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Abstract 29 

RNA splicing is a fundamental mechanism contributing to the definition of the cellular protein 30 

population in any given environmental condition. DRT111/SFPS is a splicing factor previously 31 

shown to interact with phytochromeB and characterized for its role in splicing of pre-mRNAs 32 

involved in photomorphogenesis. Here, we show that DRT111 interacts with Arabidopsis Splicing 33 

Factor 1 (SF1), involved in 3’ splicing site recognition. Double and triple mutant analysis shows 34 

that DRT111 controls splicing of ABI3 and acts upstream of the splicing factor SUPPRESSOR OF 35 

ABI3-5 (SUA). DRT111 is highly expressed in seeds and stomata of Arabidopsis and is induced by 36 

long-term treatments with polyethylene glycol and ABA. DRT111 knock-out mutants are defective 37 

in ABA-induced stomatal closure and are hypersensitive to ABA during seed germination. 38 

Conversely, DRT111 over-expressing plants show ABA hyposensitive seed germination. RNAseq 39 

experiments show that in dry seeds, DRT111 controls expression and splicing of genes involved in 40 

response to osmotic stress and ABA, light signaling and mRNA splicing, including targets of 41 

ABSCISIC ACID INSENSITIVE3 (ABI3) and PHYTOCHROME INTERACTING FACTORs 42 

(PIFs). Consistently, expression of the germination inhibitor SOMNUS, induced by ABI3 and PIF1 43 

is up-regulated in imbibed seeds of drt111-2 mutants. Altogether, these results indicate that 44 

DRT111 controls sensitivity to abscisic acid (ABA) during seed development, germination and 45 

stomatal movements and constitutes a point of integration of the ABA- and light-regulated 46 

pathways to control seed germination. 47 

 48 

 49 

  50 
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Introduction 51 

The phytohormone abscisic acid (ABA) regulates physiological and developmental processes, 52 

including stress responses, seed development and germination.  53 

Perhaps the most well defined mechanism mediated by ABA is induction of stomatal closure.  54 

In plants subjected to hyperosmotic stress, ABA is synthesized predominantly in leaf vascular 55 

tissues and guard cells. Here, ABA activates a signalling pathway that coordinately modulates 56 

activity of membrane located transporters, leading to efflux of solutes. The consequent reduction of 57 

turgor of guard cells causes stomatal closure, thus reducing evapotranspiration in abiotic stress 58 

conditions (Bauer et al.,2013; Kuromori et al.., 2018; Nambara and Marion-Poll, 2005; Qin and 59 

Zeevaart, 1999; Schroeder et al., 2001).   60 

In seeds, ABA induces maturation, dormancy and plays a key role during germination. 61 

Transcription factors such as LEAFY COTYLEDON1 and 2 (LEC1 and LEC2), FUSCA3 (FUS3) 62 

and ABSCISIC ACID INSENSITIVE3 (ABI3) are involved in reserve accumulation and inhibition 63 

of premature germination (Santos-Mendoza et al., 2008, Monke et al., 2012, Yan and Zhen, 2017). 64 

At early stages of seed maturation, LEC1/2 and FUS3 are expressed to prevent germination of the 65 

developing embryo, whereas ABI3 expression is maintained at high levels until final maturation 66 

stages (Perruc et al., 2007).  In this phase, ABI3 and LEC1 regulate expression of genes involved in 67 

storage reserve accumulation and acquisition of desiccation tolerance, such as late embryogenesis 68 

abundant (LEA) proteins (Parcy et al., 1994).  69 

In addition, ABA prevents germination by inhibiting water uptake and endosperm rupture (Finch-70 

Savage and Leubner-Metzger, 2006). When favourable conditions are restored, abscisic acid levels 71 

decrease, with a concomitant increase of gibberellic acid (GA) to allow embryos to expand and 72 

break the seed covering layers (Manz et al., 2005).  The endogenous levels of ABA and GA are 73 

regulated by different signalling pathways, and recent studies highlighted the crosstalk between 74 

light and hormonal pathways in the regulation of germination (Kim et al., 2008; Lau and Deng, 75 

2010; de Wit et al., 2016). Phytochrome A (phyA) and phyB are photoreceptors which perceive Far 76 

Red (FR) and Red (R) light, respectively. Early during germination, phyB signalling involves a 77 

family of basic helix-loop-helix TFs, the PHYTOCHROME INTERACTING FACTORs (PIFs). 78 

After R or white light illumination, phyB translocates to the nucleus in its active Pfr conformation, 79 

where it binds and inhibits PIF1, also known as PIF3-LIKE 5 (PIL5), promoting light-induced 80 

germination (Lee et al., 2012). In the dark, or in low R/FR ratio light, when phyB is in the inactive, 81 

Pr cytosolic form, PIF1 is stabilized and represses germination. PIF1 promotes ABA biosynthesis 82 

and signalling, and represses GA signalling, inducing expression of genes such as ABI3, ABI5, 83 

REPRESSOR OF GA1-3 (RGA), DOF AFFECTING GERMINATION 1 (DAG1) (Oh et al., 2009). 84 
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Interestingly, ABI3 protein also interacts with PIF1 to activate the expression of direct targets, such 85 

as SOMNUS (SOM), a key regulator of light-dependent seed germination acting on ABA and GA 86 

biosynthetic genes (Kim et al., 2008; Park et al., 2011).   87 

In seeds initiating germination, ABI3 expression is repressed. Perruc and colleagues (2007) reported 88 

that the chromatin-remodeling factor PICKLE negatively regulates ABI3 by promoting silencing of 89 

its chromatin during seed germination. ABI3 activity is also controlled by alternative splicing of the 90 

corresponding precursor mRNA (pre-mRNA), with different splice forms predominating at 91 

different seed developmental stages. This process is regulated by splicing factor SUPPRESSOR OF 92 

ABI3-5 (SUA) through the splicing of a cryptic intron in ABI3 mRNA (Sugliani et al., 2010). 93 

Alternative splicing occurs when the spliceosome differentially recognizes the splice sites. The 94 

selection of alternative 5’SS or 3’SS leads to an inclusion of different parts of an exon, whereas 95 

failure to recognize splicing sites causes intron retention in the mature mRNA. These alternative 96 

splice forms can produce proteins with altered domains and function (Staiger and Brown, 2013; 97 

Laloum et al., 2018; Nilsen and Brenton Graveley, 2010, Fu and Ares, 2014). In plants, this 98 

mechanism is highly induced in response to external stimuli. Recent studies reported an emerging 99 

link between splicing and ABA signalling (Zhu et al., 2017; Laloum et al., 2018). For example, the 100 

transcript encoding type 2C phosphatase HYPERSENSITIVE TO ABA 1 (HAB1), a negative 101 

regulator of ABA signalling, undergoes alternative splicing. In the presence of ABA, the last intron 102 

is retained, leading to a truncated protein. The two encoded proteins, HAB1-1 and HAB1-2, play 103 

opposite roles by competing for interaction with OPEN STOMATA 1 (OST1) during germination, 104 

which then results in switching of the ABA signalling on and off (Wang et al., 2015). Likewise, 105 

SR45, a member of serine/arginine-rich proteins, an important class of essential splicing factors that 106 

influence splice site selection, regulates glucose signalling through downregulation of ABA 107 

pathway during seedling development (Carvalho et al., 2010). In addition, several splicing 108 

regulators were reported to influence ABA sensitivity, such as SAD1, ABH1, SKB1, Sf1 (Xiong et 109 

al., 2001; Hugouvieux, et al. 2001; Zhang et al., 2011; Jang et al. 2014). 110 

In this study we show that the splicing factor DNA-DAMAGE REPAIR/TOLERATION PROTEIN 111 

111 (DRT111), previously characterized in the control of pre-mRNA splicing in light-regulated 112 

developmental processes (Xin et al., 2017), is involved in ABA response mechanisms. 113 

Manipulation of DRT111 expression results in a modified sensitivity to ABA of stomatal 114 

movements and during seed germination. Accordingly, DRT111 is highly expressed in stomata and 115 

seeds, and up-regulated upon long-term exposure to ABA. Moreover, ABI3 alternative transcript 116 

quantification as well as analysis of double and triple mutants shows that DRT111 controls splicing 117 

of ABI3 upstream of SUA. Transcriptome analysis in drt111 dry seeds revealed extensive alteration 118 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 9, 2020. ; https://doi.org/10.1101/2020.02.07.939421doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939421


 

5 
 

in gene expression and splicing of genes involved in light and ABA-dependent control of 119 

germination. Consistently, we show that expression of the germination inhibitor SOM is induced in 120 

drt111. Taken together, our results suggest that integration of ABA and light quality stimuli for 121 

seed germination under appropriate conditions requires DRT111. 122 

 123 

Results 124 

DRT111 expression is high in seeds and guard cells and is induced by long-term stress  125 

Using RNA transcriptome data from potato cells adapted to gradually increasing concentrations of 126 

polyethylene glycol (PEG) we identified Arabidopsis orthologous genes, and functionally analysed 127 

their role in responses to ABA and osmotic stress (Ambrosone et al., 2015, 2017; Punzo et al., 128 

2018). Following the same rationale, we focused on a DNA-damage-repair/toleration protein coding 129 

gene (EST617924, GenBank accession no. BQ510509, corresponding to 130 

PGSC0003DMT400054608, Potato genome sequencing consortium, 2011), up-regulated in adapted 131 

cells (Ambrosone et al., 2017). The protein deduced from PGSC0003DMT400054608 shared 64% 132 

sequence identity with Arabidopsis At1g30480, encoding a predicted splicing factor (also referred 133 

to as DRT111/ RSN2/SFPS, SPF45-related, Pang et al., 1993; Xin et al., 2017; Zhang et al., 2014, 134 

Supplemental Figure S1). 135 

To verify the expression pattern in Arabidopsis, we mined public databases (eFP platform, Winter 136 

et al., 2007), showing that DRT111 is ubiquitously expressed throughout development, with highest 137 

transcript abundance in dry seeds (Fig. 1A). In addition, histochemical analysis of stable 138 

Arabidopsis lines expressing β-glucuronidase (GUS) under the control of the DRT111 promoter 139 

visualized GUS activity in cells surrounding the base of trichomes and guard cells (Fig. 1B). 140 

When assessing responsiveness of DRT111 in seedlings exposed to short- or long-term treatments 141 

with NaCl, abscisic acid (ABA) or PEG, we detected a significant up-regulation of DRT111 only 142 

after long-term treatments, while 3, 6 or 9h treatments did not result in major changes of DRT111 143 

transcript abundance. In particular, an increase higher than 2-fold was observed after 5-days 144 

treatments with ABA or PEG (Fig. 1C-D). Taken together, the results show that DRT111 is highly 145 

expressed in seeds and guard cells, and that a higher steady state mRNA level is determined by 146 

long-term exposure to ABA or osmotic stress. 147 

DRT111/SFPS encodes a nuclear-localized potential orthologue of human splicing factor 148 

RBM17/SPF45 (Supplemental Figure S2, Xin et al., 2017), shown to interact with Splicing factor 1 149 

(SF1), a protein involved in early pre-spliceosome assembly (Crisci et al., 2015; Hegele et al., 2012). 150 

Therefore, we verified if this interaction is conserved in Arabidopsis. Using the yeast two hybrid 151 

system, we tested different portions of SF1, and showed interaction between DRT111 and the C-152 
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terminal fragment (1398-2415) of SF1 (Fig 2A), while a fusion of the GAL4 binding domain (BD) 153 

with the SF1 N-terminal fragment (1-1396) resulted in auto-activation when co-transformed with 154 

the empty AD vector in yeast. We used a split reporter system to confirm the interaction in planta. 155 

A reconstituted YFP signal was detected in nuclear speckles, indicating that DRT111 forms a 156 

complex with SF1 and may thus act at early steps of the spliceosome machinery (Fig 2B).  157 

 158 

Altered DRT111 expression affects plant growth and stomatal responsiveness to ABA 159 

To analyse the involvement of DRT11 in ABA-related processes, insertion mutants were identified 160 

within the TAIR collection and transgenic plants over-expressing DRT111 were produced (Fig. 161 

S3A-C). Three over-expressing (OX) lines carrying homozygous, single-copy transgene insertions 162 

and expressing the transcript were selected (Fig. S3C). Phenotype observation in control conditions 163 

and after ABA treatment indicated that over-expression of DRT111 caused a limited increase in 164 

primary root length (Fig. 3A), while lack of DRT111 expression resulted in early flowering, as 165 

previously reported (Fig. S3D, Xin et al., 2017).   166 

As DRT111 is highly expressed in guard cells (Fig. 1B), we evaluated the transpirational water loss 167 

and its relation to stomatal movements in plants with altered expression of DRT111. First, we 168 

measured the fresh weight reduction of detached leaves during six hours (Verslues et al., 2006). 169 

Whereas the OX and wild-type plants showed similar trends, we observed a significant increase in 170 

the transpirational water loss in knockout plants, with a loss of 44% and 46% of their initial fresh 171 

weight for drt111-1 and drt111-2, respectively compared to 33% of Col-0 after 6 hours (Figure 3B). 172 

Thus, we analyzed the stomatal movements in dtr111 plants compared to wild type after treatments 173 

with abscisic acid, which plays a central role in stomatal closure (Figure 3C-D). Consistent with the 174 

water loss analysis, significant differences in stomatal pore size were observed between genotypes 175 

after 2.5h ABA treatments (50µM). While the ABA-induced stomatal closure was observed in Col-176 

0 leaves (ratio 0.64 width/length of pore, corresponding to 8.5 % reduction of the pore size), 177 

stomata of the mutants did not respond to the ABA treatment (drt111-1) or had a strikingly reduced 178 

response (drt111-2, ratio 0.72 width/length of pore, corresponding to 2.2% reduction compared to 179 

untreated stomata), suggesting that stomatal responsiveness to ABA is impaired in drt111 mutants 180 

causing a significant water loss over time. 181 

 182 

drt111 seeds are hypersensitive to ABA during germination 183 

Since DRT111 is an ABA-responsive gene highly expressed in seeds (Fig.1A), we analysed seed 184 

germination of mutants and over-expressing lines in presence of ABA. As indicated in Fig. 4, seeds 185 
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collected from drt111-1 and drt111-2 were hypersensitive to ABA in terms of radicle emergence 186 

and cotyledon expansion, while OX lines displayed an increased seed germination in presence of 187 

ABA compared to wild type. In particular, after 3 days 77% of Col-0 seeds were germinated on 0.5 188 

µM ABA, compared to 96, 93 and 93% of FLAG-DRT111 #2, #4 and #21, respectively and 53, 189 

57% in drt111-1 and drt111-2 (Fig. 4A-C). An ABA response curve of 12 months after-ripened 190 

seeds indicated that the hypersensitivity at high concentrations of ABA of the drt111 mutants was 191 

retained after long periods of dry storage (Fig. 4D). Complementation experiments of drt111 with 192 

DRT111 driven by the endogenous promoter, indicate that the hypersensitivity to ABA of knockout 193 

drt111-1 and drt111-2 can be reverted by introducing a functional DRT111 copy, thus confirming 194 

that mutant phenotype is caused by lack of functional DRT111 (Fig. 4E).  195 

 196 

DRT111 regulates gene expression and mRNA splicing 197 

To further characterize the role of DRT111 in seed germination, we examined the transcriptome of 198 

drt111 dry seeds. RNA-seq analysis highlighted a major role of DRT111 in the regulation of gene 199 

expression with over 3000 differentially expressed genes (ǀlog2(fold-change)ǀ> 0.21, FDR <0.05), 200 

equally distributed among down- (1941 genes) and up-regulated (1834) genes (Supplemental 201 

Dataset 1). Validation of a subset of genes by qRT-PCR showed high correlation with the fold 202 

change detected by RNA-seq (Supplemental Figure S4C-D). 203 

Consistent with the observed phenotype, gene ontology (GO) enriched categories included seed 204 

related processes (seed germination, embryo development ending in seed dormancy, post-205 

embryonic development), response to abiotic stress (response to salt stress, response to cold, 206 

response to water deprivation, response to heat, regulation of stomatal movement, hyperosmotic 207 

salinity response, response to osmotic stress), in the ABA signalling pathway (response to abscisic 208 

acid, abscisic acid-activated signaling pathway,) as well as the processing of mRNAs (mRNA 209 

processing, RNA splicing) (Supplemental Dataset S1, Figure S4A-B).  210 

Among the genes differentially expressed in drt111-2, components of the light perception/signalling 211 

cascade were present, including Phytochromes (Phy) and PHYTOCHROME INTERACTING 212 

FACTORs (PIF), some of which up-regulated (PhyA, PIF1/PIL5 and PIF6/PIL2) and others down-213 

regulated (PhyE, PhyD and PIF7) (Supplemental Dataset S1). 214 

Significantly upregulated genes in drt111-2 included several members of the homeodomain leucine 215 

zipper class I TF (ATHB-1, ATHB-5, ATHB-7, ATHB-12), which regulate abiotic stress responses. 216 

To investigate the impact of lack of DRT111 on pre-mRNA splicing, we explored differences in 217 

splicing events between drt111-2 and Col-0. Using the MATS (Multivariate Analysis of Transcript 218 

Splicing) software, we analyzed all major types of splicing events, such as exon skipping (ES), 219 
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alternative 5' or 3’ splice site (A5SS; A3SS), mutually exclusive exon (MXE) and intron retention 220 

(IR). All the analyzed events were affected in drt111-2 seeds. We identified a total of 611 221 

differential splicing events, corresponding to 485 genes between mutant and wild type. Among 222 

these, A3SS and IR were the most rapresented categories, with 161 and 258 events respectively (Fig 223 

5A-B, Supplementl Dataset S2). Interestingly, gene ontology enrichment analysis (GOEA) showed 224 

that categories related to germination mechanisms (such as response to abscisic acid, positive 225 

regulation of seed germination, abscisic acid biosynthetic process, maintenance of seed dormancy 226 

by absisic acid, regulation of seed germination, embryo sac egg cell differentiation) or to mRNA 227 

metabolism (such as mRNA splicing via spliceosome, mRNA processing, RNA splicing, mRNA 228 

stabilization) were significantly enriched among the IR and A3SS defects in drt111-2. 229 

(Supplemental Dataset S3), suggesting that DRT11 may control the splicing of specific mRNAs in 230 

seeds. We validated the splicing events identified through RNA-seq and reported as reads mapped 231 

in gene regions in Col-0 and drt111-2 mutant (Fig 5C, E, G and I) by qRT-PCR analysis (Fig 5D, F, 232 

H and J).  233 

 234 

DRT111 regulates ABI3 splicing 235 

We have shown that drt111 mutants are hypersensitive to ABA in the germination process (Fig. 4). 236 

One of the key players determining sensitivity to ABA at the seed stage, and whose activity is 237 

regulated by alternative splicing, is the transcription factor ABI3 (Sugliani et al., 2010). The ABI3 238 

locus gives rise to two alternative transcripts, ABI3-α and ABI3-β which differ by the presence or 239 

cleavage of a cryptic intron, respectively. ABI3-α produces a full length, functional protein and is 240 

highly expressed during seed development, while ABI3-β, encodes a truncated protein lacking two 241 

of the four ABI3 conserved domains, and accumulates at the end of seed maturation (Sugliani et al., 242 

2010).  243 

Although splicing of ABI3 was not identified as affected in drt111-2 through RNAseq, comparison 244 

of the DEGs with a list of 98 ABI3 targets (Monke et al., 2012) showed that 51 of these genes were 245 

deregulated in drt111-2 (Supplemental Table S1), suggesting that ABI3 might be a target of 246 

DRT111.  247 

Therefore, we used qRT-PCR to quantify the amount of ABI3-α and ABI3-β in drt111-2 dry and 248 

imbibed seeds compared to wild type using primers described by Sugliani and colleagues (2010). 249 

Although the level of ABI3-α is similar in dry seeds, accumulation of ABI3-β is significantly higher 250 

in drt111-2 than Col-0; in addition, in imbibed seeds, both transcripts were upregulated in drt111-2, 251 

with ABI3-β showing a 4-fold induction compared to Col-0 (Fig. 6A), demonstrating a defective 252 

regulation of ABI3 splicing in plants lacking DRT111.  253 
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To confirm this observation genetically, we took advantage of the abi3-5 mutant allele (Ooms et al., 254 

1993). Due to a frameshift mutation, the abi3-5-α transcript contains a premature stop codon, while 255 

abi3-5-β encodes a functional ABI3 protein, therefore an increase in accumulation of abi3-5-β 256 

results in a higher amount of functional ABI3 (Sugliani et al. 2010). Thus, an increased efficiency 257 

in splicing of the cryptic intron is expected to alleviate abi3-5 phenotypes, including ABA 258 

insensitivity during germination and reduced seed longevity (Bies-Etheve et al., 1999). 259 

We thus produced double mutants drt111-2/abi3-5 to verify reversion of the abi3-5 phenotypes. 260 

Germination tests showed increased sensitivity to ABA and improved longevity of drt111-2/abi3-5 261 

as compared to abi3-5. In the presence of 10µM ABA, 20% of drt111-2/abi3-5 seeds were able to 262 

germinate compared to 100% in abi3-5 (Fig 6B). Also the severe reduction of longevity observed in 263 

abi3-5 seeds was restored in drt111-2/abi3-5, with 90% of seeds germinated 8 weeks after harvest 264 

(Fig 6C), compared to 0% abi3-5. Altogether, these results show that mutations in DRT111 rescue 265 

the abi3-5 mutation, with knock-out mutations showing a higher efficiency of phenotype reversion.  266 

Since the alternative splicing of ABI3 is also controlled by the splicing factor SUPPRESSOR OF 267 

ABI3-5 (SUA, Sugliani et al., 2010), we verified genetic interaction between DRT111 and SUA by 268 

the analysis of the double mutants drt111-2/sua-2. As shown in Figure 7, seed germination on 0.5 269 

µM ABA of drt111-2/sua-2 was 96%, compared to 20% of drt111-2 and 91% of sua-2. Thus, these 270 

results indicate that SUA is epistatic to DRT111 and that DRT111 acts upstream of SUA (Figure 6D).  271 

Accordingly, germination of drt111-2/sua-2/abi3-5 triple mutant did not show additive effects 272 

compared to drt111-2/abi3-5 or sua-2/abi3-5 double mutants. Germination of the triple mutant on 273 

higher ABA concentrations largely resembled that of double mutants, with 17% drt111-2/sua-274 

2/abi3-5 seeds germinated on 10µM ABA compared to 20% drt111-2/abi3-5 and 18% sua-2/abi3-5, 275 

indicating that control of ABI3 splicing by DRT111 and SUA is exerted through the same pathway 276 

(Figure 6E).    277 

 278 

Expression of SOMNUS is affected in drt111 279 

In imbibed seeds, ABI3 and PIL5/PIF1 collaboratively activate the expression of the germination 280 

inhibitor SOMNUS (SOM, Park et al., 2011), whereas R or white light repress it through the action 281 

of PhyB.  Since DRT111 controls splicing of ABI3, and is epistatic to PIFs (Xin et al., 2017), we 282 

verified expression of SOM in imbibed seeds of drt111-2. As shown in Fig. 6F, expression of 283 

SOMNUS was 2.49-fold higher in drt111-2 compared to wild-type Col-0, indicating that a higher 284 

expression of SOM might contribute to the observed ABA hypersensitivity in drt111 seeds. 285 

Consistently, pil5/pif1 and the quadruple pif1/pif3/pif4/pif5 mutant (pifq) are insensitive to ABA in 286 

seed germination  (Supplemental Figure S5 B-C; Oh et al., 2009; Lee et al., 2012). Finally, we also 287 
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find that the phyB mutant is hypersensitive to ABA in the germination process (Fig S5A). Again, 288 

this could be partly due to the lack of negative regulation of SOM acting as a positive regulator of 289 

ABA biosynthesis (Kim et al., 2008). 290 

 291 

Discussion 292 

Alternative splicing and its regulation are involved in several adaptation processes in response to 293 

environmental stimuli and stresses (Laloum et al., 2018). Here, we have shown that the Arabidopsis 294 

DRT111 gene, encoding a protein orthologous to the human splicing factor SPF45 (Xin et al., 2017), 295 

is highly expressed in dry seeds, stomata and in seedlings experiencing long-term osmotic stress.  296 

Functional studies in Arabidopsis established that DRT111 controls stomatal movements and seed 297 

germination in response to ABA. 298 

The human splicing factor SPF45 forms a complex with SF1 and U2AF
65

 for the selection of 299 

alternative 3′ splice sites (Lallena et al. 2002). During early spliceosome assembly, the U2AF
65

 300 

interact with U2AF
35

 and SF1 to promote U2snRNP detection of the pre-mRNA 3’ splice site (Park 301 

et al., 2017).  302 

Here we have shown that DRT111 physically interacts with SF1, while, in a previous independent 303 

study, interaction and colocalization with U2AF
65

 was reported (Xin et al., 2017). Based on 304 

homology with yeast and metazoan proteins, plant SF1 may be involved in recognition of intron 305 

branching point and assist in 3’ splice site selection (Jiang et al., 2014; Lee et al., 2017). Together 306 

with the observation that the highest number of the observed splicing defects concerned IR and 307 

A3SS, the protein interactions suggest that DRT111 is also involved in the early steps of 308 

spliceosome formation, which concern intron branch point recognition and 3’ splicing site selection 309 

by U2AF and SF1. However the mode of participation of DRT111 (e.g. promotion and/or 310 

suppression) in this complex remains to be established.  311 

 312 

A growing body of evidence indicates that in plants components of the pre-mRNA splicing 313 

machinery modulate responses to ABA and abiotic/biotic stresses (Xiong et al., 2001; Cui et al., 314 

2014; Carrasco-Lopez et al., 2017). Arabidopsis sf1 mutants show several developmental defects, 315 

including dwarfism, early flowering and hypersensitivity to ABA at seed germination stage (Jiang 316 

et al., 2014).  317 

Previously, DRT111 and SUPPRESSOR OF ABI3-5 (SUA) were identified in a suppressor screen 318 

of snc4-1d, mutated in a receptor like kinase involved in bacterial pathogen resistance (Zhang et al., 319 

2014). A similar pattern of intron retention in SNC4 and CERK1 was reported in both sua and 320 
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drt111 plants, thus suggesting that SUA and DRT111 are both required for the splicing of at least 321 

these two genes (Zhang et al., 2014).  322 

Here, we have shown that DRT111 knock-out and over-expressing plants are impaired in ABA seed 323 

germination responses, in analogy to sua mutants (Sugliani et al., 2010). In particular, SUA controls 324 

the activity of ABI3 by suppressing the splicing of an ABI3 cryptic intron to reduce the levels of 325 

functional ABI3 in mature seeds (Sugliani et al., 2010). Because the ABI3 cryptic intron is part of a 326 

protein-coding exon, it was subsequently classified as an exitron, an alternatively spliced internal 327 

region of a protein-coding exon (Marquez et al., 2015). Exitron splicing (EIS) is suggested to be a 328 

mechanism to increase plant proteome diversity in specific developmental stages or stress 329 

conditions, to affect protein functionality by modifying intracellular localization, presence of 330 

protein domains and post-translational modification sites, such as phosphorylation, sumoylation, 331 

ubiquitylation (Marquez et al., 2015). Based on EIS patterns in sua mutants, and presence of 332 

RBM5/SUA predicted binding sites enrichment in exitrons, SUA appears to have a general role in 333 

preventing exitron splicing (Marquez et al., 2015).  334 

Here, we have shown that DRT111, similarly to SUA, suppresses splicing of ABI3; accordingly, 335 

known ABI3 targets (Monke et al., 2012) were found differentially expressed in drt111 compared to 336 

wild type. Interestingly, sua mutants in Columbia background are insensitive to ABA in seed 337 

germination (Sugliani et al., 2010), whereas DRT111 knock-out causes ABA hypersensitivity. The 338 

phenotype in drt111 may be explained by the observed increase in total ABI3 amount, determined in 339 

imbibed seeds by an increase of both the α and the β transcripts. In particular, a 4-fold accumulation 340 

of ABI3-β, corresponding to the transcript in which the exitron is spliced out, accounts for most of 341 

ABI3 transcript in drt111-2. Therefore, the different ratio between the ABI3-α and ABI3-β 342 

transcripts, and their products thereof, may be important to define seed ABA sensitivity.  343 

Both sua/abi3-5 or drt111-2/abi3-5 in Columbia background partially rescue seed developmental 344 

and ABA sensitivity defects of abi3-5. Thus, similarly to mammalian systems, SUA and DRT111 345 

may control splicing of the same substrates with different timing. Further analyses will verify if 346 

DRT111 also controls exitron splicing mechanism.  347 

 348 

DRT111/SFPS was recently shown to regulate development in response to light through interaction 349 

with phyB and REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 BACKGROUND 1 (RRC1, 350 

Xin et al., 2017, Xin et al., 2019). In vegetative tissues, DRT111 regulates pre-mRNA splicing of 351 

genes involved in light signaling and the circadian clock and acts upstream of PHYTOCHROME 352 

INTERACTING FACTORS (PIFs) transcription factors, a major class of phyB targets (Xin et al., 353 

2017). Interestingly, we observed a differential expression of PIF1/PIL5, PIF6/PIL2 and PIF7 in 354 
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dry seeds of drt111-2: in particular  PIF1/PIL5 and PIF6/PIL2 were upregulated and PIF7 was 355 

slightly down-regulated.  356 

PIF1 inhibits GA signalling by promoting expression of DELLA repressors and, indirectly, by 357 

reducing GA levels (Oh et al., 2007; Paik et al., 2017). Indeed, up-regulation in drt111-2 seeds 358 

observed for GIBERELLIC ACID INSENSITIVE (GAI) and RGA-LIKE2 RGL2, could also be 359 

dependent on an increased PIF1 activity or expression (Lee et al., 2012). 360 

In the dark, or in response to low R/FR ratio light, PIF1 inhibits seed germination through 361 

activation of hormone-dependent, germination-inhibiting mechanisms, including the induction of 362 

ABA biosynthesis and signalling genes (Oh et al., 2009). This process is partly regulated by the 363 

action of SOM (Kim et al., 2008; Park et al, 2011) which in turn regulates MOTHER-OF-FT-AND-364 

TFL1 (Vaistij et al. 2018). This may be achieved through induction of expression and interaction 365 

with ABI3 and ABI5, which may assist PIF1 in target site selection and activation of transcription 366 

(Kim et al., 2008; Park et al., 2011; Kim et al., 2016). Here we have shown that expression of SOM 367 

is upregulated compared to wild-type in drt111-2 imbibed seeds. Thus, regulation of SOM appears 368 

to be a major point of convergence of light and hormonal stimuli and DRT111 may be involved in 369 

this signal integration by exerting a regulatory function on both ABI3 and PIF1. 370 

Since phyB-9 seeds are hypersensitive to ABA and it has been previously shown that phyB plants 371 

maintain open stomata under stress conditions, similarly to what we observed in drt111 mutants 372 

(Gonzalez et al., 2012), we cannot exclude that the light perception by phyB is involved in 373 

DRT111-dependent splicing events. 374 

 375 

Finally, the transcriptomic analysis identified several genes whose expression/splicing is affected in 376 

drt111-2, therefore, several other key factors may contribute to the observed ABA hypersensitivity 377 

in drt111. Among them, genes highly expressed in drt111-2 included several members of the 378 

homeodomain leucine zipper class I TF (ATHB-1, ATHB-5, ATHB-7, ATHB-12), which have been 379 

largely studied for their role as regulators of abiotic stress responses. ATHB-7 and ATHB-12 are 380 

induced by water stress and ABA and control expression of several members of clade A PP2Cs, and 381 

are therefore considered negative regulators of ABA and stress responses (Arce et al., 2011; Valdes 382 

et al., 2012; Sessa et al., 2018). On the contrary, ATHB-5 whose expression is positively regulated 383 

by ABI1, ABI3, ABI5, is considered a positive regulator of ABA signaling since enhanced levels of 384 

ATHB-5 result in elevated ABA responses (Johannesson et al., 2003). ATHB-1, in particular, was 385 

shown to be regulated at the expression level by PIF1/PIL5 and regulates hypocotyl growth in short 386 

days (Capella et al., 2015). Future work will analyse the molecular details of the regulation operated 387 

by DRT111 on its targets. 388 
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AS defects in drt111 concerned predominantly IR and A3SS. Other splicing effectors and regulators 389 

affecting stress responses regulate these two AS classes. An increased splicing efficiency of IR 390 

prone introns was shown to be important for acclimation to drought stress and splicing regulator 391 

HIN1 is involved in this process (Chong et al., 2019). Similarly, SAD1 splicing factor increased 392 

A3SS usage under salt stress conditions (Xing et al., 2015). How DRT111 and 393 

components/regulators of the spliceosome, including SUA, SF1, U2AF
65

 associate/compete to 394 

determine the splicing of specific transcripts will be important to establish the contribution of this 395 

layer of regulation in defining the proteome during ABA and stress responses. 396 

In conclusion, ours and previous evidence shows that DRT111 constitutes a point of integration of 397 

light and ABA-dependent signaling by controlling expression and splicing of key factors such as 398 

ABI3 and PIF transcription factors. 399 

 400 

Experimental Procedures 401 

Plant materials, growth conditions and germination assays 402 

The Columbia (Col-0) and Landsberg (Ler) ecotypes were used as wild-type. The drt111 T-DNA 403 

insertion mutants: drt1111-1 (GABI_351E09), drt111-2 (SALK_001489) were obtained from the 404 

Nottingham Arabidopsis Stock Centre (NASC). sua-2 and sua-2/abi3-5 were kindly donated by 405 

Professor Wim Soppe (Max Planck Institute for Plant Breeding Research, Germany; present address 406 

Rijk Zwaan, Netherlands). abi3-5 was donated by Dr. Lucio Conti (Department of Biosciences, 407 

University of Milan, Italy). Arabidopsis thaliana plants were grown on soil in a growth chamber 408 

(14 h light /10 h dark) at 24°C. For germination tests, seeds harvested the same day from plants 409 

grown in parallel and stored for the same time were compared. Freshly harvested seeds or dry 410 

stored (after-ripened) for different times as indicated in figure legends were used. Seeds were sown 411 

on GM medium (1X MS salts, 0.5% sucrose, pH 5.7) or medium containing different 412 

concentrations of ABA (0.5 µM, 2 µM, 5 µM, 10 µM). After stratification treatment at 4°C for 2 413 

days, seeds were transferred to a growth chamber (16 h light / 8 h dark) at 24°C. Germination 414 

percentage was evaluated in terms of radicle emergence or fully expanded cotyledons. Gene 415 

expression analysis was carried out using 7-day-old seedlings grown on GM plates and then 416 

transferred to GM or GM containing NaCl (120 mM) and ABA (50 µM) for 3, 6 and 9 h, or NaCl 417 

(120 mM), ABA (10 µM) or PEG (35% w/v) for 2 and 5 days. 418 

 419 

RNA extraction, cDNA synthesis and qRT-PCR 420 

Total RNA was isolated from 100 mg of seedlings using RNeasy Plant Mini Kit (Qiagen, Hilden, 421 

Germany) according to manufacturer’s instructions. For RNA deep sequencing and qRT-PCR, total 422 
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RNA was extracted from 100mg of dry seeds or imbibed seeds (in H2O, 24h in dark, 4°C) using 423 

method reported in Oñate-Sánchez and Vicente-Carbajosa (2008). cDNA was synthesized using the 424 

QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany), starting from 1µg of DNase-425 

treated RNA. For qRT-PCR, 4.5 µl of diluted (1:20) cDNA was used for each reaction, with 6.25 µl 426 

of 1X Platinum SYBR Green qPCR SuperMix (Life Technologies, Carlsbad, CA, USA) and 1.75 µl 427 

of primer mix (5 µM). PCR was performed using ABI 7900 HT (Applied Biosystems, Foster City, 428 

CA, USA). Cycling conditions were: 10 min at 95°C, followed by 40 cycles of 95°C for 15s and 429 

60°C for 1 min. Three biological replicates, each with three technical replicates were tested. The 430 

relative quantification of gene expression was calculated based on the 2
-ΔΔCt

 method (Livak and 431 

Schmittgen, 2001). The elongation Factor EF1α was used as endogenous reference gene and RNA 432 

isolated from control plants as calibrator sample. Primers used are listed in Supplemental Table S2. 433 

 434 

Generation of DRT111 transgenic plants 435 

Transgenic Arabidopsis plants were produced using binary vectors obtained by Gateway technology 436 

(Life Technologies, Carlsbad, CA, USA). To study promoter activity, the sequence of DRT111 437 

promoter (2kb upstream of the start codon) was amplified from genomic DNA of Col-0 plants. To 438 

permit both N-terminus than C-terminus fusion with tags, the coding sequence of DRT111 was 439 

amplified with or without STOP codon. For the complementation of drt111 mutants, the genomic 440 

fragment of DRT111 including the upstream 1kb or 2kb region were amplified. Primers used are 441 

listed in Supplemental Table S2. PCR amplifications were performed using Phusion DNA 442 

polymerase (Thermo scientific, Waltham, MA, USA). The amplicones were cloned into 443 

pDONR207 (Life Technologies, Carlsbad, CA, USA) using BP clonase (Life Technologies, 444 

Carlsbad, CA, USA) to obtain entry vectors. 445 

Recombination with destination vectors was perfomed using LR clonase (Life Technologies, 446 

Carlsbad, CA, USA). pMDC164 (Curtis and Grossniklaus, 2003) was used for promoter studies, 447 

pGWB411 and pGWB412 (Nakagawa et al., 2007) to produce FLAG-tagged over-expressing plants, 448 

pEG302 (Earley et al., 2006) for mutant complementation. The resulting recombinant binary 449 

vectors were then introduced into the Agrobacterium tumefaciens GV3101 strain, which was then 450 

used to transform Col-0 plants or drt111 mutants using the floral dip method (Clough and Bent, 451 

1998).  452 

 453 

GUS assay  454 

Histochemical analysis of GUS activity was performed as described previously (Batelli et al., 2012). 455 

The tissues from transgenic Arabidpsis plants transformend with DRT111promoter::GUS construct 456 
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were washed in 70% ethanol and cleared with chloralhydrate/glycerol solution. Samples were 457 

analysed and photographed under an Axioskop 2 plus microscope (Zeiss) equipped with a Nikon 458 

Coolpix 990 camera.  459 

Stomatal measurements 460 

Detached leaves from 4-week-old plants were used for stomatal measurements. For stomatal 461 

aperture assay, epidermal peels were floated in SOS solution (20 mM KCl, 1 mM CaCl2, and 5 mM 462 

MES-KOH pH 6.15) for 2.5h at light to induce stomatal opening. Then the buffer was replaced with 463 

fresh SOS containing 50µM of ABA or fresh SOS without ABA and incubated at light for 2.5h. 100 464 

stomata were randomly observed using a Leica DMR microscope. The widths and lengths of 465 

stomata pores were measured using Image J software. 466 

 467 

Yeast two-hybrid assay 468 

For the yeast two hybrid assay, the coding sequence of DRT111 was cloned into the BamH1 and 469 

XhoI restriction sites of pGADT7 vector (Clontech, Mountain View, CA, USA) and the cDNA 470 

fragments of SF1 were cloned into the SmaI and SalI sites of pGBKT7 (Clontech, Mountain View, 471 

CA, USA) using primers listed in Supplemental Table S2. To evaluate the interaction between 472 

DRT11 and the different SF1 fragments, the obtained constructs were co-transformed into 473 

S.cerevisiae AH109 strain using the LiAc-mediated transformation method (Bai and Elledge, 1996) 474 

and plated on SD medium (7.5 g/L Yeast Nitrogen Base, 0.75 g/L amino acid mix, 20 g L/1 glucose, 475 

pH 5.8) lacking Leu and Trp. Yeast cultures were grown overnight and an equal amount was 476 

dropped on SD lacking Leu and Trp medium to guarantee the presence of both vectors, and onto SD 477 

medium lacking Leu, Trp, Ade and  His to verify the protein-protein interaction (Ruggiero et al., 478 

2019). Empty vectors pGBKT7 and pGADT7 were used as negative controls. 479 

 480 

Bimolecular fluorescence complementation assay 481 

The CDS of DRT111 and SF1 were cloned by Gateway technology in the pUGW2 and pUGW0 482 

vectors (Nakagawa et al., 2007) to guarantee the downstream fusion of the C-terminal YFP region 483 

and upstream fusion of N-terminal YFP region, respectively. Primers are listed in Supplemental 484 

Table S2. Nicotiana tabacum leaf protoplasts were prepared and transfected according to Pedrazzini 485 

et al. (1997). 40 µg of DNA for each construct was introduced in 1x10
6
 protoplasts using PEG-486 

mediated transfection. Following 16h incubation in the dark at 25°C, the cells were imaged with an 487 

Inverted Z.1 microscope (Zeiss, Germany) equipped with a Zeiss LSM 700 spectral confocal laser-488 

scanning unit (Zeiss, Germany). Samples were excited with a 488 nm, 10 mW solid laser with 489 
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emission split at 505 nm for YFP and excited with a 555 nm, 10 mW solid laser with emission split 490 

at 551 nm for chlorophyll detection  491 

 492 

RNA sequencing analysis  493 

For RNA deep sequencing, total RNA was extracted from dry seeds and DNAse treated using 494 

RNAeasy plant kit (Qiagen, Hilden, Germany). Three biological replicates per genotype (Columbia-495 

0 and drt111-2) were used. Library construction was performed using the Illumina TruSeq RNA 496 

Sample Preparation Kit (Illumina, SanDiego, CA, USA) prior to sequencing in single (2x100, 497 

~45.000.000 total reads/sample) on Illumina platform Hiseq 2500. The sequencing service was 498 

provided by Genomix4life (http://www.genomix4life.com) at Laboratory of Molecular Medicine 499 

and Genomics (University of Salerno, Italy). Raw sequences are deposited in NCBI Sequence Read 500 

Archive, bioproject PRJNA557116.  Prior to further analysis, a quality check was performed on the 501 

raw sequencing data by using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), 502 

then low quality portions of the reads were removed with BBDuk (sourceforge.net/projects/bbmap/). 503 

The minimum length of the reads after trimming was set to 35 bp and the minimum base quality 504 

score to 25. The high quality reads were aligned against the Arabidopsis thaliana reference genome 505 

sequence (Araport11) with STAR aligner (version 2.5.0c, Doblin et al., 2013). FeatureCounts 506 

(version 1.4.6-p5, Liao et al., 2013) was used together with the most recent Arabidopsis thaliana 507 

annotation to calculate gene expression values as raw read counts. Normalized TMM and FPKM 508 

values were calculated. All the statistical analyses were performed with R with the packages 509 

HTSFilter (Rau et al., 2013) and edgeR (Robinson et al., 2010). The first step was the removal of 510 

not expressed genes and the ones showing too much variability. The HTSFilter package was chosen 511 

for this scope, which implements a filtering procedure for replicated transcriptome sequencing data 512 

based on a Jaccard similarity index. The “Trimmed Means of M-values”(TMM) normalization 513 

strategy was used. The filter was applied to the different experimental conditions in order to identify 514 

and remove genes that appear to generate an uninformative signal. The overall quality of the 515 

experiment was evaluated, on the basis of the similarity between replicates, by a Principal 516 

Component Analysis (PCA) using the normalized gene expression values as input. The differential 517 

expression analysis was performed to identify the genes that are differentially expressed in all 518 

comparisons. Only genes with ǀlog2(fold-change)ǀ> 0.21 and FDR equal or lower than 0.05 were 519 

considered as Differentially Expressed Genes (DEGs).  520 

In order to identify the number of different splicing events the software rMATS (V 3.2.5, Shen et al., 521 

2014) was used. Prior to further analysis, the high quality reads were aligned against the 522 

Arabidopsis thaliana genome using Araport11 as reference with STAR aligner (version 2.5.0c), 523 
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with Local Mapping option due to the restrictions in the splicing software. An FDR filter of <=0.05 524 

was used to detect  significant differences in splicing events between Col-0 and drt111. The 525 

bioinformatics analysis was performed by Sequentia Biotech (http://www.sequentiabiotech.com). 526 

For the DEGs and significantly different splicing events, a Gene Ontology Enrichment Analysis 527 

(GOEA) was performed to identify the most enriched Gene Ontology (GO) categories across the 528 

down- and up-regulated genes (P value < 0.05 and FDR <0.05) following the method described in 529 

Tian et al. 2017. 530 

 531 

Accession Numbers 532 

The genes used in this study are: DRT111/SFPS (At1g30480), SUA (At3g54230), PIF1/PIL5 533 

(At2g20180), ABI3 (At3g24650), SF1 (At5g51300), SOM (At1g03790), phyB (At2g18790). 534 
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 826 

Figure Legends 827 

Figure 1. DRT111 promoter activity and gene expression. (A) DRT111 tissue-specific expression 828 

based on Arabidopsis microarray data in the eFP browser (http://bar.utoronto.ca). Data are 829 

normalized by the GCOS method, TGT value of 100. (B) Histochemical localization of GUS in 830 

leaves of transgenic Arabidopsis adult plants expressing the GUS reporter gene driven by DRT111 831 

promoter (DRT111promoter::GUS). Scale bars are shown. (C) Relative expression of DRT111 in 7-832 

day-old seedlings after 3, 6 and 9 h exposure to NaCl (120 mM) or ABA (50 μM) (D) Relative 833 

expression of DRT111 in 7-day-old seedlings after 5 days exposure to NaCl (120 mM), ABA (10 834 

μM) or polyethylene glycol (PEG; 35% W/V) ). Data were normalized using RNA from untreated 835 

seedlings, and the elongation factor EF1a as endogenous control. Data reported are means ±SD of 836 

three biological replicates. The asterisks indicate significant differences compared to control 837 

condition according to Student’s t-test (*P ≤ 0.05, **P ≤ 0.01).  838 

Figure 2. Interaction of DRT111 with Splicing Factor 1 (SF1). (A) Yeast two-hybrid assay. 839 

DRT111 in prey vector (pGADT7, AD domain) was co-transformed with the indicated fragments of 840 

SF1 cloned in the bait vector (pGBKT7, BD domain).  The empty vectors pGADT7 and pGBKT7 841 

were used as negative controls. Overnight grown yeast culture was dropped onto selective media. 842 

Pictures were taken after 3 days incubation at 30°C. (B) Bimolecular fluorescence complementation 843 

assay. Nicotiana tabacum leaf protoplasts were co-transformed with 20 μg each of plasmids 844 

encoding DRT111 fused with N-terminus of YFP (nYFP) and SF1 fused with the C-terminus of 845 
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YFP (cYFP) . nYFP and cYFP empty vectors were used as negative controls. The cells were 846 

imaged by confocal microscopy 16 h later. For the interaction, zoom in images of the nucleus are 847 

shown in the last row. Chlorophyll autofluorescence, YFP fluorescence and merged images are 848 

shown. Scales bars are indicated. 849 

 Figure 3. Phenotyping of knockout mutants drt111-1 (GABI_351E09), drt111-2 (SALK_001489) 850 

and DRT111 over-expressing lines (35S::FLAG-DRT111 #2, 4, 21) (A) Primary root length of 10-851 

day-old wild type (Col-0), DRT111 mutants and transgenic lines grown on GM medium (1% 852 

sucrose) or medium containing ABA 20 µM.  (B) Water loss of detached leaves of drt111 mutants, 853 

overexpressing lines (35S::FLAG-DRT111) and wild type (Col-0) plants. Data are averages ± SE of 854 

two independent experiments (n=5 for each line, per experiment) and reported as percentages of 855 

initial fresh weight at different time points (0.5 to 6 hours). The asterisks indicate significant 856 

differences compared with wild type (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001, 857 

Student’s t-test). (C) Stomatal aperture of drt111-1 and drt111-2 mutants and wild type plants in 858 

response to ABA. Leaf peels harvested from 2-week-old plants were incubated for 2 hours in SOS 859 

buffer under light and then treated with or without 50µM ABA for 2.5 hours. Asterisks indicate 860 

significant difference between sample with or without ABA (** P ≤  0.01; Student’s t-test). D) 861 

Photographs of stomata of the indicated genotypes as reported in C. Scale bar: 25 µm. 862 

 Figure 4.  Germination analysis of drt111 mutants (drt111-1, drt111-2), DRT111 over-expressing 863 

lines (35S:FLAG-DRT111 #2, #4, #21), and wild-type (Col-0) and complementation of drt1111 864 

mutants with pDRT111:DRT111-FLAG (A-C) Germination percentage of 10 days after-ripened 865 

seeds scored in terms of radicle emergence (A) and cotyledon expansion (B) in presence of 0.5 µM 866 

ABA and control media (C). Data are means ±SD (n=150) of five biological replicates. D) 867 

Germination percentage of 1 year after-ripened seeds scored in terms of radicle emergence after 3 868 

day in the presence of different concentration of ABA. E) Germination analysis of  drt111 mutants 869 

transformed with DRT111 genomic fragment including 1kb or 2kb upstream of the translation start 870 

site (1KbDRT111; 2kbDRT111) in pDRT111:DRT111-FLAG constructs. Germination reported as 871 

percentage in terms of radicle emergence in control condition (left) and in the presence of 0.5 µM 872 

ABA (middle) and in terms of cotyledon expansion in presence of 0.5 µM ABA (right). In all 873 

germination tests, seeds were stratified for 2 d before incubation at 24°C. The asterisks indicate 874 

significant differences compared to Col-0 according to Student’s t-test (*P ≤ 0.05, **P ≤ 0.01, ***P 875 

≤ 0.001, ****P ≤ 0.0001). 876 

 Figure 5. Alternative splicing (AS) events altered in drt111-2. A) Number of different AS events 877 

UP- (a greater prevalence of AS event in the mutant vs. Col-0) and DOWN- (a lower prevalence of 878 
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27 
 

AS event in the mutant vs. Col-0) regulated in drt111-2 dry seeds. B) Percentage of splicing events 879 

significantly UP- and DOWN-regulated in drt111-2 with respect to the total AS events defective in 880 

drt111-2. ES: Exon skipping; MXE: Mutually exclusive exon; IR: Intron retaining; A3SS: 881 

Alternative 3' splice site; A5SS: Alternative 5' splice site. (C-J) Validation of RNA-seq data by 882 

qRT-PCR. (C, E, G and I) Representation of AS differences between Col-0 and drt111-2 detected 883 

by RNA-seq using Integrative Genomics Viewer. Dashed box indicates the position of alternative 884 

splicing events: ES (AT5G14180, AT4G12680), IR (AT1G77800) and A3SS in (AT2G02390). 885 

Primers used for qRT-PCR are shown. (D, F, H and J) Validation by qRT-PCR. The elongation 886 

factor EF1α was used as endogenous control. 887 

Figure 6. Germination analysis and relative expression of ABI3 and SOMNUS in drt111-2 seeds. A) 888 

Expression of ABI3 splicing variants (ABI3-α, ABI3-β) in Col-0 and drt111-2 dry seeds (left) or 889 

imbibed seeds (right). B) Germination of freshly harvested seeds sown on media containing 0, 5, 10 890 

or 15µM ABA. C) Germination of seeds sown on GM medium after different periods of dry 891 

storage: 0, 4 or 8 weeks after harvest. (B,C) Data were collected after 3 days and reported as means 892 

of three biological replicates (±SD). D) Germination of 14 d after-ripened seeds sown on medium 893 

containing ABA 0.5 µM. Data were collected after 3 days and reported as means of two 894 

independent experiments (±SE). E) Germination of freshly harvested seeds sown on medium 895 

containing different concentrations of ABA (0; 5; 10µM). Data were collected after 7 days and 896 

reported as means of three biological replicates (±SD). F) Expression of SOMNUS in Col-0 and 897 

drt111-2 imbibed seeds. In all germination tests, seeds were stratified for 2 d before incubation at 898 

24°C. The asterisks indicate significant differences compared with wild type or abi3-5 (E) 899 

according to Student’s t-test (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001). 900 
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Figure 1. DRT111 promoter activity and gene expression. (A) DRT111 tissue-specific expression based on Arabidopsis
microarray data in the eFP browser (http://bar.utoronto.ca). Data are normalized by the GCOS method, TGT value of 100.
(B) Histochemical localization of GUS in leaves of transgenic Arabidopsis adult plants expressing the GUS reporter gene
driven by DRT111 promoter (DRT111promoter::GUS). Scale bars are shown. (C) Relative expression of DRT111 in 7-day-old
seedlings after 3, 6 and 9 h exposure to NaCl (120 mM) or ABA (50 μM) (D) Relative expression of DRT111 in 7-day-old
seedlings after 5 days exposure to NaCl (120 mM), ABA (10 μM) or polyethylene glycol (PEG; 35% W/V) ). Data were
normalized using RNA from untreated seedlings, and the elongation factor EF1a as endogenous control. Data reported are
means ±SD of three biological replicates. The asterisks indicate significant differences compared to control condition
according to Student’s t-test (*P ≤ 0.05, **P ≤ 0.01).
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Figure 2. Interaction of DRT111 with Splicing Factor 1 (SF1). (A) Yeast two-hybrid assay. DRT111 in prey vector
(pGADT7, AD domain) was co-transformed with the indicated fragments of SF1 cloned in the bait vector (pGBKT7, BD
domain). The empty vectors pGADT7 and pGBKT7 were used as negative controls. Overnight grown yeast culture was
dropped onto selective media. Pictures were taken after 3 days incubation at 30°C. (B) Bimolecular fluorescence
complementation assay. Nicotiana tabacum leaf protoplasts were co-transformed with 20 μg each of plasmids
encoding DRT111 fused with N-terminus of YFP (nYFP) and SF1 fused with the C-terminus of YFP (cYFP) . nYFP and
cYFP empty vectors were used as negative controls. The cells were imaged by confocal microscopy 16 h later. For the
interaction, zoom in images of the nucleus are shown in the last row. Chlorophyll autofluorescence, YFP fluorescence
and merged images are shown. Scales bars are indicated.
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Figure 3. Phenotyping of knockout mutants drt111-1 (GABI_351E09), drt111-2 (SALK_001489) and DRT111 over-expressing lines
(35S::FLAG-DRT111 #2, 4, 21) (A) Primary root length of 10-day-old wild type (Col-0), DRT111 mutants and transgenic lines grown
on GM medium (1% sucrose) or medium containing ABA 20 µM. (B) Water loss of detached leaves of drt111 mutants,
overexpressing lines (35S::FLAG-DRT111) and wild type (Col-0) plants. Data are averages ± SE of two independent experiments
(n=5 for each line, per experiment) and reported as percentages of initial fresh weight at different time points (0.5 to 6 hours).
The asterisks indicate significant differences compared with wild type (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001,
Student’s t-test). (C) Stomatal aperture of drt111-1 and drt111-2 mutants and wild type plants in response to ABA. Leaf peels
harvested from 2-week-old plants were incubated for 2 hours in SOS buffer under light and then treated with or without 50µM
ABA for 2.5 hours. Asterisks indicate significant difference between sample with or without ABA (** P ≤ 0.01; Student’s t-test). D)
Photographs of stomata of the indicated genotypes as reported in C. Scale bar: 25 µm.
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Figure 4. Germination analysis of drt111 mutants (drt111-1, drt111-2), DRT111 over-expressing lines (35S:FLAG-DRT111 #2, #4,
#21), and wild-type (Col-0) and complementation of drt1111 mutants with pDRT111:DRT111-FLAG (A-C) Germination percentage
of 10 days after-ripened seeds scored in terms of radicle emergence (A) and cotyledon expansion (B) in presence of 0.5 µM ABA
and control media (C). Data are means ±SD (n=150) of five biological replicates. D) Germination percentage of 1 year after-
ripened seeds scored in terms of radicle emergence after 3 day in the presence of different concentration of ABA. E) Germination
analysis of drt111 mutants transformed with DRT111 genomic fragment including 1kb or 2kb upstream of the translation start
site (1KbDRT111; 2kbDRT111) in pDRT111:DRT111-FLAG constructs. Germination reported as percentage in terms of radicle
emergence in control condition (left) and in the presence of 0.5 µM ABA (middle) and in terms of cotyledon expansion in
presence of 0.5 µM ABA (right). In all germination tests, seeds were stratified for 2 d before incubation at 24°C. The asterisks
indicate significant differences compared to Col-0 according to Student’s t-test (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤
0.0001).
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Figure 5. Alternative
splicing (AS) events
altered in drt111-2. A)
Number of different AS
events UP- (a greater
prevalence of AS event
in the mutant vs. Col-0)
and DOWN- (a lower
prevalence of AS event
in the mutant vs. Col-0)
regulated in drt111-2
dry seeds B)
Percentage of splicing
events significantly UP-
and DOWN-regulated
in drt111-2 with
respect to the total AS
events defective in
drt111-2. ES: Exon
skipping; MXE:
Mutually exclusive
exon; IR: Intron
retaining; A3SS:
Alternative 3' splice
site; A5SS: Alternative
5' splice site. (C-J)
Validation of RNA-seq
data by qRT-PCR. (C, E,
G and I)
Representation of AS
differences between
Col-0 and drt111-2
detected by RNA-seq
using Integrative
Genomics Viewer.
Dashed box indicates
the position of
alternative splicing
events: ES
(AT5G14180,
AT4G12680), IR
(AT1G77800) and A3SS
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and J) Validation by
qRT-PCR. The
elongation factor EF1α
was used as
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A

F Figure 6. Germination analysis and relative expression of ABI3 and SOMNUS
in drt111-2 seeds. A) Expression of ABI3 splicing variants (ABI3-α, ABI3-β) in
Col-0 and drt111-2 dry seeds (left) or imbibed seeds (right). B) Germination
of freshly harvested seeds sown on media containing 0, 5, 10 or 15µM ABA.
C) Germination of seeds sown on GM medium after different periods of dry
storage: 0, 4 or 8 weeks after harvest. (B,C) Data were collected after 3 days
and reported as means of three biological replicates (±SD). D) Germination of
14 d after-ripened seeds sown on medium containing ABA 0.5 µM. Data were
collected after 3 days and reported as means of two independent
experiments (±SE). E) Germination of freshly harvested seeds sown on
medium containing different concentrations of ABA (0; 5; 10µM). Data were
collected after 7 days and reported as means of three biological replicates
(±SD). F) Expression of SOMNUS in Col-0 and drt111-2 imbibed seeds. In all
germination tests, seeds were stratified for 2 d before incubation at 24°C.
The asterisks indicate significant differences compared with wild type or
abi3-5 (E) according to Student’s t-test (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001,
****P ≤ 0.0001).
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