false positive (FP) Nanopore SNPs that were not found with 
Illumina sequencing and true negative (TN) sites were called as wild-type by both methods. 
Sites could be falsely negative (FN) by Nanopore where an Illumina SNP was either missed by 
the variant caller initially or filtered out incorrectly by the random forest classifier. 
 
To train and test the classifier we used the Nanopore and Illumina sequence for each of the five 
isolates. To include read depth as a component of the SNP classification, the five genome 
strains were sub sampled to six target depths of 2, 5, 10, 20, 50, and 100x coverage. All sites 
from each of the 30 subsampled genomes were randomly divided into a 50% training and 50% 
validation set. Default hyperparameter values were used. Reported performance metrics 

include sensitivity or recall, !"#$%% = 	 ()
()	*	+, and precision (or positive predictive value for a 

variant call), -."#/0/12	 = 	 ()
()	*	+).  

 
We considered the following additional metrics obtained using Nanopolish and pysam as input 
features for the classifier: Variant quality (QUAL), Nanopolish support fraction (Support 
fraction), total number of reads aligned to each position (Total reads), proximity to the nearest 
variant in base pairs (proximity), the combination of reference and variant base (baseChange), 
the proportion of bases the same as the majority base (majority base %), concordance between 
dominant base and the variant reported (Top base matches variant caller), and proportion of 
reads that are indels (deletions %, insertions %). This was repeated for Medaka and Clair with 
the exception of the Support fraction metric that is specific to Nanopolish. 
 

Indel detection within the mtrR promotor 
Indels were detected at specific positions within the bam file using a bespoke python script 
(indel_class.py, available in the GitLab repository), that uses pysam (https://github.com/pysam-
developers/pysam) to count the proportion of inserted reads at a position. 
 

Whole genome assembly (WGA) 
Binned reads were filtered for length and quality using Filtlong26 for a minimum length of 1000 
bp (--min_length 1000), keeping up to 90% of bases (--keep_percent 90) and using a target 
bases value of 500 mega bases (--target_bases 500000000) as determined in previous work on 
long read assembly.6 Filtered reads were assembled into contigs using Ra27 using the -x ont 
parameters. 
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Local gene assembly (LGA) and remapping for penA characterisation 
For highly variable genes, i.e. penA, mapping to a single reference sequence was not possible 
given the diversity present. Therefore, reads containing genes of interest were identified and 
isolated using minimap2 and the bin_reads.py script. These local reads were subsequently 
assembled using wtdbg2 version 2.328 with a longest subread of 3 kb (-L 3000), i.e. the default 
setting at the time the workflow was developed. A database of available alleles for penA was 
created using the alleles available within the NG-STAR database at https://ngstar.canada.ca. 
The closest matched allele for each gene was determined using blastn29 to search the LGA/WGA 
contigs. The closest match was chosen as having greater than 95% subject coverage and the 
highest bitscore. The closest matched allele was then used as a reference to realign binned 
reads against, using the same mapping and variant calling methods described above. 
 

Neisseria gonorrhoeae antibiotic resistance determinant identification 
Following the data processing outlined above, the remaining antimicrobial resistance 
determinants were identified similarly to our previous approach15 developed for short-read 
sequencing of isolates. Variants in the following genes in the NG-STAR scheme were sought: 
penA, mtrR, porB, ponA, gyrA, parC, 23S rRNA, as well as rpsJ mutations and tet family genes 
conferring resistance to tetracycline. Amino acid changes were identified using variant calls in 
VCF format converted to consensus DNA sequences and then translated. Mutations and 
variants in promoter sequences were identified from the consensus DNA sequences.  
 
For penA, exact matches with one of the alleles in the NG-STAR database were sought (as all 
isolates / references sequenced were already in the database), but variation from these could 
also be detected.  
 
To identify mutations in each of the four copies of the 23S rRNA genes associated with 
macrolide resistance, the four 23S rRNA loci were independently examined for depth of 
coverage and base changes. This is in contrast to previous approaches using short-read data 
where the different loci had to be analysed together by mapping to a single copy of the gene.15  
 
Antimicrobial resistance conferred by the presence of a specific accessory gene, e.g. plasmid 
associated tetM/blaTEM-1, was identified using an assembly strategy. Reads were identified 
using minimap2 overlaps (-x ava-ont) of all the basecalled reads against a database of accessory 
gene sequences and assembled with WTBDG2. The resulting contigs were analysed for 
tetM/blaTEM-1 sequence and known carrier plasmids for Neisseria gonorrhoeae using blastn 
searches of the same database including pEP5289 (GU479464), pEP5233 (GU479465), pEP5050 
(GU479466) for and tetM30 and pEM1 (HM756641.1), pGF1 (U20421), pJD5 (U20375) and pJD7 
(U20419) for blaTEM-131. 
 

Phylogenetic inference 
We compared phylogenetic inferences using Nanopore and Illumina data using whole genome 
consensus sequences produced after filtering. To reduce the number of false positive and false 
negative Nanopore SNP calls we also tested additionally masking positions (i.e. setting the base 
to N) were the proportion of reads supporting the called base was less than a given threshold, 
e.g. 0.8. Maximum likelihood phylogenetic trees were constructed with IqTree (v1.6.1)32 and 
branch lengths readjusted to account for recombination with ClonalFrameML (v1.11-1)33 using 
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default settings. The workflow used is provided within the Nextflow workflow, and is based on 
runlistcompare (https://github.com/davideyre/runListCompare). 

Results 
Data from ONT (Table 1) sequencing of five Neisseria gonorrhoeae containing samples were 
used for initial method development: three metagenomic sequences of urine samples spiked 
with known reference strains (WHO F, V and X) and two from sequencing of isolates (WHO Q 
and H18-208). The median sequencing depth was >100x for each sample, and coverage breadth 
was 97%-99.7% at 1x coverage or higher (Figure S2). Each sequence was subsampled to varying 
depths between 2x and 100x.  
 

Tuning variant calling 
Variants were called for each subsampled genome using Nanopolish, Clair and Medaka. 
Previous Illumina sequences of the same isolates were used as a “truth set” or “gold standard” 
(Table S1). All three variant callers identified numerous false positive SNPs, compared to the 
Illumina data. Variant caller reported QUAL scores were unable to reliably differentiate false 
and true SNPs (Figure 1), e.g. using Nanopolish and a QUAL score cut-off of ≥25 for calling 
variants, at 100x coverage, recall was 0.94-0.97, precision 0.68-0.99, and number of false SNPs 
32-1870 across the five genomes. Recall, precision, and false-positive rates for Medaka and 
Clair were even worse (Figure 1, Table S2). 
 

 
Figure 1. Detection of SNPs using QUAL scores alone. Swarm plots of true (orange) and false SNPs (blue) detected by Clair (top 
row), Nanopolish (middle row), and Medaka (bottom row). Each column is a different sequence. Each row has different y-axis 
values. 

 
To improve performance, we trained a random forest classifier to filter the variants using input 
features from samtools and the variant callers (detailed in the Methods). Performance was 
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assessed using the 50% of bases in the validation set for each genome across all subsampled 
depths. This approach improved the area under the curve (AUC) for true SNP identification for 
Nanopolish from 0.86 using a QUAL threshold alone to 0.98 (Figure 2). For Medaka, the AUC 
improvement was less pronounced, from 0.93 to 0.97. Clair saw the biggest relative 
improvement from 0.84 to 0.97. 

 
Figure 2. Random forest based variant filtering using Nanopolish, Medaka and Clair. (A) Receiver operator curve (ROC) for 
random forest classifier using different features including Quality (QUAL only, dashed line) and a composite selection of input 
features (Composite, solid line) for Nanopolish (green), Medaka (orange) and Clair (blue). Area under the curve (AUC) for each 
variant caller, Nanopolish 0.86 to 0.98, Medaka 0.93 to 0.97, Clair 0.84 to 0.97, using Qual and Composite features respectively. 
(B) Bar chart of feature importance for composite selection of features used to train the classifier.  

 

Impact of depth of coverage 
Using our trained classifier, we assessed the impact of depth of coverage on SNP detection, 
reporting findings across the whole genome. Increasing coverage up to 20x improved SNP 
detection, e.g. using Nanopolish, SNP sensitivity was 0.35-0.56, 0.88-0.92 and 0.93-0.95 at 2x, 
10x, and 20x coverage respectively across the five genomes (Figure 3A). Medaka had recall 
rates ~5% lower than Nanopolish and Clair. Higher coverage depth also reduced the number of 
false positive SNPs (Figure 3B). Nanopolish had fewest false positives at depths <20x coverage. 
At 100x coverage, the numbers of false SNPs per genome ranged from 8 to 13 using Nanopolish 
(i.e. <1 in 100,000 bases), 7 to 28 using Medaka, and 15 to 130 using Clair (Figure 3), with recall 
rates of 93-95%, 85-92% and 94-98% respectively. 
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Figure 3. SNP recall by median depth of coverage (A). False Positive SNPs (FP) by median depth of coverage (B). Colour 
represents different sequences, shapes represent variant callers, circles are Clair, crosses are medaka, squares are Nanopolish. 
Inserts show upper and lower regions of the y-axis in more detail for panels A and B respectively. 

 

Recall performance in important regions and missing SNP calls 
We used Clair for subsequent analyses as it offered similar performance to Nanopolish, without 
requiring resource intensive access to fast5 files. In common with all variant callers tested, Clair 
missed SNPs (1.5-3%) such that they were not available at the filtering step. If these errors 
occur systemically, they do not affect comparisons between genomes, however if they occur 
randomly, they can lead to genomes appearing falsely more similar or different.  
 
Missed SNPs were associated divergence from the reference genome, such that missed SNPs 
were more closely located to other SNPs (Figure S3). Therefore, for antimicrobial resistance 
prediction, we only called variants on chromosomal genes with low expected diversity, and 
selected the closest reference genes for diverse targets, i.e. penA. Missed SNPs were not seen 
within gyrA, porB, mtrR, parC, ponA at coverage depths >10x (Figure S4).  
 

Antimicrobial resistance determinant identification in conserved genes 
Antimicrobial resistance determinants were reliably identified by all three variant callers with 
only a handful of exceptions. All four copies of the 23S rRNA gene were identified separately 
using long nanopore reads. WHO V and WHO Q contain 4 copies of the A2059G mutation 
conferring high-level azithromycin resistance. All four mutations were identified at 5x, 10x or 
20x coverage using Clair, Nanopolish or Medaka respectively (Table S3). Mutations conferring 
substitutions at positions 91 and 95 in GyrA and at positions 86-88 in ParC confer ciprofloxacin 
resistance. These amino acids were correctly identified in GyrA for all genomes at ≥10x 
coverage with Clair and Nanopolish, but Medaka failed to detect 95N in WHO X at any depth. 
Expected results were obtained for ParC for all variant callers even at 2x depth (Table S4). 
Similarly, ponA and rpsJ mutations (associated with penicillin and tetracycline resistance 
respectively) were identified at all depths with all variant callers. 
    

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.939322doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939322
http://creativecommons.org/licenses/by/4.0/


11 
 

Two different types of mutations were examined for the mtrR gene, the G45D substitution and 
promoter variants, which are associated with resistance to azithromycin, ceftriaxone, penicillin 
and tetracycline. The amino acid at position 45 was corrected called for all genomes at all 
depths and with all variant callers, except at 2x coverage for WHO Q with medaka (Table S4). A 
deletion single-base deletion within the promoter, present within all genomes studied except 
WHO F, was also detected. As the reference sequence contained the deletion, it was expected 
to be detected as an insertion in WHO F. This insertion was only detected by Nanopolish with 
100x coverage. Medaka and Clair detected the insertion at all depths, but also incorrectly 
identified the insertion in WHO X at ≤5x coverage (Table S5). As indels were not part of our SNP 
filtering, we developed a heuristic filter for the insertion: 40% or more reads containing an 
inserted adenosine, with a coverage depth >5x, suggested wild type genotype (Figure S5). 
 

penA characterisation using whole genome and local de novo assemblies 
The penA gene, associated with penicillin and ceftriaxone resistance, is a chromosomal 
antimicrobial resistance determinant with relatively high nucleotide sequence variation within 
N. gonorrhoeae species arising from recombination events. We identified it using whole-
genome and local de novo assemblies followed by mapping the closest known allele.  
 
The required average coverage depth to generate contigs containing the penA gene was 
variable between strains (Table S6): H18-208, WHO Q, WHO X, WHO V consistently providing 
the correct allele with depths of ≥10x. WHO F required 50x coverage for WGA method to recall 
the allele. The local assembly approach worked for all strains from 10x coverage and higher, it 
demonstrated better sensitivity at lower read coverage, but did not provide as much genomic 
context. 
      

Detection of plasmid mediated resistance determinants 
Plasmid carried tetM and blaTEM-1 confer tetracycline and penicillin resistance respectively. 
Reads containing tetM or blaTEM-1 sequence were extracted and assembled. To determine if 
the plasmids were consistent with those in N. gonorrhoeae rather than other contaminating 
species present, we analysed the gene and flanking plasmid sequence. To reliably confirm the 
presence of these genes contigs containing blaTEM-1 or tetM needed to share >60% sequence 
proportion matching a known carrier plasmid (Figure S6) with >95% sequence identity. Using 
this heuristic threshold, it was possible to correctly determine that WHO Q and WHO V 
contained tetM and blaTEM-1 respectively. 
 

Longer reads improve metagenomic species disentanglement 
To avoid erroneous results arising from DNA from other species only reads classified as 
Neisseria gonorrhoeae to the species level were used for analysis. By limiting the analysis to 
only this subset of reads, there is a risk of missing regions of the genome by filtering reads that 
assign to a lower taxon34. We therefore tested the expected proportion of the N. gonorrhoeae 
genome that would be classified to the species level by simulation (Figure S7). In contrast to 
other species, N. gonorrhoeae could reliably be identified to the species level with read lengths 
of a few hundred base pairs. The mean read length from our sequencing was between 2-4 kb2, 
which enabled a high proportion of N. gonorrhoeae sequence to be assigned to the species 
level. 
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Further filtering to remove false SNP calls 
When using SNP data to reconstruct transmission events, false SNPs can lead to transmission 
being incorrectly excluded or deemed unlikely. Similarly, missed SNPs occurring at random, 
where the consensus sequence is wrongly set to be wild-type can increase measured genetic 
distance between two similar strains. In contrast, the expected sequence difference at filtered 
sites, where the base is unknown, can be adjusted for in proportion to the percentage of the 
genome filtered and variation in the known genome. Therefore, for transmission studies, a 
strategy of favouring removing false-positive and false-negative SNPs over recall is preferred. 
To achieve this, the SNP classifications were further filtered by masking nucleotide 
classifications to N if the proportion of bases at a given position supporting the classification 
was <0.8. This value was chosen as the proportion of true-positive SNPs with support <0.8 is 
relatively low, but this threshold is sufficiently high to avoid most false negative calls (Figure 
S8).  
 
By using this final filter with Clair base-called data at 100x coverage, the number of false-
positive SNPs was reduced from 15-130 to 9-35 across the five genomes analysed, Table 2. The 
number of false-negative SNPs also fell from 49-249 to 4-19. Overall this resulted in false SNP 
rates (false negative + false positive SNPs) falling from 66-428 to 15-45, with a reduction in 
recall from 0.93-0.99 to 0.76-0.94, which is likely to still remain acceptable for most 
transmission studies. 
         

Sample Total SNP 
positions 

Filtered 
FN 

Filtered 
FP 

Filtered 
TP 

Unfiltered 
FN 

Unfiltered 
FP 

Unfiltered 
TP 

Unfiltered 
Recall 

Filtered 
Recall 

H18-208 4297 12 9 3740 289 130 4008 0.93 0.87 

WHO F 6095 19 12 5660 130 15 5965 0.98 0.93 

WHO Q 3844 12 4 2913 167 16 3677 0.96 0.76 

WHO V 1799 4 11 1620 49 17 1750 0.97 0.90 

WHO X 3366 10 35 3153 50 45 3316 0.99 0.94 

Table 2. Recall rates for filtered and unfiltered spiked genomes, variant called with Clair and a random forest classifier. Show 
with (“Filtered) and without (“Unfiltered”) additional filtering by requiring 80% of bases to support the called nucleotide. Data 
shown for 100x coverage. 

Application of the workflow on clinical samples 
We analysed previously generated nanopore metagenomic sequencing data from ten urine 
samples from men with urethral gonorrhoea. We compared findings with our workflow to 
Illumina data obtained as part of this study from sequencing isolates from the same infections. 
By nanopore sequencing, ≥92.8% coverage of an N. gonorrhoeae reference genome was 
achieved in all samples, with ≥93.8% coverage breath at ≥10-fold depth in 7. 
 
All resistance gene SNPs were correctly identified in the metagenomic clinical samples (Table 
S7). Using the heuristic method, the mtrR promoter deletion was correctly detected in samples 
202, 250, 301 and 314, and the wild-type sequencing in samples 271, 294 and 315. However, 
sample 303 was incorrectly identified, with only 11x mean genome coverage depth and 8x 
coverage over the mtrR gene suggesting a lack of sequencing depth to accurately call the 
position, as in Table S7. The penA allele was correctly identified in 9 of the 10 clinical samples 
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(Table S8). All clinical metagenomic samples identified corresponded with Illumina sequenced 
cultures at 100% identity according to blastn results. Sample 303 produced insufficient data to 
detect the penA gene. It was also possible to determine that samples 206, 271, 294 and 304 
contained the tetM gene on the pEP5050 plasmid, and samples 294 and 303 contained the 
blaTEM-1 gene on the pEM1 plasmid (Figure S8).  
 
By producing a Nanopore consensus sequence with only high probability SNPs added, and sites 
with <80% support set to N, i.e. unknown, conventional tree building methods can be used. This 
approach demonstrated comparable findings between cultured isolates sequenced with 
Illumina and clinical metagenomic samples sequenced with Nanopore (Figure 4). Samples 303 
and 304 provided insufficient data to generate complete consensus sequences (only 53 and 
56% of the reference genome length was identified). For the remaining 8 clinical samples and 5 
method development sequences the median (IQR) [range] genetic distance between the 
Illumina and Nanopore sequences from the same infection was 5 (3-6) [1-10] SNPs, which is 
close enough to make transmission studies possible using metagenomic data alone. 
 

  
Figure 4. Recombination-corrected maximum likelihood tree of metagenomic nanopore and paired Illumina isolate sequences. 
All nanopore consensus sequences were generated from metagenomic sequencing with the exception of H18-208 and WHO Q 
which were sequenced from isolates. 
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Discussion 
We demonstrate an approach that allows Nanopore sequencing data to be used to reconstruct 
accurate consensus bacterial genomes. This can be done without accompanying Illumina short-
read data and can be applied to metagenomic sequencing data. We show the reconstructed 
genomes allow accurate resistance detection and transmission inferences to be made in N. 
gonorrhoeae, including using samples obtained from clinical infections.  
 
We evaluated three variant callers, Nanopolish, Medeka, and Clair, against Illumina variant 
calling from sequenced cultures. After filtering variant calls with a trained random forest 
classifier, we found that Clair performed better than Nanopolish and Medaka, identifying 94-
98% of SNPs present in Illumina sequences at 100x coverage, compared to 93-95% and 85-92% 
respectively. However initially Clair had the highest number of false positive SNPs per genome 
(15-130, compared to 8-13 and 7-28 respectively). By using further filtering, requiring the 
proportion of reads supporting any call to be ≥0.8, the number of false positive SNPs could be 
reduced using Clair to 4-35/genome, albeit with a reduction in SNP detection to 76-94%. 
Importantly, this filtering and masking approach also reduced the number of false-negative 
SNPs from 49-289/genome to 4-19/genome, that would otherwise increase genetic distance 
during phylogenetic inference. For variant detection in resistance genes specifically, Clair was 
able to detect all the important SNPs with a coverage of 10x and above, whereas Medaka 
missed an important SNP in the WHO X strain.  
 
Medaka (v0.10) is still an early release experimental research tool that is focused more on 
diploid variant calling and haplotype phasing rather than the application tested here. Medaka 
and Clair have the advantage of not requiring the fast5 files which have a huge storage and 
computational requirement. The threshold analysis workflow written here has been designed 
to drop in different variant calling components, to allow for testing new variant calling options 
in future. 
 
As our Illumina data truth set pipeline only produced SNP calls, our current variant call filtering 
was limited to SNPs. Indels were not considered except for the mtrR promoter region where a 
bespoke heuristic method was used. Therefore, further work on the Illumina sequences will be 
needed to provide a truth set for indel data to allow the development of robust indel calling 
from Nanopore data, which may also improve with future Nanopore pore technology. 
 
By subsampling reads to produce artificially reduced coverage depths, we have determined the 
required depth needed to accurately call variants from Nanopore data: 10x fold coverage is 
sufficient to define resistance determinants with minimal increase in recall above 20x fold 
coverage. 
 
We were successfully able to detect relevant N. gonorrhoeae antimicrobial resistance 
determinants conferring resistance to clinically important antibiotics across all samples tested 
with a coverage depth above 10x. Most variants could be detected from appropriately filtered 
variant calls from mapped data and penA allele determination could be achieved using a 
combined assembly and mapping approach. The WGA approach provided more genomic 
context around the penA allele, that could guarantee the allele was from Neisseria gonorrhoeae 
and not a contaminating commensal, whereas LGA performed better at lower read depths. Ra 
was chosen as the assembler for WGA as WTDBG2 (redbean) produced some mis-assembly that 
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prevented remapping of reads to the penA locus (data not shown). However, Ra failed to 
produce contigs for most of the attempts when used for the LGA. It was possible to recover the 
four 23S rRNA loci separately from each sample containing the expected A2059G mutation. This 
was not possible using short read Illumina sequencing. The Nanopore read length allowed us to 
span the entire gene with enough genomic context to confidently map to each locus 
independently.  
 
Our final consensus sequence comparison yielded a median of 5 SNPs between Illumina and 
Nanopore sequences. Although this does not match the reproducibility seen in Illumina 
sequencing of isolates,14 it is close enough to judge whether infections are part of specific 
transmission clusters, even if precise reconstruction of individual transmission events may 
remain challenging with Nanopore data alone. 
 
The current generation of ONT flow cells used in this analysis is R9.4.1. However, new pores 
such as R10 are currently in development and may offer increased accuracy. The validation part 
of this workflow should be run on new sequences generated by future pores to set new 
threshold values and filtering models that are appropriate to these new pore error profiles. 
 
The approaches we have developed provide a mechanism for determining antimicrobial 
resistance and undertaking transmission tracking using clinical samples. This, taken together 
with recent advances in optimising DNA extraction for metagenomic Nanopore sequencing of 
N. gonorrhoeae direct from urine samples2, this now provides an opportunity to test the 
performance of Nanopore sequencing as a clinical diagnostic in N. gonorrhoeae infection. 
Furthermore, this approach may have wide applicability across a range of bacterial pathogens, 
not just N. gonorrhoeae. Evaluations in clinical datasets will allow the potential utility of our 
approaches to be further investigated and potentially provide new diagnostics to guide patient 
and public health management of gonorrhoea. 

Data availability 
Nanopore data is available in project accessions PRJEB35173 and PRJEB26560. Illumina 
sequenced culture isolates are available in project accession PRJNA603903. Data analysis 
workflow is available as git repository 
(https://gitlab.com/ModernisingMedicalMicrobiology/ngonpipe.) 
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Supplemental Figures 
 

 
Supplemental Figure S1. Basic workflow schematic. For antimicrobial resistance prediction mtrR, porB, ponA, gryA, parC, 23S 
rRNA are identified from the consensus sequence obtained from mapping to the default reference, penA uses a custom reference 
- see right-hand branch of schematic. Genes present on plasmids (tetM, blaTEM) are identified by mapping to a collection of 
accessory genes. 
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Supplemental Figure S2.  Sequence coverage depth and breadth in original and subsampled data. (A) Median depth achieved 
from subsampling bam files and original unsampled bam files (Full). (B) Coverage breadth at each target depth. 

 

 
Supplemental Figure S3, box and whisker plots of detected and missed SNPs and proximity to closest genuine SNP using each 
variant caller. 
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Supplemental Figure S4. SNP detection in N. gonorrhoeae genes associated with antimicrobial resistance. Bar plots showing 
number of positions with different SNP types (columns) detected by Clair in important genes (rows). From left to right: gyrA, 
porB, mtrR, parC, ponA. From top to bottom: True positives (TP), False positives (FP), False negatives (FN), Missed SNPs, no reads 
covering gene. All plots share a y-axis axis of number of positions classified and x-axis of target depth of coverage. Colours 
represent each sequence used. The 23S gene was masked from Illumina mapped reads as the read lengths were too short to 
distinguish different loci and are therefore not compared here. 
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Supplemental Figure S5. mtrR promoter deletion of adenosine base. The reference genome used contains the deletion, and the 
true wild-type is represented by an insertion. Percentage of reads with an inserted base at position 1332810 in reference 
NC_011035.1. 

 

 
  
Supplemental figure S6 detection of plasmid-borne resistance genes. Proportion of the query sequence (assembled contig) 
matching a known carrier plasmid (y-axis) over validation of the sample containing tetM or blaTEM-1 (x-axis), colours represent 
samples (A). Percentage identity between the matching contigs and carrier plasmid (y-axis) over proportion of the query 
sequence matching a known carrier plasmid (x-axis), colour represents validation of containing tetM or blaTEM-1 (B). 
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Supplemental figure S7. Taxonomic assignment by read length. Simulated raw reads for N. gonorrhoeae and two comparison 
species. 

 
 
 

 
Supplemental Figure S8. Filtering SNP calls based on support rate. Proportion of SNPs that are true positives classified by weak 
support (True equates to less than the support rate, orange or False equates to more that the support rate, blue) over support 
rate (A). The number of positions that are False Negatives (B) or False Positives (C) over support rate and classified by weak 
support (same as A).  
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Supplemental figure S9. Plasmid-borne resistance gene detection in clinical samples. Proportion of the query sequence 
(assembled contig) matching a known carrier plasmid (y-axis) by presence of tetM or blaTEM-1 in the sample (x-axis), colours 
represent samples (A). Percentage identity between the matching contigs and carrier plasmid (y-axis) over proportion of the 
query sequence matching a known carrier plasmid (x-axis), colour represents validation of containing tetM or blaTEM-1 (B). 

Supplemental Tables 
 

Strain Illumina bases covered Reference Chromosome 
length 

Missed (N) sites Illumina SNPs Invariant sites 

H18-208 1,992,319 2,232,025 239,706 4,303 1,988,016 

WHO Q 1,962,756 2,232,025 269,269 3,844 1,958,912 

WHO F 1,991,234 2,232,025 240,791 6,174 1,985,060 

WHO V 2,016,466 2,232,025 215,559 1,801 2,014,665 

WHO X 1,955,978 2,232,025 276,047 3,366 1,952,612 

Supplemental Table 1. “Gold standard” variation present from Illumina sequencing. Number of variants, invariant sites, and 
uncalled sites found within each sample from Illumina sequencing.
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Metric FP 

Variant 
caller 

Clair Medaka Nanopolish 

Depth 2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 

Strain                   

H18-208 290 1007 1760 2294 2378 1839 161 147 63 40 11 18 1362 1792 1893 1992 1896 1870 

WHO F 1420 2408 1855 1066 543 319 98 88 47 26 26 29 505 356 163 77 48 47 

WHO Q 225 1244 2226 2949 2948 2327 271 210 90 30 20 26 1355 1809 1542 1478 1410 1263 

WHO V 1431 2640 1741 581 116 39 127 71 17 12 12 8 911 361 97 40 48 39 

WHO X 1360 2387 1447 434 81 55 105 85 54 58 63 67 340 297 101 73 42 32 

Metric Precision 

Variant 
caller 

Clair Medaka Nanopolish 

Depth 2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 

Strain                   

H18-208 0.052 0.310 0.583 0.614 0.618 0.679 0.890 0.949 0.981 0.989 0.997 0.995 0.568 0.636 0.672 0.668 0.681 0.684 

WHO F 0.053 0.367 0.652 0.822 0.911 0.946 0.955 0.977 0.990 0.995 0.995 0.994 0.837 0.926 0.970 0.987 0.992 0.992 

WHO Q 0.004 0.231 0.451 0.506 0.532 0.592 0.728 0.909 0.967 0.989 0.993 0.991 0.441 0.587 0.688 0.709 0.721 0.743 

WHO V 0.006 0.090 0.361 0.723 0.934 0.977 0.800 0.943 0.988 0.992 0.992 0.995 0.448 0.795 0.944 0.977 0.973 0.978 

WHO X 0.014 0.204 0.566 0.872 0.975 0.983 0.906 0.964 0.981 0.981 0.980 0.978 0.794 0.891 0.968 0.978 0.987 0.990 

Metric Recall 

Variant 
caller 

Clair Medaka Nanopolish 

Depth 2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 

Strain                   

H18-208 0.004 0.105 0.571 0.850 0.894 0.904 0.301 0.637 0.765 0.802 0.818 0.828 0.416 0.727 0.899 0.931 0.942 0.942 

WHO F 0.013 0.226 0.562 0.797 0.899 0.902 0.334 0.616 0.753 0.812 0.838 0.846 0.421 0.721 0.868 0.922 0.940 0.947 
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WHO Q 0.000 0.097 0.476 0.785 0.872 0.879 0.189 0.543 0.676 0.728 0.756 0.772 0.279 0.669 0.883 0.937 0.946 0.952 

WHO V 0.005 0.145 0.545 0.844 0.911 0.921 0.282 0.650 0.779 0.827 0.842 0.861 0.410 0.777 0.910 0.952 0.962 0.973 

WHO X 0.006 0.182 0.561 0.878 0.938 0.934 0.302 0.671 0.833 0.877 0.897 0.901 0.389 0.724 0.910 0.951 0.959 0.960 

 Supplemental Table 2. FP rate, Recall and Precision using a simple QUAL based threshold for filtering variant calls. 
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  Discreet A2059G copies 

Strain Depth Nanopolish Medaka Clair 

WHO Q 2 2 2 2 

5 3 3 4 

10 4 3 4 

20 4 4 4 

50 4 4 4 

100 4 4 4 

WHO V 2 0 1 2 

5 3 2 4 

10 4 4 4 

20 4 4 4 

50 4 4 4 

100 4 4 4 

 
Supplemental Table 3. Discreet A2059G mutations discovered in 23s rRNA variant calls. Strains without 23s rRNA mutations 

are not shown. The expected number of A2059G mutations in WHO Q and WHO V is 4, as shown in bold. 
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    Medaka Nanopolish Clair 

gene Strain Pos Exp. Res. 2 5 10 20 50 100 2 5 10 20 50 100 2 5 10 20 50 100 

gyrA H18-208 91 F F F F F F F F F F F F F F F F F F F 

95 A A A A A A A G A A A A A G A A A A A 

WHOF 91 S F F S S S S F F S S S S F F S S S S 

95 D D D D D D D G D D D D D G G D D D D 

WHOQ 91 F F F F F F F F F F F F F F F F F F F 

95 A G A A A A A G A A A A A G A A A A A 

WHOV 91 F F F F F F F F F F F F F F F F F F F 

95 G G G G G G G G G G G G G G G G G G G 

WHOX 91 F F F F F F F F F F F F F F F F F F F 

95 N G G G G G G G N N N N N G N N N N N 

parC H18-208 86 D D D D D D D D D D D D D D D D D D D 

87 R R R R R R R R R R R R R R R R R R R 

88 S S S S S S S S S S S S S S S S S S S 

WHOF 86 D D D D D D D D D D D D D D D D D D D 

87 S S S S S S S S S S S S S S S S S S S 

88 S S S S S S S S S S S S S S S S S S S 

WHOQ 86 D D D D D D D D D D D D D D D D D D D 

87 R R R R R R R R R R R R R R R R R R R 

88 S S S S S S S S S S S S S S S S S S S 

WHOV 86 D D D D D D D D D D D D D D D D D D D 

87 R R R R R R R R R R R R R R R R R R R 

88 S S S S S S S S S S S S S S S S S S S 

WHOX 86 D D D D D D D D D D D D D D D D D D D 

87 R R R R R R R R R R R R R R R R R R R 

88 P P P P P P P P P P P P P P P P P P P 

ponA H18-208 421 P P P P P P P P P P P P P P P P P P P 
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WHOF 421 L L L L L L L L L L L L L L L L L L L 

WHOQ 421 P P P P P P P P P P P P P P P P P P P 

WHOV 421 P P P P P P P P P P P P P P P P P P P 

WHOX 421 P P P P P P P P P P P P P P P P P P P 

mtrR H18-208 45 G G G G G G G G G G G G G G G G G G G 

WHOF 45 G G G G G G G G G G G G G G G G G G G 

WHOQ 45 D G D D D D D D D D D D D D D D D D D 

WHOV 45 G G G G G G G G G G G G G G G G G G G 

WHOX 45 G G G G G G G G G G G G G G G G G G G 

rpsJ H18-208 57 M M M M M M M M M M M M M M M M M M M 

WHOF 57 V V V V V V V V V V V V V V V V V V V 

WHOQ 57 M M M M M M M M M M M M M M M M M M M 

WHOV 57 M M M M M M M M M M M M M M M M M M M 

WHOX 57 M M M M M M M M M M M M M M M M M M M 

 
Supplemental Table 4. Genes and expected mutations for each strain at varying subsampled depths using Nanopolish or 
medaka for variant calling. Residues highlighted in yellow are incorrect. 
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Strain Variant caller 2 5 10 20 50 100 

WHO F Clair TA TA TA TA TA TA 

Medaka TA TA TA TA TA TA 

Nanopolish      TA 

WHO X Clair  TA     

Medaka TAA TA     

 

Supplemental Table 5. mtrR promoter sequences. ALT sequences identified at positions 1332810 in reference NC_011035.1 by 

each variant caller at different sub sampled depths. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.939322doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939322
http://creativecommons.org/licenses/by/4.0/


33 
 

 
 

Strain Method 2 5 10 20 50 100 

H18-208 WGA   60.001 60.001 60.001 60.001 

LA   60.001 60.001 60.001 60.001 

WHO F WGA     15.001  

LA  15.001 15.001 15.001 15.001 15.001 

WHO Q WGA    60.001 60.001 60.001 

LA  60.001 60.001 60.001 60.001 60.001 

WHO V WGA   5.002 5.002 5.002 5.002 

LA  5.002 5.002 5.002 5.002 5.002 

WHO X WGA   37.001 37.001 37.001 37.001 

LA  37.001 37.001 37.001 37.001 37.001 

 
Supplemental Table 6. Detection of penA using de novo assemblies. penA alleles were determined from each strain (Strain), 

detected from two different assembly approaches (Method), over a range of 5 different sub sampled depths (Depth N). Whole 

genome assembly (WGA) was performed with RA and local assemblies (LA) were performed with WTBDG2. Where identified the 

penA was correct.  
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 gene 23S gyrA mtrR pilQ ponA rpsJ 

 site 2045 2597 91 95 39 45 prom. 666 421 57 

Sample Mean 
depth 

          

202 20.4 A C S D A G deletion E P V 

206 48.7 A C F A T G wildtype E L M 

250 188.3 A C S D A G deletion E P V 

271 381.5 A C F A T G wildtype E L M 

294 37.4 A C F A T G wildtype E L M 

301 309.3 A C F G A G deletion E P M 

303 11.7 A C F A T G deletion E L M 

304 14.4 A C S D T G wildtype E L M 

314 325.4 A C S D A G deletion E P V 

315 114.3 A C F A T G wildtype E L M 

 
Supplemental Table 7. Antimicrobial resistance determinant detection in clinical samples. Clinical sample names, average 

coverage depth over the entire genome and the nucleotide base or amino acid residue detected for several important AMR 

genes. Yellow highlights where the nanopore results were not consistent with the Illumina results. 
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Sample name Allele AMR Markers Beta-Lactamase 
202 penA2.001 penA Type II NonMosaic Negative 
206 penA43.002 penA Type 43 NonMosaic; A502V Positive 
250 penA2.001 penA Type II NonMosaic Negative 
271 penA43.002 penA Type 43 NonMosaic; A502V Positive 
294 penA43.002 penA Type 43 NonMosaic; A502V Positive 
301 penA5.002 penA Type V NonMosaic Negative 
304 penA14.001 penA Type XIV NonMosaic Negative 
314 penA2.001 penA Type II NonMosaic Negative 
315 penA5.002 penA Type V NonMosaic Negative 

 
Supplemental Table 8, penA alleles identified by nanopore from clinical metagenomic samples and validated with Illumina 
sequenced cultures. 
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