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Fig 7 Box-plots of surface errors as a function of resampling ratio (percentage of edges that are preserved) when

down-sampling a FreeSurfer-generated pial surface. Spatial distributions of the errors are shown as insets.

(a) (b)

Fig 8 Tetrahedral mesh generated from a hybrid meshing pathway combining FreeSurfer surfaces with SPM segmen-
tation outputs for the USC 30-34 atlas. The (a) sagittal and (b) coronal views are shown. The tissue layers include
scalp (apricot), skull (light-yellow), CSF (blue), GM (gray), and WM (white).
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3.3 Brain mesh library generated from public brain databases

To test the robustness of our meshing workflow described above, we successfully processed many
of the publicly available brain segmentation datasets, including the BrainWeb database”> and the
recently published Neurodevelopmental MRI database.>’ For the BrainWeb atlas database, we
created the corresponding mesh models directly from the available brain segmentations. For Neu-
rodevelopmental atlases, the WM and GM segmentations provided as part of the the database were
used; however, the CSF and bone segmentations were not directly included by the database because
they are generally more difficult to create. For these missing tissues, separate segmentations for
CSF and bone were created using SPM. In addition, the scalp surface was extracted from the raw
MRI image using an intensity thresholding approach followed by 3 iterations of Laplacian+HC
smoothing.*’ In Fig. 9, we show 9 sample USC atlas brain meshes derived from adult and ado-
lescent scans. In all processed MRI scans, the proposed meshing workflow worked smoothly; the
average processing time is less than a minute per mesh when the voxel resolution is 1x1x1 mm?
and about 3 min per mesh when the resolution is 0.5x0.5x0.5 mm?>.

It is important to note that the CSF and bone segmentations in Fig. 9 have not been validated and
are shown only for illustration purposes. In the initial release of our brain mesh library, we only
included the GM/WM meshes from the Neurodevelopmental atlas database based on previously
published segmentations.

3.4 Comparing mesh, voxel and layer-based brain models in light transport simulations

Next, we demonstrate the impact of different brain anatomical models, particularly between the
mesh-, voxel- and layered-slab brain representations and highlight their discrepancies in optical
parameters estimated from 3-D Monte Carlo light transport simulations. Here we use our in-house
developed dual-grid mesh-based Monte Carlo (DMMC) simulator!” for mesh- and layer-based MC
simulations, and MCX3! for voxel-based simulation. An MRI brain atlas (19.5 year group®') was
selected for this comparison, although our methods are readily applicable to other brain models.
The SPM segmentation (166 x209x223 with 1 x 1x 1 mm? resolution) of the selected atlas and the
generated tetrahedron-mesh from this segmentation are used for this comparison.

In this case, a tetrahedral mesh with 442,035 nodes and 2,596,064 elements is used for the DMMC
simulations. The mesh was created using our aforementioned meshing pipeline with maximum-
volume size Vjuzr = 30 mm> and maximum Delaunay sphere radii R, = 1.2 mm for all tissue
layers. In comparison, a much simplified layered-slab brain model is made of slabs of the same 5
tissue layers with the layer thicknesses calculated based on the mesh model: scalp: 7.25 mm, skull:
4.00 mm, CSF: 2.73 mm, and GM: 3.29 mm; WM tissue fills the remaining space. To minimize
boundary effect, the layered-slab brain model has a dimension of 200 x200x 50 mm?.

For the two anatomically derived (voxel and mesh) brain simulations, an inward-pointing pencil
beam source is placed at an EEG 10-5 landmark>® — “C4h” — selected using the “Mesh2EEG”
toolbox.>’ Within the same coronal plane, five 1.5 mm-radius detectors are placed on either side
of the source along the scalp, 8.4, 20, 25, 30 and 35 mm from the source (in geodesic distance, see
Fig. 10(a)), respectively, determined based on typical fNIRS system settings.'®>® Similarly, for
the simulations with the layered-slab brain model, a pencil beam source pointing down is placed at
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(& (h) (@)
Fig 9 Illustrative brain mesh examples (coronal views) produced using the Neurodevelopmental MRI Database,
including (a) 16 years, (b) 17.5 years, (c) 25-29 years, (d) 30-34 years, (e) 35-39 years, (f) 40-44 years, (g) 50-54
years, (h) 60-64 years, and (i) 70-74 years old. The tissue layers include scalp (apricot), skull (light-yellow), CSF
(blue), GM (gray), and WM (white).

14


https://doi.org/10.1101/2020.02.07.939447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.07.939447; this version posted February 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(99.5, 100, 0) mm. A similar set of detectors are placed on one side of the source due to symmetry,
see Fig. 10(b).

Three-dimensional MC photon simulations are performed on all 3 brain models, where DMMC is
used for both the mesh-based and the layered-slab brain models, and MCX is used for the voxel-
based brain model. The output fluence distributions along the source-detector plane are compared
in Fig. 10(a). From these MC simulations, we also report the average partial-pathlengths in the
brain regions (PPLp), average total-pathlengths (7 PL) and their percentage ratios Rp = PTI;LLB in
Table 1. Moreover, we also computed the percentage fraction of the energy deposition in the gray
matter region with respect to the total simulated energy. In addition to MC-based photon modeling,
we have also applied the diffusion approximation, frequently seen in the literature,’ to the layered-
slab brain model and compare the results with those derived from the MC method in Fig. 10(b).
For solving the diffusion equation, we used our in-house diffusion solver, Redbird.”® The reduced
scattering coefficient of the CSF region is set to 0.3 mm! as suggested in Refs.>*® The Redbird
solution matches excellently with that from NIRFAST! (not shown).

In Fig. 10(a), the fluence contour plots produced by MCX (orange dashed-line) and DMMC (white
dashed-line) agree excellently in the vicinity of the source, while noticeable discrepancies are
observed when moving away from the source. We believe this is a combined result of 1) photon
energy deposition variations due to the small disagreement between a terraced tissue boundary and
the smooth surface boundary, and 2) the distinct photon reflection behaviors between a voxel- and
a mesh-based surface due to the differences in the orientations of surface facets. The effect from
the first cause is largely depicted by the deviation between the two solutions in the depth direction
near the source. Such difference is particularly prominent near highly-curved boundaries or near
boundaries with high absorption/scattering contrasts, such as the CSF region beneath detectors #7,
#8 and #9 in this plot. The effect from the second cause is highlighted by the worsened discrepancy
when moving away from the source along the scalp layer, for example, the scalp region to the left
of detector #10. Overall, the second source of error is noticeably prominent than the mismatch
resulted from the first cause. This observation is further validated by disabling the refractive-index
mismatch calculations in both of our simulations (results not shown): the error along the scalp
surface was largely removed, but the deviations in the deep-brain regions remain.

In Fig. 10(b), the diffusion approximation (orange dashed-line) and MC (white dashed-line) pro-
duce well-matched fluence contour plots near the source but show significant difference in the
regions distal to the source. The difference is particularly noticeable within the CSF and GM re-
gions and above 30 mm source-detector separation on the scalp surface. We believe it is largely
due to the error introduced by the approximated CSF reduced scattering coefficient.*®

To further quantify the differences caused by different brain representations and their impact to
fNIRS brain measurements, in Table. 1, we also compare several key photon parameters derived
from MC simulations. Here we use the parameters derived from mesh-based MC as the reference.
This is because MC solutions are typically used as gold-standard, and mesh-based shape repre-
sentations are known to be more accurate than voxelated domains.'® We observe that simulations
using voxel-based and layered-slab brain models tend to overestimate PPLp compared to the mesh
models. For detectors #6 to #10, the voxel-based simulation gives a 21% over-estimation at the
shortest source-detector (SD) separation (8.4 mm); such discrepancy is reduced to within +£2% at
the largest two separations (30 and 35 mm). The 7T'PL values are less susceptible to anatomical

15


https://doi.org/10.1101/2020.02.07.939447
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.07.939447; this version posted February 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

T T T 0
220 @ DMMC H
RGN (0):¢ )
210 ® source ||
g 200 ® (detector -4
=190 -6
N
180 -8
170 -10
160 el 12
-20 0 20 40 60 80 100 120 140 160
X [mm]
(a)

50 60 70 80 90 100 110 120 130 140 150
X [mm]

(b)
Fig 10 Comparisons of fluence distributions in an MRI brain atlas (19.5 year) using 3 different brain models: (a) MC

fluence maps using anatomically derived mesh (computed using DMMC) and voxel (computed using MCX) brain
representations, and (b) fluence maps computed using the MC and diffusion approximation in a simple layered-slab
brain model. Contour plots, in log-10 scale, are shown along the coronal planes with each brain tissue layer labeled
and delineated by black dashed-lines. In (a), the “L” and “R” markings (red) indicate the left and the right brain,

respectively. The comparisons between the mesh and voxel tissue boundaries are shown in the inset of (a).
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Mesh-based brain Voxel-based brain Layered-slab brain
model (DMMC) model (MCX) model (DMMC)
det.| SD | PPLg | TPL Rp PPLg | TPL Rp PPLg | TPL Rp
(mm), (mm) | (mm) (mm) | (mm) (mm) | (mm)

84 | 0.05 3437 | 0.14% | 0.06 | 3391 | 0.17% | 0.13 36.52 | 0.35%
20 1.55 | 9296 | 1.66% | 190 | 93.53 | 2.03% | 3.03 101.9 | 2.97%
25 4.33 1224 | 3.54% | 5.33 123.6 | 431% | 7.05 133.4 | 5.28%
30 8.74 150.1 | 5.82% | 9.73 150.1 | 6.48% | 12.5 163.5 | 7.64%
35 12.8 169.6 | 7.56% | 14.4 170.5 | 8.44% | 174 186.5 | 9.34%
84 | 0.04 | 36.06 | 0.11% | 0.05 36.10 | 0.14%
20 1.20 | 9547 | 1.26% | 1.38 | 97.16 | 1.42%
25 3.48 125.5 | 2.78% | 3.70 1264 | 2.92%
30 7.77 157.0 | 495% | 7.90 158.0 | 5.00%
10 | 35 12.2 179.5 | 6.78% | 12.0 180.1 | 6.68%

Table 1 Comparison of key optical parameters derived from MC simulations from an MRI brain atlas (19.5 year): For

O| 0| IO\ N K| W —|FH

each detector, we compare the average photon partial-pathlengths in the brain region (PPLp), total-pathlengths (7' PL)
and their percentage ratios (Rp) derived from mesh-based (DMMC), voxel-based (MCX) and layered-slab (DMMC)
brain representations at various source-detector separations (SD).

model accuracy, reporting a percentage difference between 0.1% to 1.8%. As a result, the dif-
ference in Rp is largely modulated by that of PPLg, ranging between -1.5% to 21%. However,
for detectors #1 to #5 located on a different brain region where the superficial layers are shal-
lower than those under detectors #6 to #10, more pronounced over-estimations of PPLp for all
SD separations, ranging from 12% to 23%, are observed, resulting in an Rp percentage difference
between 12% and 24%. Similarly, compared to mesh-based model, the layered-slab brain MC
simulations report significant over-estimation of PPLg (36% to 166% with the highest difference
at the shortest separation) and TPL (6.3% to 10%), resulting in significant variation in Rg: 151%
at the shortest SD separation and 78% to 24% for four long separations. Furthermore, we have also
computed the percentage fraction of the energy deposition within the GM. This fraction is 1.69%
when using mesh-based brain model, and 1.42% when using a voxel-based brain model, resulting
in a 16% reduction in brain energy deposition. This result could have some implications to many
photobiomodulation (PBM) applications.>

4 Conclusion

In this work, we address the increasing needs for accurate and high-quality brain/head anatomical
models that arise in fNIRS and many other neuroimaging modalities for brain function quantifica-
tion, image reconstruction, multi-physics modeling and visualization. Combined with the advance
in light transport simulators,'®!7-47 our proposed brain mesh generation pipeline enables fNIRS
research community to utilize more accurate anatomical representations of the human brain to
improve quantification accuracy, and make atlas-based as well as subject-specific fNIRS analysis
more feasible. This also gives us an opportunity to systematically investigate how neuroanatomical
models — ranging from the simple layered-slab brain model to voxel-based and mesh-based models
— impact the estimations of optical parameters that are essential to fNIRS imaging.
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Specifically, we first described a fast and robust brain mesh generation algorithm and demonstrated
that our MATLAB-based open-source toolbox, “Brain2Mesh”, can produce high-quality brain and
full-head tetrahedral meshes from multi-label or probabilistic segmentations with full automation.
The abilities to create tissue boundaries from gray-scale probabilistic maps and incorporate de-
tailed surface models from FreeSurfer/FSL ensure smoothness and high accuracy in representing
brain tissue boundaries. The output meshes generally exhibit excellent shape quality without need-
ing to generate excessive number of small elements, such as in many existing mesh generators.
For most of the included examples, the processing time ranges between 1 and a few minutes using
only a single CPU thread. This is dramatically faster than most previously published brain mesh-
ing tools.?%3%-%0 Moreover, the entire meshing pipeline was developed based on our open-source
meshing toolbox, [so2Mesh, and other open-source meshing utilities such as CGAL, TetGen and
Cork. This ensures excellent accessibility of this tool to the community. In addition to devel-
oping this brain mesh generation toolkit, we have also produced a set of high-quality brain atlas
mesh models, including the widely used BrainWeb, Colin27 and MNC atlases. We believe these
ready-to-use brain/fullhead models will be valuable resources for the fNIRS community.

Another important aspect of this study is that we demonstrate how tissue boundary representa-
tions, especially layered-, voxel- and mesh-based anatomical models, could impact light transport
simulations in fNIRS data analysis. While the modeling error caused by voxelization in MC sim-
ulations has been previously reported,®! we believe this is the first time such discrepancy has
been quantified, particularly in the context of brain imaging, enabled by our unique access to
high-quality brain meshes and highly accurate mesh-based MC simulation tools. We believe such
findings could provide guidance for advancing fNIRS towards improved accuracy and broad util-
ity. Our open-source meshing software as well as the brain mesh library are freely available at
http://mcx.space/brain2mesh.
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