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Abstract 1 

Hierarchical perceptual-inference models of psychosis may provide a holistic framework for 2 
understanding psychosis in schizophrenia including heterogeneity in clinical presentations. 3 
Particularly, hypothesized alterations at distinct levels of the perceptual-inference hierarchy may 4 
explain why hallucinations and delusions tend to cluster together yet sometimes manifest in 5 
isolation. To test this, we used a recently developed resting-state fMRI measure of intrinsic neural 6 
timescale (INT), which reflects the time window of neural integration and captures hierarchical 7 
brain gradients. In analyses examining extended sensory hierarchies that we first validated, we 8 
found distinct hierarchical INT alterations for hallucinations versus delusions in the auditory and 9 
somatosensory systems, thus providing support for hierarchical perceptual-inference models of 10 
psychosis. Simulations using a large-scale biophysical model suggested local elevations of 11 
excitation-inhibition ratio at different hierarchical levels as a potential mechanism. More generally, 12 
our work highlights the robustness and utility of INT for studying hierarchical processes relevant 13 
to basic and clinical neuroscience.  14 

 15 

 16 

Introduction 17 
Hallucinations and delusions are burdensome symptoms that typically manifest together as the 18 
psychotic syndrome of schizophrenia. Perceptual-inference models of psychosis suggest that 19 
these symptoms result from alterations in the updating of internal models of the environment that 20 
are used to make inferences about external sensory events and their causes (Adams et al., 2013; 21 
Horga and Abi-Dargham, 2019; Sterzer et al., 2018). These models are receiving increasing 22 
empirical support (Adams et al., 2018; Baker et al., 2019; Cassidy et al., 2018; Davies et al., 23 
2017; Powers et al., 2017; Teufel et al., 2015), yet current theories do not provide a satisfactory 24 
explanation for how hallucinations and delusions tend to co-occur but sometimes manifest in 25 
isolation. This suggests that these psychotic symptoms may share a common neurobiological 26 
mechanism and simultaneously depend on symptom-specific pathways. 27 

We and others have proposed that this apparent tension may be resolved in the context of 28 
hierarchical perceptual-inference models (Adams et al., 2013; Baker et al., 2019; Corlett et al., 29 
2009; Corlett et al., 2018; Fletcher and Frith, 2009; Sterzer et al., 2018). One possibility is that 30 
alterations at higher levels—supporting inferences on abstract hidden states like someone’s 31 
intentions—may drive delusions, and alterations at lower levels—supporting inferences about 32 
lower-level features of stimuli such as stimulus presence or absence—may drive hallucinations 33 
(Baker et al., 2019; Davies et al., 2017; Horga and Abi-Dargham, 2019; Powers et al., 2017). In 34 
addition to these symptom-specific pathways, alterations at any level may naturally propagate 35 
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throughout the interdependent levels of the hierarchy (Chaudhuri et al., 2015), potentially 1 
explaining symptom co-occurrence. Importantly, neural systems supporting inference are thought 2 
to feature a hierarchical architecture of timescales that mirrors the hierarchical temporal dynamics 3 
of natural environments, where rapidly changing events are typically nested within slower 4 
changing contexts (Kiebel et al., 2008, 2009). Thus, higher-level inferences pertaining to slower 5 
changing contexts require neural systems with the ability to integrate information over longer 6 
periods, an ability consistent with the persistent neuronal activity that characterizes higher-level 7 
regions (Major and Tank, 2004; Mazurek et al., 2003). 8 

A hierarchy of neural timescales is observed in both single-neuron recordings in non-human 9 
primates (Murray et al., 2014) and functional magnetic resonance imaging (fMRI) recordings in 10 
humans (Hasson et al., 2015; Hasson et al., 2008; Honey et al., 2012; Lerner et al., 2011; 11 
Stephens et al., 2013), and is recapitulated by a large-scale biophysical model (Chaudhuri et al., 12 
2015). Furthermore, a newly developed method based on resting-state fMRI that was validated 13 
against electroencephalography (EEG) similarly captures a hierarchy of intrinsic neural 14 
timescales (INT), as well as alterations in psychopathology (Watanabe et al., 2019). Here, we 15 
specifically applied this fMRI measure to test whether hallucinations and delusions are associated 16 
with distinct changes of INT at low and high levels of neural hierarchies, respectively. We 17 
hypothesized that INT at these respective levels would increase with more severe symptoms, 18 
reflecting increased neural integration of prior information (Glaze et al., 2015; Mante et al., 2013; 19 
Mazurek et al., 2003), in line with behavioral findings in hallucinations and delusions (Baker et al., 20 
2019; Cassidy et al., 2018; Powers et al., 2017). If present, these INT changes should manifest 21 
as symptom-specific differences in hierarchical gradients. 22 
 23 
Results 24 
INT maps were estimated as previously described (Watanabe et al., 2019) (Materials and 25 
Methods). Briefly, the autocorrelation function of the fMRI signal at each voxel (or vertex) was 26 
estimated and the sum of the autocorrelation coefficients during the initial positive period was 27 
calculated. This initial positive period included all timepoints from the current timepoint (zero lag) 28 
until the timepoint immediately preceding the first lagged timepoint with a non-positive 29 
autocorrelation coefficient. To adjust for differences in temporal resolution, the sum was multiplied 30 
by the repetition time (TR) of the fMRI data. This product was used as an index for INT (note that 31 
values are similar to those from an exponential fit (Murray et al., 2014); Figure 1—figure 32 
supplement 1). INT maps were parcellated using the HCP-multimodal parcellation (Glasser et al., 33 
2016) to facilitate further analysis. Additionally, T1w/T2w (myelin) and cortical-thickness maps were 34 
obtained from high-resolution structural scans from the HCP database. Both of these structural 35 
measures have previously been shown to capture an underlying brain-wide hierarchy (Burt et al., 36 
2018; Fischl et al., 2008; Wagstyl et al., 2015), consistent with the classic use of myeloarchitecture 37 
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and cytoarchitecture for cortical parcellation (Brodmann, 1909; Sarkissov et al., 1955; Vogt, 1911; 1 
Von Economo, 1929). In particular, Burt et al. (2018) validated T1w/T2w in macaques by showing 2 
strong agreement with a gold-standard tract-tracing measure of hierarchy. Establishing T1w/T2w 3 
and cortical thickness as structural indices of hierarchy in humans, Burt et al. validated these MRI 4 
measures against human postmortem gene-expression data (Hawrylycz et al., 2012)—specifically 5 
using granular layer-IV-specific gene expression as a proxy for cytoarchitecture structural type. 6 
 7 
Selection and Multimodal Validation of Neural Hierarchies 8 
Our hypothesis of symptom-specific INT differences in hierarchical gradients was agnostic to the 9 
specific neural hierarchies involved in psychosis, as the involvement of most sensory modalities 10 
has been reported (Lewandowski et al., 2009; Postmes et al., 2014). Consistent with prior empirical 11 
and theoretical work (Chaudhuri et al., 2015; Vázquez-Rodríguez et al., 2019), in a subset of 100 12 
unrelated young and healthy subjects from the HCP dataset, we did not observe a systematic 13 
relationship across the whole brain between INT (Figure 1A)—an index of functional hierarchy 14 
(Chaudhuri et al., 2015; Murray et al., 2014)—and the two indices of structural hierarchy (T1w/T2w 15 
and cortical thickness) (Burt et al., 2018; Fischl et al., 2008; Wagstyl et al., 2015) (Figure 1—figure 16 
supplement 2). We thus decided to focus on specific, well-studied hierarchies of the auditory, 17 
visual, and somatosensory systems that have been parcellated in humans, and where the 18 
functional and structural indexes of hierarchy appeared better aligned.  19 

Despite ample anatomical investigation in primates, ambiguities in the definition of anatomical 20 
hierarchies in these sensory systems remain (Hilgetag et al., 1996; Kaas and Hackett, 2000) and 21 
have not been fully addressed in human MRI work. To address this issue, we used an anatomically 22 
informed, data-driven approach to determine the most suitable hierarchical orderings for each 23 
system. First, using the HCP dataset, we determined the hierarchical orderings of the sensory 24 
cortex parcels (auditory, visual, or somatosensory) by selecting the ordering that was best predicted 25 
by T1w/T2w and cortical thickness parcel-wise values for each system (i.e., the ordering for which 26 
these values explained the most variance). To enhance robustness, we specifically constrained 27 
this comparison to the four most plausible hierarchical orderings for each system based on previous 28 
anatomical studies (Felleman and Van, 1991; Galaburda and Pandya, 1983; Hyvärinen and 29 
Poranen, 1978; Morel et al., 1993). The winning orderings were A1 à LBelt à MBelt à PBelt à 30 
RI à A4 à A5 for the auditory cortex, V1 à V2 à V3 à MT à V4 à V6 à V7 for the visual cortex, 31 
and 3b à 3a à 1 à 2 à 5m à 7b à 7a for the somatosensory cortex (Figure 1B). Using the 32 
same approach to build upon these winning orderings and capture the broadest possible range of 33 
the hierarchies, we then determined the hierarchical position of two additional prefrontal cortex 34 
(PFC) regions known to be downstream projections of the auditory, visual, and somatosensory 35 
cortices: area 8a and area 46 (Felleman and Van, 1991; Kaas and Hackett, 2000). For all sensory 36 
systems, area 46 was selected as the highest hierarchical level (Figure 1B). Notably, each of the 37 
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PFC-extended winning models explained more variance than chance based on a null distribution 1 
of 10,000 random orderings (auditory system: Ppermutation < 10-4; visual system: Ppermutation = 0.003; 2 
somatosensory system: Ppermutation = 0.001).  3 

 4 

 5 
Figure 1. Model comparison to determine the hierarchical orderings of auditory, visual, and somatosensory 6 
systems. A) Group-averaged intrinsic neural timescale (INT) map from the Human Connectome Project (HCP) dataset (N 7 
= 100; top), parcellated group-averaged INT map (middle), and flattened cortex showing the parcels in the auditory, 8 
visual, and somatosensory hierarchies (winning hierarchies underneath; bottom). Color coding of parcels indicates their 9 
anatomical location. B) Goodness-of-fit (R2) of linear mixed-effects models predicting different hierarchical orderings of the 10 
auditory system (left), visual system (middle), and somatosensory system (right) from T1w/T2w and cortical thickness 11 
values in the HCP dataset (Materials and Methods). First, the winning ordering (i.e., the model with the best goodness of 12 
fit) for each system was determined for the 7 sensory cortex regions (bottom 4 models). Then, winning orderings were 13 
determined for extended models with 2 downstream prefrontal cortex regions added to the respective winning models for 14 
the sensory cortex (top 2 models). Note that, for each of the four considered orderings within the sensory cortex for each 15 
system, only the 4 regions whose order is varied (out of 7 regions) are shown to delineate the models. For the auditory 16 
cortex, A1 was always the lowest order region while A4 and A5 were always the two highest-order regions. For the visual 17 
cortex, V1, V2, and V3 were always the three lowest order regions. For the somatosensory cortex, 5m, 7b, and 7a were 18 
always the three highest order regions. Null distributions were generated by randomly permuting the hierarchical ordering 19 
across all regions in a given hierarchy (0th – 95th percentiles shown). C) Scatterplots showing INT values plotted as a 20 
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function of hierarchical level for the PFC-extended winning models in B (red outline) for the HCP dataset (top) and the 1 
healthy control group in the schizophrenia combined dataset (N = 158; bottom). 2 

 3 
We then evaluated whether these winning hierarchies—selected solely based on structural 4 

measures of hierarchy—were able to capture functional variability in the INT measure, such that 5 
higher levels exhibit longer INT. Within the HCP dataset, hierarchical position significantly 6 
correlated with INT in the auditory system (rs = 0.87, P = 0.005; Figure 1C), and this correlation 7 
was above chance level based on a null distribution of 10,000 random orderings (Ppermutation = 8 
0.003). The hierarchical ordering was further validated in an out-of-sample group of 158 healthy 9 
controls from the schizophrenia combined dataset (Materials and Methods), where hierarchy 10 
similarly correlated with INT in the auditory system (rs = 0.80, P = 0.01; Figure 1C). Positive but 11 
non-significant correlations were observed in the visual system (in-sample: rs = 0.27, P = 0.49, 12 
Ppermutation = 0.47; out-of-sample: rs = 0.22, P = 0.58; Figure 1C). Stronger positive correlations were 13 
observed in the somatosensory system that reached significance in the out-of-sample group (in-14 
sample: rs = 0.58, P = 0.108, Ppermutation = 0.097; out-of-sample: rs = 0.80, P = 0.014; Figure 1C). 15 
Despite the non-significant effects in the visual system (which surprisingly seemed to reflect less 16 
pronounced hierarchical gradients on all MRI measures, as suggested by the structural MRI 17 
gradients for all four tested orderings of the visual cortex falling within the null distribution; Figure 18 
1B), these data showed that the winning hierarchies captured functional INT gradients, at least in 19 
the auditory and somatosensory systems. As a third independent test of our winning hierarchies, 20 
we tested their ability to capture variability in cytoarchitecture structural type using human 21 
postmortem gene-expression data from the Allen Human Brain Atlas (Hawrylycz et al., 2012). 22 
Following prior work (Burt et al., 2018), we focused on the average expression of 5 genes 23 
preferentially expressed in granular layer IV, a cytoarchitectural marker that is more prominent in 24 
lower hierarchical levels. Consistent with this, expression of granular layer IV genes showed strong, 25 
negative correlations with hierarchical level in all three winning hierarchies (auditory: rs = -0.88, P 26 
= 0.003; visual: rs = -0.75, P = 0.026; somatosensory: rs = 0.87, P = 0.005; Figure 1—figure 27 
supplement 3). Thus, we empirically validated extended sensory hierarchies that captured 28 
variability in hierarchical indices across three independent datasets, although this was generally 29 
less clear for the visual system. 30 
 31 
Assessment of Robustness and Reliability in the HCP Dataset 32 
Next, we set out to determine the robustness and reliability of INT. We focused on head motion, a 33 
common source of artifacts in fMRI data (Power et al., 2012). Head motion during data acquisition 34 
was associated with decreased INT values (181 out of 188 parcels, Ppermutation = 0.01; Figure 1—35 
figure supplement 4). Yet these effects were comparable across hierarchical levels (auditory 36 
system: rs = -0.23, Ppermutation = 0.805; visual system: rs = -0.38, Ppermutation = 0.649; somatosensory 37 
system: rs = -0.88, Ppermutation = 0.054; Figure 1—figure supplement 4). No effects were observed 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

7 
 

for gender or age (all Ppermutation > 0.174). Finally, INT maps showed excellent reliability between 1 
the first and last 5 minutes of the fMRI acquisition (median ICC(2,1) ± interquartile range across 2 
voxels: 0.94 ± 0.03; Figure 1—figure supplement 5).  3 
 4 
Table 1. Participant Characteristics 5 

Variable 
Healthy Controls  Patients with Schizophrenia 

BGS COBRE NMCH UCLA All  BGS COBRE NMCH UCLA All 

N 24 42 25 67 158  40 31 26 30 127 
Age, mean 
(SD), y 

36.0 
(13.1) 

33.9  
(10.4) 

29.8  
(7.2) 

32.3 
(8.5) 

32.9  
(9.7)  31.1 

(12.6) 
30.5  
(11.9) 

30.5  
(6.2) 

35.0 
(8.9) 

31.8 
(10.6) 

Male sex, No. (%) 22 (92) 34 (81) 16 (64) 54 (81) 126 (80)  38 (95) 26 (84) 19 (73) 22 (73) 105 (83) 
Framewise 
Displacement*, mean 
(SD), mm 

0.15 
(0.04) 

0.14  
(0.05) 

0.14  
(0.11) 

0.10 
(0.04) 

0.13 
(0.06)  0.16 

(0.06) 
0.17 
(0.06) 

0.12 
(0.06) 

0.13 
(0.04) 

0.15 
(0.06) 

Delusion Score, mean 
(SD) NA NA NA NA NA  2.3  

(1.6) 
1.7  
(1.5) 

3.2  
(1.9) 

2.5  
(1.4) 

2.4  
(1.7) 

Hallucination Score, 
mean (SD) NA NA NA NA NA  2.1  

(1.6) 
1.7  
(1.4) 

2.9  
(2.0) 

2.2  
(1.6) 

2.2  
(1.7) 

Conceptual 
Disorganization Score, 
mean (SD) 

NA NA NA NA NA  0.9  
(1.3) 

0.6  
(1.0) 

2.0  
(1.6) 

1.4  
(1.4) 

1.2  
(1.4) 

Emotional Withdrawal 
Score, mean (SD) NA NA NA NA NA  1.8  

(1.2) 
1.2  
(1.3) 

3.4  
(1.7) 

2.3  
(1.5) 

2.1  
(1.6) 

Social Withdrawal 
Score, mean (SD) NA NA NA NA NA  1.8  

(1.4) 
1.3  
(1.4) 

3.2  
(1.7) 

2.7  
(1.6) 

2.2  
(1.6) 

Blunted Affect Score, 
mean (SD) NA NA NA NA NA  1.8  

(1.6) 
1.6  
(1.5) 

3.3  
(1.6) 

1.1  
(1.1) 

1.9  
(1.6) 

Alogia Score, mean 
(SD) NA NA NA NA NA  1.3  

(1.6) 
1.2  
(1.4) 

2.1  
(1.7) 

0.9  
(1.6) 

1.3 
(1.6) 

*Framewise Displacement values were estimated after motion-scrubbing 6 
BGS, BrainGluSchi; NMCH, NMorphCH; SD, standard deviation 7 
 8 
Exploratory Analyses of Intrinsic Neural Timescales in Schizophrenia versus Health 9 
Although our primary hypothesis dealt with hierarchical differences between hallucinations and 10 
delusions, we first present exploratory analyses of diagnosis effects on INT. Table 1 lists the 11 
participant characteristics. Compared to controls (N = 158), patients (N = 127) exhibited a small-12 
to-moderate, but widespread, reduction of INT (98 out of 188 parcels, Ppermutation = 0.013; Figure 13 
2E). A voxel-wise analysis observed a similar result (Figure 2—figure supplement 1). However, 14 
the INT reductions in patients were comparable across hierarchical levels (all Ppermutation > 0.40; 15 
Figure 2F). In silico simulations using a large-scale biophysical model (Chaudhuri et al., 2015) 16 
suggested that the global INT reduction in patients could be neuronally implemented by globally 17 
reduced excitation-inhibition (E/I) ratio (Figure 2—figure supplement 2).  18 
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 1 
Figure 2. Exploratory analyses show that patients with schizophrenia exhibit widespread reductions of intrinsic 2 
neural timescales compared to healthy controls. A) Parcellated group-averaged intrinsic neural timescale (INT) map 3 
for healthy controls (N = 158). B) Parcellated group-averaged INT map for patients with schizophrenia (N = 127). C) t-4 
statistic (Cohen’s d) map showing the contrast of patients greater than controls. Across most parcels, INT is shorter in 5 
patients than controls in a regression model (M1exploratory; Materials and Methods) controlling for age, gender, framewise 6 
displacement, and data-collection site (overall effect of diagnosis: 98 out of 188 parcels, Ppermutation = 0.013). Only the left 7 
hemisphere is shown because statistical analyses were performed after averaging the values in each parcel across the 8 
left- and right-hemispheres. D) To illustrate the effect of reduced INT in patients with schizophrenia, the group-averaged, 9 
whole-brain-averaged autocorrelation functions were estimated from subjects with fMRI data acquired with the same 10 
repetition time (top; controls: N = 132; patients: N = 101). The group-averaged autocorrelation function for patients 11 
crosses the zero point on the y-axis (i.e., autocorrelation coefficient = 0) sooner than in controls, demonstrating the global 12 
reduction of INT in patients. The flattened cortex shows the parcels in the auditory, visual, and somatosensory hierarchies 13 
for reference (bottom). E) Scatterplot showing t-statistic values for group differences from the regression model 14 
(M1exploratory), plotted as a function of the INT rank (determined from the group-averaged INT map from HCP subjects). 15 
Each datapoint represents one parcel. F) Scatterplots showing t-statistic values from parcels within the auditory (left), 16 
visual (middle), and somatosensory (right) hierarchies plotted as a function of hierarchical level. No hierarchical-gradient 17 
effects for schizophrenia diagnosis were observed. 18 
 19 
Hierarchical Differences in Intrinsic Neural Timescales Between Hallucinations and 20 
Delusions 21 
Our a priori hypothesis was that hallucinations and delusions were associated with alterations of 22 
INT at different hierarchical levels, leading to distinct changes in hierarchical gradients. To test this, 23 
we determined the unique variance associated with the effect of interindividual variability in 24 
hallucination and delusion severity on INT (M1primary; Materials and Methods). As expected, 25 
severity of hallucinations and delusions in our sample were correlated (rs = 0.62, P < 0.01) but had 26 
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sufficient unique variance [(1 – R2) = 0.62] to evaluate their independent contributions. The severity 1 
of these symptoms was uncorrelated with antipsychotic dose among the 109 patients with available 2 
data (chlorpromazine equivalents: both P > 0.86), making medication an unlikely confound (Figure 3 
3—figure supplement 1).  4 

The main model (M2; Materials and Methods) we used as a primary test of main effects and 5 
interactions of symptoms on hierarchical INT gradients—which also included interaction terms for 6 
each sensory system to account for between-system differences—was significant (omnibus F11,41 7 
= 5.52, P < 10-4). Critically, within this model we found hierarchical-gradient effects that differed 8 
significantly between hallucinations and delusions in the expected directions for 2/3 systems 9 
(auditory system, symptom-by-hierarchical-level interaction: t42 = 4.59 [95% bootstrap confidence 10 
interval: 3.39, 9.08], Cohen’s f2 = 1.00, Ppermutation = 0.001; visual: t42 = -2.06 [-6.19, 0.16], f2 = 0.11, 11 
Ppermutation = 0.083; and somatosensory: t42 = 3.50 [2.19, 7.35], f2 = 0.41, Ppermutation = 0.011; Figure 12 
3). In the auditory system, this interaction was driven by significant hierarchical-gradient effects in 13 
opposite directions for hallucinations (hierarchical-level effect: t42 = -3.50 [-8.42, -2.24], f2 = 0.41, 14 
Ppermutation = 0.010) and delusions (hierarchical-level effect: t42 = 2.99 [1.18, 6.37], f2 = 0.27, Ppermutation 15 
= 0.025). In the somatosensory system, this effect was driven by a trend-level negative hierarchical-16 
gradient effect for hallucinations (hierarchical-level effect: t42 = -2.35 [-5.91, -1.00], f2 = 0.15, 17 
Ppermutation = 0.056) and a significant positive hierarchical-gradient effect for delusions (hierarchical-18 
level effect: t42 = 2.60 [1.43, 5.57], f2 = 0.19, Ppermutation = 0.042; Figure 3). In the visual system, 19 
hierarchical-gradient effects were not significant for either symptom (hallucination hierarchical-level 20 
effect: t42 = 0.90 [-1.06, 3.62], f2 = 0.00, Ppermutation = 0.466; delusion hierarchical-level effect: t42 = -21 
2.01 [-6.01, 0.53], f2 = 0.11, Ppermutation = 0.087). We also found significant three-way interactions 22 
with sensory system, indicating differences in the symptom interactions between the visual and the 23 
other systems (see statistics in Figure 3B), but these were not a priori tests (see also Discussion 24 
for issues of interpretability). Examining the significant symptom effects further, in the auditory 25 
system we observed that patients with high-severity hallucinations exhibited a numeric increase in 26 
INT at lower levels of the hierarchy relative to those with low-severity hallucinations, leading to a 27 
compression of the INT hierarchical gradient (Figure 3C); in contrast, in both the auditory and 28 
somatosensory systems, patients with high-severity delusions exhibited a numeric increase in INT 29 
at higher levels of the hierarchy relative to those with low-severity delusions, leading to a more 30 
pronounced INT hierarchical gradient.  31 
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 1 
Figure 3. A priori analyses show that hallucinations and delusions exhibit distinct hierarchical-gradient effects on 2 
intrinsic neural timescales in the auditory and somatosensory systems. A) Scatterplots showing t-statistic values 3 
from a regression model (M1primary; Materials and Methods) including all 7 symptoms and controlling for age, gender, 4 
framewise displacement, and data-collection site for hallucination-severity (top) and delusion-severity (bottom) effects 5 
from parcels within the auditory (left), visual (middle), or somatosensory (right) systems plotted as a function of 6 
hierarchical level (using PFC-extended winning hierarchies; Figure 1). B) Summary of results from a model (M2; 7 
Materials and Methods) including symptom-severity effect (hallucinations or delusions), hierarchical level, sensory 8 
system (auditory, visual, or somatosensory), and their interactions. These results demonstrate: (1) in the auditory system, 9 
a significant difference in the relationship between hallucination severity and hierarchical level versus that for delusion 10 
severity and hierarchical level (b); (2) in the auditory system, significant hierarchical-gradient effects of hallucination 11 
severity (a) and delusion severity (c); (3) in the somatosensory system, a significant difference in the relationship between 12 
hallucination severity and hierarchical level versus that for delusion severity and hierarchical level (e); and (4) in the 13 
somatosensory system, a significant hierarchical-gradient effect of delusion severity (d). Note that different symptoms and 14 
systems were used as references (implicit variable) across three plots to show each of the relevant effects which were 15 
tested within a single model (M2). Null distributions were generated by randomly permuting symptom-severity scores 16 
across patients in M1primary (2.5th – 97.5th percentiles shown). C) To illustrate the effects, the group-averaged 17 
autocorrelation functions were estimated from subjects with fMRI data acquired with the same repetition time (N = 10 for 18 
each group). High severity patients were the 10 subjects with the highest residual symptom scores after regressing out all 19 
other symptoms; low severity patients were the 10 subjects with the lowest residual symptom scores. The group-averaged 20 
autocorrelation functions are shown for high-severity (solid lines) and low-severity (dashed lines) hallucination patients 21 
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from low and high levels of the auditory hierarchy (A1 and area 46, top). The group-averaged autocorrelation functions are 1 
also shown for high-severity and low-severity delusion patients from low and high levels of the auditory hierarchy (middle). 2 
The group-averaged autocorrelation functions are finally shown for high-severity and low-severity delusion patients from 3 
low and high levels of the somatosensory hierarchy (area 3b and area 46, bottom). These plots depict a compression of 4 
the auditory hierarchical gradient in high-severity hallucination patients and, instead, an expansion of both the auditory 5 
and somatosensory hierarchical gradients in high-severity delusion patients. 6 
 7 

To correct for multiple comparisons, we carried out a family-wise permutation test determining 8 
the probability of spuriously obtaining the set of significant a priori effects we observed in support 9 
of our original hypothesis. Based on the chance level of jointly observing negative hierarchical-10 
gradient effects for hallucination severity in at least 1/3 systems, and positive hierarchical-gradient 11 
effects for delusion severity in at least 2/3 systems, and interaction effects of hierarchy-by-symptom 12 
in the expected direction in at least 2/3 systems, this analysis suggested that the observed set of 13 
results was statistically above chance (set-level Ppermutation = 0.014). Furthermore, based on the 14 
chance level of observing a significant negative hierarchical-gradient effect for hallucinations, and 15 
a significant positive hierarchical-gradient effect for delusions, and a significant symptom-by-16 
hierarchical-level interaction (i.e., all 3 effects in one system), the observed set of results in the 17 
auditory system was also statistically above chance (set-level Ppermutation = 0.043). 18 

To rule out an effect of our approach for selecting hierarchical orderings on these results, we 19 
tested these symptom effects for each of the 4 different sensory-cortex hierarchical orderings 20 
considered a priori candidates for each sensory system. Results were generally consistent across 21 
the different hierarchical orderings (Figure 3—figure supplement 2), particularly in the auditory 22 
system. A family-wise permutation test similar to the one above, but including all 4 orderings per 23 
system (12 total orderings), showed that the observed set of results was statistically above chance 24 
for all systems (set-level Ppermutation = 0.002) and for the auditory system alone (set-level Ppermutation 25 
= 0.001). 26 
 27 
Post-Hoc Analysis of the Specificity of INT Hierarchical-Gradient Effects 28 
In a post-hoc analysis, we then investigated the specificity of these hierarchical-gradient effects to 29 
the positive psychotic symptoms under investigation. To this end, we determined hierarchical-30 
gradient effects individually for each symptom in the auditory and somatosensory systems using a 31 
model including symptom-severity effect (only one symptom), hierarchical level, sensory system 32 
(auditory, visual, and somatosensory), and their interactions. In the auditory system, conceptual 33 
disorganization was the only symptom—other than hallucinations and delusions—that showed a 34 
significant effect (hierarchical-level effect: t21 = -2.80 [-5.31, -1.10], f2 = 0.60, Ppermutation = 0.036; 35 
Figure 3—figure supplement 3). But this effect was weaker than that for hallucinations 36 
(hierarchical-level effect: t21 = -4.38 [-10.31, -3.28], f2 = 10.57, Ppermutation = 0.005; Figure 3—figure 37 
supplement 3). These results thus suggest some specificity to positive symptoms, which 38 
conceptual disorganization is classically defined as (Association, 2013; VandenBos, 2007) (but see 39 
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(van der Gaag et al., 2006)), consistent with a stronger correlation of conceptual disorganization 1 
with positive symptoms (average rs = 0.48) versus negative symptoms (average rs = 0.23) in our 2 
sample. Indeed, a permutation test comparing the average strength of hierarchical-gradient effects 3 
(i.e., mean absolute t-statistics) for positive versus negative symptoms (i.e., blunted affect, social 4 
withdrawal, emotional withdrawal, and alogia) showed the effects of positive symptoms to be 5 
significantly larger than the effects of negative symptoms (Ppermutation = 0.043). In the somatosensory 6 
system, no symptoms other than delusions showed a significant hierarchical-gradient effect. 7 
Hallucinations however showed the strongest negative effect (hierarchical-level effect: t21 = -2.23 8 
[-6.79, -1.75], f2 = 0.31, Ppermutation = 0.079; Figure 3—figure supplement 3).  9 

Thus, although the hierarchical-gradient effects were not unique to the two symptoms under 10 
investigation—which is not required under perceptual-inference models of psychosis and which 11 
could suggest model extensions to account for additional phenomena—these effects were 12 
strongest for, and relatively specific to, positive symptoms. 13 
 14 
Altered E/I Ratio as a Potential Biological Mechanism 15 
To explore candidate biological mechanisms for the effects we observed in vivo, we leveraged a 16 
large-scale biophysical model previously shown to capture intrinsic timescale hierarchies 17 
(Chaudhuri et al., 2015). This model depicts the macaque cortex using 29 recurrently connected 18 
cortical nodes, with connection strengths based on macaque tract-tracing studies (Figure 4B). 19 
Given growing evidence for E/I imbalance in schizophrenia (Foss-Feig et al., 2017; Jardri et al., 20 
2016) and the hypothesized local increases of INT, we fit the biophysical model to our data to 21 
explore whether our results could be driven by local increases in E/I ratio. These E/I ratio changes 22 
were modeled as a triangle function where a local maximum exhibited a peak E/I ratio increase and 23 
other nodes had E/I ratio changes that decreased linearly as a function of absolute distance in 24 
hierarchical levels from the peak. This function was described by 3 free parameters: (i) the 25 
hierarchical level of the peak E/I ratio increase, (ii) the magnitude of the E/I ratio increase at the 26 
peak, and (iii) the magnitude of the E/I ratio change at the minimum (i.e., at the hierarchical level 27 
furthest from the peak).  28 

To fit the biophysical model, we first estimated in vivo data for “exemplary cases” using 29 
regression fits from M1primary (Materials and Methods) in the auditory system—the system that 30 
showed the strongest effects. The regression fits allowed us to estimate INT values at each level 31 
of the hierarchy for “exemplary cases” representative of extreme symptom profiles (while controlling 32 
for variability in other factors). INT values for the auditory hierarchy were estimated for 4 exemplary 33 
cases: (1) no hallucinations or delusions (fitted INT values from M1primary with minimum scores of 0 34 
for both symptoms); (2) hallucinations only (maximum score of 5 for hallucinations and score of 0 35 
for delusions); (3) delusions only (scores of 0 for hallucinations and 5 for delusions); (4) 36 
hallucinations and delusions (scores of 5 for both symptoms). For all exemplary cases, the severity 37 
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of other symptoms and the values of covariates were set to the average values from all patients. 1 
Changes of INT for exemplary cases 2–4 were determined as the difference in INT relative to the 2 
‘no hallucinations or delusions’ case (in vivo DINT; Figure 4A). We modeled the in vivo DINT in the 3 
auditory system using the macaque visual system as a model hierarchy with realistic biological 4 
constraints due to the lack of tract-tracing data for the auditory system; note that sensory system 5 
and species differences limit our ability to derive precise quantitative conclusions from the modeling 6 
results but still afford qualitative insights. We specifically used the 6 biophysical-model nodes that 7 
directly corresponded to levels of our visual hierarchy and for which tract-tracing data were 8 
available: V1 (level 1), V2 (level 2), V4 (level 4), MT (level 5), 8l (level 8), and 46d (level 9). Model-9 
derived in silico DINT (Figure 4C) were calculated for each node as the difference in INT from the 10 
biophysical model with no perturbations (‘unaltered model’) and the INT from the best-fitting 11 
biophysical model for which the values of the parameters controlling the E/I ratio provided the 12 
closest approximation to the in vivo DINT across exemplary cases (in the 6 corresponding parcels 13 
of our auditory hierarchy: A1 [level 1], LBelt [level 2], PBelt [level 4], RI [level 5], 8a [level 8], and 14 
46 [level 9]). Specifically, two sets of the 3 E/I ratio parameters were jointly fitted to exemplary 15 
cases 2–4, one for hallucinations and one for delusions, with the combined effect from the sum of 16 
the E/I ratio changes for the two individual symptoms. 17 

In silico results using the best-fitting parameters were able to recapitulate the INT effects of 18 
hallucinations and delusions (compression versus expansion of the INT hierarchical gradient, 19 
respectively) via local increases in E/I ratio at low or high levels of the hierarchy, respectively. 20 
Specifically, the best-fitting levels of the peak increase in local E/I ratio were levels 1 and 8 for 21 
hallucinations and delusions, respectively (Figure 4D). Interestingly, given the relatively greater 22 
strength of both recurrent and long-range connections at higher levels that is built into the 23 
biophysical model, the required peak E/I ratio increase to achieve the observed changes of INT 24 
was considerably smaller for the delusion-related alteration at level 8 (DE/I = 4.02%) compared to 25 
the hallucination-related alteration at level 1 (DE/I = 21.61%). Also, the in silico DINT based on the 26 
summed E/I ratio alterations for individual symptoms closely approximated the combined case of 27 
hallucinations and delusions (exemplary case 4), which consisted of a general increase in INT with 28 
no clear change in the hierarchical gradient. This suggests that additivity of the local symptom-29 
specific alterations could explain symptom co-occurrence.  30 

 31 
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 1 
Figure 4. Hallucination and delusion effects on INT are recapitulated by elevated excitatory-inhibitory (E/I) ratios 2 
at different hierarchical levels. A) Scatterplots showing the difference in estimated INT values between the 3 exemplary 3 
cases capturing extreme symptom profiles (‘hallucinations only’, ‘delusions only’, and ‘hallucinations and delusions’) with 4 
respect to the ‘no hallucinations or delusions’ exemplary case (in vivo DINT; fitted parcel-wise data from M1primary). The 5 
parcel data used for fitting the biophysical model are outlined in pink. Yellow arrowheads denote the hypothesized 6 
hierarchical level of the maximum E/I ratio increase. B) Simplified schematic of a large-scale biophysical model of the 7 
macaque cortex and its variants (Materials and Methods). The model consists of 29 nodes with local excitatory (red 8 
triangles) and inhibitory (blue circles) pools of neurons; only two nodes—high (top) and low (bottom) hierarchical levels—9 
are shown for illustrative purposes. These nodes have both local (recurrent) and long-range (across-node) connections. 10 
The visual hierarchy (V1, V2, V4, MT, 8l, and 46d) was used for these simulations given the lack of tract-tracing data for 11 
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the auditory cortex—other levels of the visual cortex are omitted for the same reason—but the qualitative pattern of results 1 
applies to hierarchical-gradient effects in any given sensory system. Lightning bolts mark theoretical perturbations to the 2 
model. Thicker or thinner lines with respect to the reference scenario reflect increased or decreased connection strengths, 3 
respectively. Note that E/I ratio can be increased either by increasing local excitatory-excitatory connection strength or by 4 
decreasing local excitatory-inhibitory connection strength, but these scenarios were tested individually. C) Scatterplots 5 
showing the difference in simulated INT values between each of the 3 pathological biophysical models (‘elevated E/I ratio 6 
at low level’, ‘elevated E/I ratio at high level’, and ‘elevated E/I ratio at low and high levels’) with respect to the reference 7 
biophysical model (‘unaltered model’) using the best-fitting E/I ratio parameters (in silico DINT). By allowing the E/I ratios 8 
to vary, the biophysical model can recapitulate the in vivo INT changes with a negative (compressed) hierarchical-gradient 9 
effect for hallucinations, a positive (expanded) hierarchical-gradient effect for delusions, and an overall INT increase 10 
(without a manifest hierarchical-gradient effect) for the combined case of hallucinations and delusions. Yellow arrowheads 11 
denote the hierarchical level of the maximum E/I ratio increase. D) Scatterplots showing the fitted changes to E/I ratios for 12 
the pathological biophysical models: the in vivo INT changes associated with hallucinations can be recapitulated by 13 
elevated E/I ratio at the lowest hierarchical level and those associated with delusions by elevated E/I ratio (of smaller 14 
magnitude) at the highest hierarchical level, with the addition of these two alterations capturing the changes in patients 15 
with both hallucinations and delusions. Note that E/I ratio in level 9 of the hierarchy was fixed to its value in the unaltered 16 
model to prevent model instability (Materials and Methods). 17 
 18 

In a follow-up analysis, we further explored our in vivo data for evidence of the additive effect 19 
of hallucinations and delusions, focusing on the auditory system. We first compared the average 20 
INT across all auditory system parcels between patients with both high hallucination and delusion 21 
scores (i.e., raw average data from subjects with a score of 5 for both symptoms; N = 11) and 22 
patients with neither hallucinations nor delusions (i.e., subjects with a score of 0 for both symptoms; 23 
N = 18). Here, we observed significantly higher average INT in patients with high-severity 24 
hallucinations and delusions (t27 = 1.84, P = 0.038; one-tailed two-sample t-test). Second, we fit a 25 
linear model predicting auditory parcel INT as a function of hierarchical level, allowing separate 26 
intercepts for each of the two groups, and an interaction between hierarchical level and group. 27 
Here, we found that the intercept was indeed higher for patients with high-severity hallucinations 28 
and delusions compared to patients with neither symptom (t257 = 2.04, P = 0.043). Furthermore, we 29 
found no difference in the hierarchical gradients between these groups, with a non-significant 30 
hierarchical-level-by-group interaction (t257 = 0.65, P = 0.519). Although preliminary, these results 31 
supply some support for the notion of additive hierarchical alterations in psychosis. 32 
 33 
Control Analyses Examining Alternative Definitions of Auditory Hierarchies 34 
Given that the hierarchical-gradient effects supporting our initial hypotheses were clearest in the 35 
auditory system—a system thought to comprise dual processing streams—we considered the 36 
impact of alternative definitions of the auditory hierarchy on our results.  37 

Diverging auditory streams with downstream projections to dorsal (areas 8a and 46) versus 38 
ventral (areas 10 and 12vl) PFC have been described (Kaas and Hackett, 2000). We thus 39 
conducted an ordering-selection analysis for the ventral stream, like that presented above for the 40 
dorsal stream (Selection and Multimodal Validation of Neural Hierarchies). Within the ventral 41 
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stream, area 12vl was better predicted as the highest hierarchical level, and the winning ordering 1 
explained more variance than chance based on a null distribution of random orderings (ventral 2 
auditory system: Ppermutation < 10-4; Figure 1—figure supplement 6A). Furthermore, similar to the 3 
dorsal stream, hierarchical level in the ventral stream correlated with INT (in-sample: rs = 0.87, P = 4 
0.005, Ppermutation = 0.003; out-of-sample: rs = 0.80, P = 0.014; Figure 1—figure supplement 6B). 5 
Given these dual auditory streams and the corresponding validated hierarchies, we explored 6 
potential differences in hierarchical-gradient effects for hallucination and delusion severity for the 7 
dorsal versus ventral streams. The model explaining symptom effects and their differences by 8 
hierarchical level and their interaction by symptoms and auditory stream was significant (omnibus 9 
F7,27 = 8.60, P < 10-4). We further found a significant difference in the symptom-by-hierarchical-level 10 
effects between the dorsal and ventral auditory streams (symptom-by-hierarchical-level-by-11 
processing-stream interaction: t28 = 1.75 [1.02, 3.90], f2 = 0.12, Ppermutation = 0.005; Figure 3—figure 12 
supplement 4). In the ventral stream, we did not find a significant difference in the hierarchical-13 
gradient effects between hallucinations and delusions (symptom-by-hierarchical-level interaction: 14 
t28 = 2.01 [-0.37, 6.43], f2 = 0.17, Ppermutation = 0.159; Figure 3—figure supplement 4); we found a 15 
trend-level hierarchical-gradient effect of hallucination severity (hierarchical-level effect: t28 = -2.56 16 
[-7.04, -0.73], f2 = 0.31, Ppermutation = 0.098; Figure 3—figure supplement 4) and no effect of 17 
delusion severity (hierarchical-level effect: t28 = 0.28 [-2.42, 3.36], f2 = 0.00, Ppermutation = 0.445; 18 
Figure 3—figure supplement 4). Interestingly, comparing the dorsal and ventral auditory streams, 19 
we observed a significant difference in the hierarchical-gradient effect of delusion severity 20 
(hierarchical-level-by-processing-stream interaction: t28 = 1.89 [1.39 – 3.49], f2 = 0.15, Ppermutation = 21 
0.003; Figure 3—figure supplement 4). These results thus support the involvement of dorsolateral 22 
PFC in delusions, consistent with prior work (Corlett et al., 2007). 23 

As an additional control for the uncertainty in defining the auditory hierarchy, we also adopted 24 
an anatomically agnostic, data-driven approach. First, the symptom effects (M1primary) were 25 
estimated for each voxel within the 9 auditory-system parcels (600 voxels total). Second, each 26 
voxel was ranked based on its INT value from the average INT map in the HCP dataset. Third, 10 27 
equally spaced bins along the INT ranking (60 voxels per bin) were created, which comprised the 28 
levels of the data-driven hierarchy, and the voxelwise t-statistics (from M1primary) were averaged per 29 
bin. Similar to the main analysis (Figure 3), a model that included main effects and interactions of 30 
symptoms on the hierarchical INT gradient was significant (omnibus F4,15  = 10.20, P = 0.001).  31 
Within this model, we found hierarchical-gradient effects that differed significantly between 32 
hallucinations and delusions (symptom-by-hierarchical-level interaction: t16 = 5.19 [0.48   23.26], f2 33 
= 10.12, Ppermutation = 0.003; Figure 3—figure supplement 5). This interaction was driven by 34 
significant hierarchical-gradient effects in opposite directions for hallucinations (hierarchical-level 35 
effect: t16 = -2.79 [-16.72, 2.40], f2 = 0.25, Ppermutation = 0.049; Figure 3—figure supplement 5) and 36 
delusions (hierarchical-level effect: t16 = 4.55, [1.04, 19.76], f2 = 4.04, Ppermutation = 0.008; Figure 37 
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3—figure supplement 5). 1 
Discussion  2 
Using a recently developed method for measuring neural timescales from resting-state fMRI data, 3 
we set out to test the hypothesis that hallucinations and delusions are associated with 4 
dysfunctions at different levels of neural hierarchies. Using established structural indices of 5 
hierarchy (myelin and cortical thickness) and INT (a functional index of hierarchy) in independent 6 
samples, we first validated extended sensory hierarchies for the auditory, visual, and 7 
somatosensory systems that captured substantial variability in the hierarchical MRI indices. After 8 
further showing excellent reliability of the INT measure, in exploratory analyses, we showed for 9 
the first time that patients with schizophrenia have globally reduced INT. Most importantly, our 10 
primary analyses comparing INT effects for hallucinations versus delusions in the validated 11 
hierarchies demonstrated that these symptoms are associated with distinct changes along the 12 
hierarchical gradients in the auditory and somatosensory systems, an effect we failed to observe 13 
in the visual system. 14 

Hierarchical models of perceptual inference posit that perceptions are shaped by prior 15 
beliefs (Dayan et al., 1995; Friston and Kiebel, 2009; Kiebel et al., 2009; Lee and Mumford, 2003; 16 
Rao and Ballard, 1999) through reciprocal message-passing across different levels of sensory 17 
hierarchies, an architecture that mirrors the known anatomy of sensory systems (Felleman and 18 
Van, 1991; Glasser et al., 2016; Kaas and Hackett, 2000; Markov et al., 2012; Van Essen et al., 19 
1992; Young, 1993). In this scheme, higher levels of the neural hierarchy are thought to represent 20 
increasingly abstract belief states that evolve at slower timescales (Kiebel et al., 2009). For 21 
instance, during speech perception, the hierarchical structure of linguistic units can be parsed 22 
such that lower levels of auditory processing encode syllable information at faster timescales 23 
while higher levels encode sentence information at slower timescales (Ding et al., 2016). An 24 
emerging body of work in psychosis has linked hallucinations to preferential biases towards prior 25 
beliefs in low-level inferences during detection or estimation of stimulus features (Cassidy et al., 26 
2018; Davies et al., 2017; Powers et al., 2017; Teufel et al., 2015) and delusions to preferential 27 
biases towards prior beliefs in higher-level inferences about more abstract, hidden-states (Baker 28 
et al., 2019). The observed biases towards prior beliefs in past behavioral work can be framed as 29 
primacy biases (Baker et al., 2019), where past information is weighted more heavily during the 30 
inferential process, or equivalently, where information is integrated over longer timescales (Glaze 31 
et al., 2015). Temporal integration is at the core of the neural implementation of perceptual 32 
inference (Mazurek et al., 2003) and is thought to depend crucially on recurrent network activity 33 
(Chaudhuri et al., 2015; Mante et al., 2013). Thus, a plausible neuronal implementation of 34 
primacy biases at a given level of the hierarchy would be through increases in the strength of 35 
recurrent excitation or decreases in the strength of recurrent inhibition (i.e., elevated E/I ratio) 36 
leading to relative increases in neural timescales.  37 
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Here, we observed changes in neural timescales across levels of neural hierarchies that 1 
differed between hallucinations and delusions, an effect that was most evident in the auditory 2 
hierarchy. Patients with more severe hallucinations exhibited a less pronounced INT hierarchical 3 
gradient, consistent with increased timescales at lower levels compared to those with less severe 4 
hallucinations; those with more severe delusions instead exhibited a more pronounced INT 5 
hierarchical gradient, consistent with increased timescales at higher levels compared to those 6 
with less severe delusions (Figure 3C). We further recapitulated these findings by respectively 7 
elevating E/I ratios at low or high hierarchical levels of a large-scale biophysical model 8 
(Chaudhuri et al., 2015). These E/I ratio elevations could, in principle, result from alterations in 9 
NMDA or dopamine activation at these levels and are thus plausible under widely supported 10 
glutamatergic and dopaminergic theories of psychosis (Brunel and Wang, 2001; Corlett et al., 11 
2009; Corlett et al., 2011; Durstewitz and Seamans, 2002; Jardri et al., 2016; Javitt et al., 2012; 12 
Weinstein et al., 2017). These results thus demonstrate distinct hierarchical alterations for 13 
hallucinations and delusions that are generally consistent with our hypothesized hierarchical 14 
framework, where distinct hierarchical alterations provide symptom-specific pathways that 15 
together may explain symptom co-occurrence, thus providing a candidate biological mechanism 16 
for the psychotic syndrome.  17 

Such hierarchical alterations may also fit well with the phenomenological timescale of these 18 
symptoms. Clinical observation indicates that hallucinations—like rapidly changing sensory 19 
events—change transiently and intermittently over seconds or minutes, while delusions—like 20 
slowly changing ‘conceptual’ beliefs—evolve more slowly over days or months, but their average 21 
severity over a given period typically evolves in parallel. All of these clinical features are 22 
consistent with a hierarchical structure of nested timescales (Kiebel et al., 2008). While our 23 
findings generally support this notion, computational work explicitly laying out the proposed model 24 
in the context of inferential alterations in psychosis and empirical confirmations are warranted. 25 
One outstanding question is how the delusion-related alterations in neural timescales we 26 
observed—which may predominate in high levels of the hierarchy yet manifest as changes on the 27 
order of seconds—might drive delusions evolving over much longer timescales. One possible 28 
explanation is that, while delusion maintenance may involve longer-term memory processes, the 29 
underlying mechanism initiating delusions transpires more rapidly and disrupts inferences at 30 
timescales on the order of seconds, consistent with prior work (Baker et al., 2019). Since 31 
encoded memories likely reflect inferences summarizing information at a given time point 32 
(Shadlen and Shohamy, 2016), high-level inferential biases at shorter timescales may be 33 
sufficient to shape long-term conceptual memories in a way that further propagates biases over 34 
long time-periods, particularly under primacy biases that decrease the relative influence of newer 35 
information. Although less critical, it is also worth noting that INT reflects differences in resting 36 
circuit dynamics, the timescale of which is likely to be substantially magnified when these circuits 37 
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are engaged (Chaudhuri et al., 2015; Hasson et al., 2008). 1 
Our opposing findings for diagnosis (globally reduced INT) and symptom severity (focally 2 

increased INT) may be reconciled within pathophysiological models of psychosis which posit a 3 
key role for compensatory processes in schizophrenia. Hallucinations and delusions have been 4 
proposed to represent a temporary state of the illness that results from a failed attempt to 5 
compensate for a trait-like, baseline deficit (Adams et al., 2013; Moutoussis et al., 2011). 6 
Relatedly, long-standing circuit-level theories have suggested that psychosis-related increases in 7 
striatal dopamine transmission are secondary to a primary cortical deficit (Weinberger, 1987). In 8 
particular, previous frameworks suggest that psychotic states are associated with excessive prior 9 
biases in inferential processes arising as an overcompensation for a baseline trait consisting of 10 
the opposite bias (Adams et al., 2013; Horga and Abi-Dargham, 2019). From a biophysical-11 
modeling standpoint, the trait-like baseline deficit in schizophrenia could consist of globally 12 
reduced E/I ratio (for instance, arising from NMDA-receptor hypofunction of excitatory neurons 13 
(Cavanagh et al., 2019)), which behaviorally would translate into general recency biases. In 14 
contrast, a failed compensatory mechanism could result in local increases in E/I ratio at different 15 
levels leading to distinct primacy biases and psychotic symptoms (Lam et al., 2017). While 16 
speculative, the compensatory changes could arise from dopaminergic alterations that effectively 17 
increase E/I ratio by preferentially boosting NMDA-receptor function of excitatory neurons (or 18 
other changes dampening NMDA-receptor function of inhibitory neurons) (Brunel and Wang, 19 
2001).  20 

Our finding of preferential involvement of the auditory system for hallucinations is not 21 
surprising, given that in schizophrenia this symptom tends to predominate in the auditory modality 22 
despite also presenting in other modalities (Lim et al., 2016; Waters and Fernyhough, 2017); 23 
auditory-cortex abnormalities in schizophrenia are also well established (Javitt and Sweet, 2015). 24 
Our finding of somatosensory system involvement for delusions is also consistent with previous 25 
work on delusions of passivity (Brüne et al., 2008; Spence et al., 1997) and deficits in sensory 26 
attenuation via motor predictions in schizophrenia (Shergill et al., 2005; Shergill et al., 2014). 27 
However, despite our failure to detect differential alterations in the visual system, substantial 28 
evidence also suggests visual-cortex abnormalities in schizophrenia (Butler et al., 2008; Çavuş et 29 
al., 2012; Dorph-Petersen et al., 2007). And evidence from subclinical populations suggests 30 
symptom-specific hierarchical alterations in visual tasks (Davies et al., 2017). Furthermore, the 31 
general differences in INT values between sensory systems (Figure 1), while potentially relevant 32 
to psychosis in and of themselves, could imply differential sensitivity in our analyses across 33 
sensory domains. Our null findings in the visual system are also qualified by the poorer 34 
correspondence between levels of the visual hierarchy and hierarchical MRI indices (not only for 35 
INT but also surprisingly for the structural indices) compared to the other systems (Figure 1). 36 
This suggests the need for further investigation into the sensitivity of available MRI measures of 37 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

20 
 

hierarchy to uncover the underlying gradients within the visual cortex. 1 
Previous empirical work using structural (Bassett et al., 2008) and functional measures 2 

(Dondé et al., 2019; Leitman et al., 2010; Yang et al., 2016), suggests hierarchical alterations in 3 
schizophrenia. This work however did not evaluate hierarchical differences between symptoms 4 
and used measures that differ fundamentally from INT. In exploratory analyses testing diagnostic 5 
effects, we found global INT reductions in schizophrenia but no clear shifts in the hierarchical INT 6 
gradients (see Figure 2—figure supplement 2 for initial evidence of an exponential effect). We 7 
used the same approach as a previous study measuring INT in individuals with autism, which 8 
reported decreased INT in the visual cortex (and increased INT in the caudate) (Watanabe et al., 9 
2019). Consistent with our interpretation, this INT phenotype was linked to other data in autism 10 
supporting excessive weighting of sensory evidence (Gollo, 2019; Lawson et al., 2017)—akin to a 11 
decreased primacy bias (i.e., a recency bias). 12 

Some limitations are worth discussing. Because 93% of the patients (with available 13 
medication data) were taking antipsychotics, we cannot definitively rule out medication 14 
confounds, particularly on diagnosis effects. However, we observed similar effects when 15 
controlling for dose, no correlations between dose and symptoms, and did not expect differential 16 
neural effects on hallucinations versus delusions (Figure 3—figure supplement 1); future 17 
studies should elucidate medication effects on INT. Additionally, our study was limited to 18 
investigating the effects of global severity of hallucinations and delusions and could not resolve 19 
effects of symptom subtype or content, since detailed assessments were only available in a small 20 
subset of our patients. Larger studies with more detailed assessments are needed to tease out 21 
these potential effects.  22 

In conclusion, we have presented evidence for distinct hierarchical alterations in neural 23 
timescales as a function of hallucination and delusion severity, lending initial neural support for 24 
hierarchical views of psychosis. Additionally, our work suggests that INT (Watanabe et al., 2019) 25 
provides a reliable and interpretable measure of neural function with the potential to elucidate 26 
hierarchical alterations and dysfunctions in circuit dynamics in schizophrenia and other 27 
neuropsychiatric disorders. 28 
 29 

Materials and Methods 30 
Human Connectome Project Dataset 31 
T1w/T2w maps and resting-state fMRI data were obtained for a subset of 100 unrelated young 32 
and healthy subjects from the Human Connectome Project (HCP) WU-Minn Consortium (Van 33 
Essen et al., 2013). The first fMRI run (single-shot EPI with left-to-right phase encoding direction) 34 
from the first fMRI session was obtained for each subject during an eyes-open-on-fixation session 35 
with the following scanning parameters: repetition time (TR) = 720 ms; spatial resolution = 2´2´2 36 
mm; time points = 1200. High-resolution (0.7-mm isotropic voxels) T1w and T2w anatomical 37 
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images were also acquired. Details regarding subject recruitment and MRI data acquisition have 1 
been previously reported (Smith et al., 2013; Van Essen et al., 2012). Preprocessing of the HCP 2 
data was performed using the HCP minimal preprocessing pipeline (Glasser et al., 2013). The 3 
preprocessed fMRI data were then used for the estimation of INT maps in 32k Conte69 mesh 4 
surface space and MNI152_ICBM2009a_nlin volume space with native spatial resolution. The 5 
T1w/T2w (myelin) maps (Glasser and Van Essen, 2011) in 32k Conte69 mesh surface space 6 
were used to compare functional (INT) and structural (T1w/T2w) measures of hierarchy.  7 
 8 
Schizophrenia Combined Dataset 9 
T1w images and resting-state fMRI data were obtained for 331 healthy control subjects and 254 10 
patients diagnosed with either schizophrenia (N = 241) or schizoaffective disorder (N = 13) from 11 
four publicly available datasets. Three of these datasets were from the SchizConnect repository 12 
(BrainGluSchi (Bustillo et al., 2016), COBRE (Aine et al., 2017; Çetin et al., 2014), and 13 
NMorphCH (Alpert et al., 2016)) and one was from the OpenfMRI repository (UCLA (Poldrack et 14 
al., 2016)). Data that survived a quality-control check (~95%) and motion-censoring check (~64%) 15 
included 140 patients and 225 controls. The quality control check consisted of visual inspection of 16 
the spatially normalized images. The motion censoring check consisted of determining if there 17 
were sufficient degrees of freedom after motion censoring to perform nuisance variable 18 
regression. A subset of 158 controls was then selected that matched patients on gender and age. 19 
To minimize scanner- and site-related differences we excluded subjects if the signal-to-noise ratio 20 
(SNR) was less than 100 for any of the standard regions-of-interest (Power et al., 2011). The final 21 
sample after quality-control checks consisted of 127 patients and 152 age- and gender-matched 22 
controls (Table 1).  23 

The fMRI data were collected for each subject during an eyes-open-on-fixation session with 24 
the following scanning parameters: TR = 2000 ms (except for NMorphCH, where TR = 2200 ms); 25 
time points (BrainGluSchi/COBRE/NMorphCH/UCLA) = 160/145/318/147; spatial resolution (mm) 26 
= 3.5´3.5´3.5/3.5´3.5´3.5/4´4´4/3´3´3. Data were preprocessed using the AFNI afni_proc.py 27 
function (Cox, 1996). The following steps were performed: (1) removal of the first five volumes 28 
with the 3dTcat function; (2) slice-timing correction; (3) motion correction; (4) 12-parameter affine 29 
registration of the fMRI images to the T1w image; (5) spatial normalization of fMRI images to 30 
MNI152_ICBM2009a_nlin volume space using nonlinear warping via the T1w image; (6) single-31 
interpolation resampling of fMRI images combining motion correction and spatial normalization. 32 

Before estimating the voxelwise INT values, preprocessed fMRI data were further processed 33 
with the following steps: (1) regression of white-matter signal, cerebrospinal-fluid signal, global-34 
brain signal, and the 6 motion parameters along with their first derivatives; (2) bandpass filtering 35 
in the 0.01–0.1 Hz range; (3) motion censoring to remove volumes with framewise displacement 36 
(FD)(Power et al., 2012) greater than 0.3 mm along with the volumes directly preceding and 37 
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following that volume; (4) spatial smoothing with a 4 mm full-width-at-half-maximum Gaussian 1 
kernel. After INT estimation, the INT maps for subjects from the BrainGluSchi, COBRE, and 2 
NMorphCH samples were resampled to a spatial resolution of 3´3´3 mm to match the UCLA 3 
sample. 4 

Symptom severity in patients was assessed with the Positive and Negative Syndrome Scale 5 
(PANSS) (Kay et al., 1987) in the COBRE and BrainGluSchi samples, and with the Scale for the 6 
Assessment of Positive Symptoms (SAPS) (Andreasen, 1984) and the Scale for the Assessment 7 
of Negative Symptoms (SANS) (Andreasen, 1983) in the UCLA and NMorphCH samples. To 8 
appropriately combine the scores across all four samples, we chose the subset of 7 items that 9 
constituted unequivocal matches between the PANSS and SAPS/SANS (in parentheses): 10 
delusions (global rating of delusions), conceptual disorganization (global rating of positive formal 11 
thought disorder), hallucinatory behavior (global rating of hallucinations), blunted affect (global 12 
rating of affective flattening), emotional withdrawal (global rating of anhedonia/asociality), 13 
passive/apathetic social withdrawal (global rating of avolition/apathy), lack of spontaneity and flow 14 
of conversation (global rating of alogia). PANSS scores were decreased by 1 point for all levels of 15 
severity and the severe and moderately severe levels were combined into a single level so that 16 
scoring conformed to the SAPS/SANS scale (from 0 to 5 with increasing severity).  17 

 18 
HCP Dataset Analysis 19 
Based on previous work showing that lower T1w/T2w map values co-localize with higher 20 
hierarchical levels (Burt et al., 2018), as do longer neural timescales (Chaudhuri et al., 2015; 21 
Murray et al., 2014), we examined the spatial relationship between T1w/T2w, cortical thickness, 22 
and INT values. We restricted this examination to the HCP dataset since its high-resolution and 23 
good-quality structural MRI data allows for precise estimation of myelin maps. Group-averaged 24 
T1w/T2w, cortical thickness, and INT maps in surface space were parcellated using the HCP-25 
multimodal parcellation (HCP-MMP1.0) (Glasser et al., 2016). The parcels were separated into 26 
either 6 parcel groups [the 22 sections described by Glasser et al. are divided into 6 parcel 27 
groups: (1) visual (sections 1 – 5); (2) sensorimotor (sections 6 – 9); (3) auditory (sections 10 – 28 
12); (4) remaining temporal cortex (sections 13 – 14); (5) remaining posterior cortex (sections 15 29 
– 18); (6) remaining anterior cortex (sections 19 – 22) (Glasser et al., 2016)] or 12 networks (Ji et 30 
al., 2019). We tested the parcel-wise spatial relationship between T1w/T2w or cortical thickness 31 
and INT values using linear regression.  32 

Findings from the parcel-wise analysis did not support a brain-wide, system- or network-33 
independent alignment of structural and functional hierarchies. This motivated a search for 34 
anatomically informed hierarchies within the sensory systems (auditory, visual, and 35 
somatosensory). Linear mixed-effects models were used to determine the best-fitting hierarchical 36 
ordering for each system. Models predicted hierarchical level from fixed- and random-effects (per 37 
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subject) of T1w/T2w and cortical thickness values for parcels ordered accordingly. Hierarchical 1 
orderings were first determined for the sensory cortices. The four most likely orderings for each 2 
sensory system were determined based on the primate anatomy literature (Felleman and Van, 3 
1991; Galaburda and Pandya, 1983; Hyvärinen and Poranen, 1978; Kaas and Hackett, 2000; 4 
Morel et al., 1993). The auditory cortex regions were A1, lateral belt (LBelt), medial belt (MBelt), 5 
parabelt (PBelt), retroinsular cortex (RI), A4, and A5. The positions of LBelt and MBelt were 6 
allowed to take either level 2 or 3 of the hierarchy; PBelt and RI were allowed to take either level 7 
4 or 5; A1 was level 1, A4 was level 6, and A5 was level 7 in all cases. The visual regions were 8 
V1, V2, V3, V4, MT, V6, and V7. The positions of V4 and MT were allowed to take either level 4 9 
or 5 of the hierarchy; V6 and V7 were allowed to take either level 6 or 7; V1 was level 1, V2 was 10 
level 2, and V3 was level 3 in all cases. The somatosensory cortex regions were areas 3b, 3a, 1, 11 
2, 5m, 7b, and 7a. Areas 3b and 3a were allowed to take either level 1 or 2 of the hierarchy; 12 
areas 1 and 2 were allowed to take either level 3 or 4; area 5m was level 5, area 7b was level 6, 13 
and area 7a was level 7 in all cases. Since all compared models had the same number of 14 
variables, the winning models for each system were simply determined based on the orderings 15 
that explained the most variance (R2). After selection of the hierarchies in the sensory cortices, 2 16 
downstream prefrontal cortex regions (areas 8a and 46) were added as either level 8 or 9 of the 17 
hierarchy based on a second model comparison. The PFC-extended winning hierarchies were 18 
then validated by determining the relationship of hierarchical levels with INT values using non-19 
parametric Spearman correlations (rs) both in the HCP (in-sample) dataset and in the control 20 
group from the schizophrenia combined (out-of-sample) dataset. Following prior work (Burt et al., 21 
2018), the winning hierarchies were additionally validated against human postmortem gene-22 
expression data from the Allen Human Brain Atlas (Hawrylycz et al., 2012). 23 
 24 
HCP Robustness Analyses 25 
Because the schizophrenia combined dataset was analyzed in volume space, HCP dataset 26 
group-averaged INT maps in volume space were created and parcellated into 180 cortical parcels 27 
using HCP-MMP1.0 in volume space (https://identifiers.org/neurovault.collection:1549) and 8 28 
FreeSurfer (Fischl, 2012) subcortical parcels relevant to schizophrenia (thalamus, caudate, 29 
putamen, pallidum, hippocampus, amygdala, nucleus accumbens, and ventral diencephalon). 30 
The reliability of INT maps was assessed at the voxel level in volume space using the two-way 31 
random, single score intraclass correlation coefficient [ICC(2,1)] (Shrout and Fleiss, 1979). INT 32 
maps for each of the 100 subjects estimated using the first 5 minutes of data acquisition (similar 33 
to the amount of data available for the schizophrenia datasets) were compared to those 34 
estimated using the last 5 minutes of data acquisition of a single 14-minute run. To evaluate 35 
potential confounds of the INT values, we examined their relationship with age, gender, and head 36 
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motion—based on mean framewise displacement (Power et al., 2012) (FD)—using linear 1 
regression. 2 
 3 
Schizophrenia Combined Dataset Analysis 4 
INT maps were parcellated into 180 cortical parcels using HCP-MMP1.0 in volumetric space 5 
(https://identifiers.org/neurovault.collection:1549) and 8 FreeSurfer (Fischl, 2012) subcortical 6 
parcels (thalamus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens, 7 
and ventral diencephalon). In an exploratory analysis, differences in INT map values between 8 
patients with schizophrenia and healthy controls were investigated using a linear-regression 9 
model (M1exploratory) predicting INT values as a function of diagnosis while controlling for age, 10 
gender, mean FD, and sample-acquisition site (BrainGluSchi, COBRE, NMorphCH, and UCLA). 11 
To test our hypothesis of hallucination- and delusion-specific alterations of INT, we evaluated the 12 
relationships between symptom severity and INT values using a linear-regression model 13 
(M1primary) predicting INT with each of the 7 symptoms (hallucinations, delusions, conceptual 14 
disorganization, emotional withdrawal, social withdrawal, blunted affect, and alogia) as regressors 15 
while controlling for age, gender, mean FD, and sample-acquisition site. We did not use 16 
voxelwise statistical parametric-mapping approaches because our main focus was on effects 17 
along hierarchical gradients not necessarily dependent on anatomical proximity.  18 
 19 
Permutation Testing 20 
To assess statistical significance while controlling for multiple comparisons, we used permutation 21 
tests, which provide adequate protection against false positives in fMRI analyses (Eklund et al., 22 
2016). Our main test focused on differences between hallucinations and delusions in INT gradient 23 
effects within anatomically informed hierarchies of the auditory, visual, and somatosensory 24 
systems—reflecting symptom-specific INT alterations at different hierarchical levels. We 25 
specifically tested our primary hypothesis using a linear-regression model (M2) featuring 26 
interactions of symptom-by-hierarchical-level within anatomical gradients in sensory systems. We 27 
included a symptom-by-hierarchical-level-by-sensory-system interaction to allow for differences 28 
between sensory systems. A post-hoc power analysis for M2 showed our analyses had between 29 
88% and 99% power to detect effect sizes (Cohen’s f2) between 0.19 and 0.36 (a = 0.05). 30 
Permutation tests compared observed effects (parcel-wise t-statistics of individual regression 31 
coefficients from M2 [or M1exploratory]) to those in a null distribution obtained from 10,000 surrogate 32 
datasets in which the values of the predictor variables of interest in M1primary (or M1exploratory) were 33 
randomly shuffled. Corrected P-values at 0.05 (‘Ppermutation’), two-sided, are reported. Permutation 34 
tests were also used to determine null distributions of the hierarchy model-comparison for 35 
determining the hierarchical orderings. There, null distributions were obtained from 10,000 36 
surrogate datasets in which the assigned hierarchical level of each region was randomly 37 
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assigned. Corrected P-values at 0.05, one-sided, are reported for the model-comparison step 1 
while corrected P-values at 0.05, two-sided, are reported for the in-sample INT correlation. 2 
 3 
Bootstrap Confidence Intervals 4 
Bootstrap confidence intervals were determined for the results from M2 using the accelerated 5 
bias-corrected (BCa) percentile method (Efron, 1987). 10,000 bootstraps were performed at the 6 
level of M1primary and two-sided 95% confidence intervals were determined.  7 
 8 
Large-Scale Biophysical Model of Cortical Neural Timescales 9 
We implemented the model of Chaudhuri et al. (Chaudhuri et al., 2015), a large-scale biophysical 10 
model of hierarchical dynamic processing in the primate cortex. We chose this model because it 11 
was constructed using gold-standard tract-tracing experiments to determine the directed- and 12 
weighted-connectivity strengths between nodes (unlike similar models of the human cortex). 13 
Additionally, this model captures the observed hierarchy of intrinsic neural timescales. The model 14 
contains 29 nodes, each consisting of an excitatory and inhibitory population. The populations are 15 
described by: 16 

𝜏!
𝑑
𝑑𝑡 𝑣! = −𝑣! + 𝛽![𝐼!]" 

𝜏#
𝑑
𝑑𝑡 𝑣# = −𝑣# + 𝛽#[𝐼#]" 

(1) 

𝑣! is the firing rate of the excitatory population, with intrinsic time constant 𝜏!and input current 𝐼!, 17 
and for which the f-I curve has the slope 𝛽!. [𝐼!]"= max(𝐼!, 0). The inhibitory population has 18 
corresponding parameters 𝑣#, 𝜏#, 𝐼# and 𝛽#. Values for 𝜏!, 𝜏#, 𝛽!, and 𝛽# are given below and taken 19 
from prior work (Binzegger et al., 2009).  20 

At each node, the input currents have a component originating within the area (i.e. local 21 
input) and another originating from other areas (i.e. long-range input): 22 

𝐼!$ = (1 + 𝜂ℎ$)2𝑤!!𝑣!$ + 𝐼%&,!$ 4 − 𝑤!#𝑣#$ + 𝐼()*,!$  

𝐼#$ = (1 + 𝜂ℎ$)2𝑤#!𝑣!$ + 𝐼%&,#$ 4 − 𝑤##𝑣#$ + 𝐼()*,#$  
(2) 

The super- and sub-script, 𝑖, denotes the node (1 – 29), 𝑤!! and 𝑤!# are couplings to the 23 
excitatory population from the local excitatory and inhibitory population respectively, 𝐼%&,!$  is the 24 
long-range input to the excitatory population, and 𝐼()*,!$  is external input (both stimulus input and 25 
any noise added to the system). 𝑤#!, 𝑤##, and 𝐼%&,#$  are the corresponding parameters for the 26 
inhibitory population. 27 

The excitatory inputs to an area, both local and long-range, are scaled by its position in the 28 
hierarchy, ℎ$ (see below for details). ℎ$ is normalized between 0 and 1, and 𝜂 is a scaling 29 
parameter that controls the effect of hierarchy. By setting 𝜂 = 0, the intrinsic differences between 30 
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areas are removed. Note that both local and long-range projections were scaled by hierarchy, 1 
rather than just local projections, following prior observations (Markov et al., 2010). 2 

Long-range input is modeled as excitatory current to both excitatory and inhibitory cells: 3 

𝐼%&,!$ = 𝜇!!7𝐹𝐿𝑁$+𝑣!
+

,-

+./

 

𝐼%&,#$ = 𝜇#!7𝐹𝐿𝑁$+𝑣!
+

,-

+./

 

(3) 
 

Here, 𝑗 ranges over all areas. 𝐼%&,!$  and 𝐼%&,#$  are the inputs to the excitatory and inhibitory 4 

populations, 𝑣!
+ is the firing rate of the excitatory population in area 𝑗 and 𝐹𝐿𝑁$+ is the fraction of 5 

labeled neurons (FLN; see below for details) from area 𝑗 to area 𝑖. 𝜇!! and 𝜇#! are scaling 6 
parameters that control the strengths of long-range input to the excitatory and inhibitory 7 
populations, respectively, and do not vary between connections; all the specificity comes from the 8 
FLN. Long-range connectivity is thus determined by three parameters: 𝜇!! and 𝜇#! control the 9 
connection strengths of long-range projections, and 𝜂 maps the hierarchy into excitatory 10 
connection strengths. The excitatory-to-inhibitory ratio of input current, 𝛾 = 𝐼$01,! 𝐼$01,#⁄ , was 11 
chosen such that the steady-state firing rate of the excitatory population does not change when 12 
the current is present. Given an input of 𝐼$01,! to the excitatory population, an input of 𝛾𝐼$01,! to the 13 
inhibitory population increases the inhibitory firing rate sufficiently to cancel out the additional 14 
input to the excitatory population. 𝜇!! and 𝜇#! were chosen with a ratio slightly above this value 15 
so that projections are weakly excitatory.  16 

Parameter values were: 𝜏! = 20 ms, 𝜏# = 10 ms, 𝛽! = 0.066 Hz/pA, 𝛽# = 0.351 Hz/pA, 𝑤!! =  17 
24.3 pA/Hz, 𝑤#! = 12.2 pA/Hz, 𝑤!# = 19.7 pA/Hz, 𝑤## = 12.5 pA/Hz, 𝜇!! = 33.7 pA/Hz, 𝜇#! = 25.3 18 
pA/Hz and 𝜂 = 0.68. Background input for each area was chosen so that the excitatory and 19 
inhibitory populations had rates of 10 and 35 Hz, respectively. As in Chaudhuri et al., we added 20 
an external input of white-noise to all areas with a mean of 0 Hz and a standard deviation of 10-5 21 
Hz. 22 

Connectivity data are from an ongoing project that is quantitatively measuring all 23 
connections between cortical areas in the macaque cortex (Markov et al., 2013; Markov et al., 24 
2012). The connection strengths between areas are measured by counting the number of 25 
neurons labeled by retrograde tracer injections. To control for injection size, these counts are 26 
normalized by the total number of neurons labeled in the injection, giving a fraction of labeled 27 
neurons (FLN): 28 

𝐹𝐿𝑁+→$ =
number of neurons projecting to area 𝑖 from area 𝑗	

total number of neurons projecting to area	𝑖	from all areas (4) 

These data were also used to estimate the fraction of neurons in a projection originating in the 29 
supragranular layers (SLN): 30 
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𝑆𝐿𝑁+→$ =
number of supragranular neurons projecting to area 𝑖 from area 𝑗	

number of neurons projecting to area	𝑖	from area	𝑗	  (5) 

The hierarchy was constructed following a similar framework to Markov et al. (Markov et al., 1 
2014), using a generalized linear model. Hierarchical values were assigned to each area such 2 
that the difference in values predicts SLN (Barone et al., 2000): 3 

𝑆𝐿𝑁+→$ ≈ 𝑔3/2ℎ$ − ℎ+4 (6) 

where 𝑔3/ is a logistic function (logistic regression) and ℎ$ is the hierarchy value of area 𝑖. In the 4 
fit, the contribution of each projection is weighted by the log of its FLN to preferentially match 5 
stronger and less noisy projections (Chaudhuri et al., 2015). All connectivity data can be 6 
downloaded from www.core-nets.org. 7 

The simulated neuronal activity was converted to blood-oxygen-level-dependent (BOLD) 8 
fMRI signal using the Balloon-Windkessel hemodynamic model (Stephan et al., 2007), a 9 
dynamical model that describes the transduction of neuronal activity (𝑣!) to changes in a 10 
vasodilatory signal (𝑠) that is subject to autoregulatory feedback. This vasodilatory signal is 11 
coupled to changes in cerebral blood flow (𝑓) that result in changes to the normalized total 12 
deoxyhemoglobin content (q) and normalized venous blood volume (v). For each area (𝑖), these 13 
biophysical variables are defined by the following equations: 14 

𝑑𝑠$
𝑑𝑡 = 𝑣!$ − 𝜅𝑠$ − 𝛾(𝑓 − 1) (7) 

𝑑𝑓$
𝑑𝑡 = 𝑠$ (8) 

𝜏455
𝑑v$
𝑑𝑡 = 𝑓$ − v$

/ 67  (9) 

𝜏455
𝑑𝑞$
𝑑𝑡 = 𝑓$

1 − (1 − 𝜌)
/
8!7

𝜌 − v$
/ 67

𝑞$
v$

 (10) 

where 𝜏455 is the mean transit time of blood, 𝜌 is the resting oxygen extraction fraction, and 𝛼 15 
represents the resistance of the veins (i.e., stiffness). For each area (𝑖), the BOLD signal (B), is a 16 
static nonlinear function of deoxyhemoglobin content (q) and venous blood volume (v), that 17 
comprises a volume-weighted sum of extravascular and intravascular signals: 18 

𝐵$ = 𝑉9 K𝑘/(1 − 𝑞$) + 𝑘, M1 −
𝑞$
v$
N + 𝑘:(1 − v$)O  

𝑘/ = 4.3𝜗9𝜌𝑇𝐸  

𝑘, = 𝜀𝑟9𝜌𝑇𝐸  

𝑘: = 1 − 𝜀 (11) 

where 𝑉9 is the resting venous blood volume fraction, 𝜗9 is the frequency offset at the outer 19 
surface of the magnetized vessel for fully deoxygenated blood, 𝜀 is the ratio of intra- and extra-20 
vascular signals, 𝑟9 is the slope of the relation between the intravascular relaxation rate R2I* and 21 
oxygen saturation, and 𝑇𝐸 is the echo time of the fMRI acquisition. Parameters for the Balloon-22 
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Windkessel model matched those used previously for a 3T fMRI experiment (Stephan et al., 1 
2007). Simulated BOLD signals were downsampled to a temporal resolution of 2 seconds (i.e., 2 
TR = 2 seconds) to match the in vivo data and INTs were estimated as for the in vivo data.  3 

To simulate the observed effects of hallucination and delusion severity on INT, we perturbed 4 
the strength of the couplings to the excitatory population from the local excitatory population (𝑤!!) 5 
or to the inhibitory population from the local excitatory population (𝑤#!) for specific nodes. Note 6 
that the original definition of the model assigned the same values of 𝑤!! and 𝑤#! to all nodes, but 7 
here we manipulated these values differentially across nodes. We investigated alterations in 8 
excitation-inhibition (E/I) ratios by allowing the strength of recurrent connections to vary in 5 of the 9 
6 nodes that correspond to levels of our hierarchy (V1, V2, V4, MT, 8l, and 46d, with the latter 10 
being fixed) to recapitulate our in vivo observations. Recurrent connection strength was fixed for 11 
46d to avoid model instability upon small parameter changes (E/I ratio changes of ~1%) due to 12 
the strong connectivity at this level. The E/I ratio changes were modeled as a triangle function 13 
where a local maximum exhibited a peak E/I ratio increase and other nodes had E/I ratio changes 14 
that decreased linearly as a function of absolute distance in hierarchical levels from the peak. 15 
This function was described by 3 free parameters. (i) The hierarchical level of the peak E/I ratio 16 
increase, which was allowed to take any integer between 1 and 8. Given their stationary nature, 17 
these parameters were held constant such that fitting was performed for each combination of 18 
peak E/I ratio increase (1–8 for hallucinations and 1–8 for delusions) using a grid search. (ii) The 19 
magnitude of the E/I ratio increase at the peak (expressed as percent change to the local 20 
recurrent connection strength), which was allowed to vary between 0% and 40%. (iii) The 21 
magnitude of the E/I ratio change at the minimum (i.e., at the hierarchical level furthest from the 22 
peak), which was allowed to vary between -30% and 40%. 23 

To facilitate fitting the biophysical model, we used regression fits from M1primary in the 24 
auditory system to estimate INT values at each level of the hierarchy for 4 “exemplary cases”: (1) 25 
no hallucinations or delusions (fitted INT values from M1primary with minimum scores of 0 for both 26 
symptoms); (2) hallucinations only (maximum score of 5 for hallucinations and score of 0 for 27 
delusions); (3) delusions only (scores of 0 for hallucinations and 5 for delusions); (4) 28 
hallucinations and delusions (scores of 5 for both symptoms). For all exemplary cases, the 29 
severity of other symptoms and the values of covariates were set to the average values from all 30 
patients. Changes of INT for exemplary cases 2–4 were determined as the difference in INT 31 
relative to the ‘no hallucinations or delusions’ case (in vivo DINT). Model-derived in silico DINT 32 
were calculated for each node as the difference in INT from the unaltered biophysical model (i.e., 33 
𝑤#! = 12.2 pA/Hz for all nodes). The parameters describing the E/I ratio changes were fit by 34 
minimizing the sum of squared errors between the in silico DINT (nodes: V1 [level 1], V2 [level 2], 35 
V4 [level 4], MT [level 5], 8l [level 8], and 46d [level 9]) and the in vivo DINT (parcels: A1 [level 1], 36 
LBelt [level 2], PBelt [level 4], RI [level 5], 8a [level 8], and 46 [level 9]). We simultaneously fit the 37 
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3 free parameters for each symptom (3 parameters for hallucinations and 3 parameters for 1 
delusions) using in vivo DINT for exemplary cases 2–4 (18 data points) with the combined effect 2 
of hallucinations and delusions fit by the sum of E/I ratio changes for hallucinations and the E/I 3 
ratio changes for delusions. This was done by calculating the error between the biophysical 4 
model with E/I ratio changes for the hallucination parameters and exemplary case 2; the error 5 
between the biophysical model with E/I ratio changes for the delusion parameters and exemplary 6 
case 3; the error between the biophysical model with E/I ratio changes determined by the sum of 7 
the E/I ratio changes for the hallucination parameters and the E/I ratio changes for the delusion 8 
parameters, and exemplary case 4; and minimizing the sum of squared errors. Results are shown 9 
for reductions to 𝑤#!, but similar effects were observed when increasing 𝑤!! since both effectively 10 
increase the E/I ratio. 11 
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Figure Supplements 1 
Figure 1—figure supplement 1. Comparison of Different Methods for INT Estimation: Sum 2 
of Initial Positive Period vs Exponential Fit. Relationship between neural timescales estimated 3 
using the sum of the initial positive period (INT, x-axis) and an exponential fit (t, y-axis) to the 4 
autocorrelation function. Results for vertices (left) and parcels (right). Lines of best-fit are shown 5 
for comparison. The INT method of Watanabe et al. (Watanabe et al., 2019) is similar to 6 
estimating the decay rate of an exponential fit to the autocorrelation function (Murray et al., 2014). 7 
The former method was used in our study to maintain consistency with the previous study, which 8 
validated the technique against INT measured by electroencephalography (Watanabe et al., 9 
2019). Additionally, this method avoids the need for nonlinear fitting—which is known to be 10 
challenging (Transtrum et al., 2010) and computationally expensive,—and may be more robust. 11 
The difference between timescales estimated with the two methods was assessed in the 100 12 
HCP subjects by comparing the group averaged timescale maps using Spearman correlation. 13 
The correlation between the two methods was almost perfect (vertices: rs = 0.9986, P << 0.01; 14 
parcels: rs = 0.9985, P << 0.01) but there is an upwards bias in values estimated using the 15 
method of Watanabe et al. (Watanabe et al., 2019). 16 
 17 
 18 
Figure 1—figure supplement 2. Relationships Between Intrinsic Neural Timescales and 19 
either T1w/T2w (Myelin) or Cortical Thickness. As reported in the Main Text, we did not 20 
observe a clear parcel-wide relationship between structural markers of hierarchy and INT. These 21 
relationships were investigated using two parcel-groupings; those described by Glasser et al. 22 
(left) and the Cole-Anticevic networks described by Jing et al. (right). To better characterize the 23 
relationship between myelin (top) or cortical thickness (bottom) and INT, intercepts for each 24 
parcel group (visual, auditory, sensorimotor, posterior, anterior, and temporal) or network (primary 25 
visual, secondary visual, somatomotor, cingulo-opercular, dorsal attention, language, 26 
frontoparietal, auditory, default mode, posterior multimodal, ventral multimodal, and orbito-27 
affective) were introduced to allow for overall differences in INT-by-parcel-group (or INT-by-28 
network) given the apparent differences observed in the data. Parcel-group-by-T1w/T2w-value (or 29 
network-by-T1w/T2w-value) interactions and parcel-group-by-cortical-thickness (or network-by-30 
cortical-thickness) were also introduced to allow for differences in the relationship between 31 
T1w/T2w (or cortical thickness) and INT values across parcel groups (or networks).  32 

We found that an extended model with parcel-group intercepts and interactions of parcel-33 
group-by-T1w/T2w explained significantly more variance in INT than the reduced model (no 34 
parcel-group intercepts or interactions): parcel groups differed in INT (model with parcel-group 35 
intercepts versus reduced model: F10,167 = 12.03, P < 10-14) and their relationship between 36 
T1w/T2w and INT (model with parcel-group intercepts and interactions of parcel-group-by-37 
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T1w/T2w versus a model with parcel-group intercepts but no interaction terms: F5,167 = 5.55, P < 1 
10-4). Similar results were observed for the Cole-Anticevic Networks, where we found that an 2 
extended model with network intercepts and interactions of network-by-T1w/T2w explained 3 
significantly more variance in INT than the reduced model (no network intercepts or interactions): 4 
networks differed in INT (model with network intercepts versus reduced model: F22,155 = 4.62, P < 5 
10-8) and their relationship between T1w/T2w and INT (model with network intercepts and 6 
interactions of network-by-T1w/T2w versus model with network intercepts but no interactions: 7 
F11,155 = 2.15, P = 0.020).  8 

For cortical thickness, we found that an extended model with parcel-group intercepts and 9 
interactions of parcel-group-by-cortical-thickness explained significantly more variance in INT 10 
than the reduced model (no parcel-group intercepts or interactions): parcel groups differed in INT 11 
(model with parcel-group intercepts versus reduced model: F10,167 = 8.59, P < 10-10) and their 12 
relationship between cortical-thickness and INT (model with parcel-group intercepts and 13 
interactions of parcel-group-by-cortical-thickness versus a model with parcel-group intercepts but 14 
no interaction terms: F5,167 = 5.05, P < 10-3). Similar results were observed for the Cole-Anticevic 15 
Networks, where we found that an extended model with network intercepts and interactions of 16 
network-by-cortical-thickness explained significantly more variance in INT than the reduced 17 
model (no network intercepts or interactions): networks differed in INT (model with network 18 
intercepts versus reduced model: F22,155 = 3.58, P < 10-5) and their relationship between cortical-19 
thickness and INT (model with network intercepts and interactions of network-by-cortical-20 
thickness versus a model with network intercepts but no interactions: F11,155 = 1.96, P = 0.036). 21 

These results suggest that the relationship between structural hierarchies (T1w/T2w and 22 
cortical thickness) and functional hierarchy (INT) is not constant across the whole brain but rather 23 
changes for different parcel groups and networks.  24 

 25 
 26 

Figure 1—figure supplement 3. Selected sensory hierarchies demonstrate a hierarchical-27 
gradient effect of granular layer IV (L4) gene expression. Scatter plots showing L4 gene 28 
expression plotted as a function of hierarchical level for the winning orderings. Expression is plotted 29 
in units of standard deviation (s.d.; σ) from the mean. Gene expression data are from the Allen 30 
Human Brain Atlas as compiled by Burt et al. (Nature Neuroscience, 2018). 31 
 32 
 33 
Figure 1—figure supplement 4. Effect of framewise displacement (FD) on estimated 34 
intrinsic neural timescales (INT). A) t-statistic values from a regression model predicting INT 35 
from the average FD during fMRI data acquisition plotted as a function of the INT rank for 100 36 
HCP subjects. Each datapoint represents one parcel. 181 out of 188 parcels showed significantly 37 
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shorter INT with greater FD (Ppermutation = 0.01). Although there was a significant effect of FD on 1 
INT throughout the whole brain, this effect was not modulated by order within the INT hierarchy 2 
(i.e. the correlation in A is not significant against the null distribution). B) t-statistic values from 3 
parcels within the well-defined auditory hierarchy (left) and visual hierarchy (right) plotted as a 4 
function of hierarchical level. The effect of FD on estimated INT was not modulated by position 5 
within well-defined sensory hierarchies across sensory systems (i.e. no significant difference 6 
between the correlations in B tested against the null distribution). To determine the effect of head 7 
motion during resting-state fMRI data acquisition on estimated INT values, we used a linear-8 
regression model to predict INT as a function of average FD while controlling for age and gender. 9 
Because average FD represents a summary measure of head motion during the entire 10 
acquisition, this regression does not provide information regarding differential effects of sustained 11 
small-levels of head motion versus infrequent but large-levels of head motion.  12 
 13 
 14 
Figure 1—figure supplement 5. Reliability of Intrinsic Neural Timescale Estimation. INT 15 
maps for 100 HCP subjects were estimated in volume space and the values at each voxel falling 16 
within the 188 volume parcels were compared when INT was estimated from the first 5 minutes or 17 
the last 5 minutes of fMRI acquisition. The INT maps showed excellent reliability based on the 18 
ICC(2,1) between the first and last 5 minutes of the fMRI acquisition (median ICC ± interquartile 19 
range across voxels: 0.94 ± 0.03). 20 
 21 
 22 
Figure 1—figure supplement 6. Model comparison to determine the hierarchical ordering of 23 
the ventral auditory pathway. A) Goodness-of-fit (R2) of linear mixed-effects models predicting 24 
different hierarchical orderings for the ventral auditory system from T1w/T2w and cortical thickness 25 
values in the HCP dataset. First, the winning ordering (i.e., the model with the best goodness of fit) 26 
for each system was determined for the 7 sensory cortex regions (bottom 4 models); then, winning 27 
orderings were determined for extended models with 2 downstream prefrontal cortex regions added 28 
to the respective winning models for sensory cortex (top 2 models). Note that, for each of the four 29 
considered orderings within the sensory cortex for each system, only the 4 regions whose order is 30 
varied (out of 7 regions) are shown to denote the models. For the auditory cortex, A1 was always 31 
the lowest order region while A4 and A5 were always the two highest-order regions. Null 32 
distributions were generated by randomly permuting the hierarchical ordering (0th – 95th percentiles 33 
shown). B) Scatterplots showing INT values plotted as a function of hierarchical level for the PFC-34 
extended winning model in B (red outline) for the HCP dataset (top) and the healthy control group 35 
in the schizophrenia combined dataset (N = 158; bottom). 36 
 37 
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Figure 2—figure supplement 1. Voxel-Wise Analysis of Intrinsic Neural Timescales in 1 
Schizophrenia versus Health. Patients with schizophrenia show widespread voxelwise 2 
reductions in intrinsic neural timescales compared to healthy controls. t-statistic values from a 3 
regression model predicting INT controlling for age, gender, framewise displacement, and data 4 
collection site, plotted as a function of the INT rank. Each datapoint represents one voxel. We 5 
repeated the exploratory analysis of INT in patients with schizophrenia versus healthy controls at 6 
the level of individual voxels. Only voxels that fell within the 188 parcels were included in this 7 
analysis. Similar results were observed as reported in the Main Text (Figure 3E) where we 8 
investigated effects at the level of parcels. Relative to controls, patients with schizophrenia 9 
exhibited a small-to-moderate but widespread reduction of INT (overall effect of diagnosis: 5,511 10 
out of 27,884 voxels, Ppermutation = 0.020;). A non-significant number of voxels also showed 11 
significantly longer INT in patients with schizophrenia compared to healthy controls (93 out of 12 
27,884 voxels, Ppermutation = 0.49). 13 
 14 
 15 
Figure 2—figure supplement 2. Biophysical Model Simulation of Reduced Intrinsic Neural 16 
Timescales in Schizophrenia versus Health. An in silico simulation using a large-scale 17 
biophysical model suggested that the globally shorter INT observed in patients with schizophrenia 18 
could be neuronally implemented by globally reduced E/I ratio. A scatterplot shows the difference 19 
in intrinsic neural timescale (INT) values estimated for the reference (healthy) simulated scenario 20 
and the globally reduced excitatory-to-excitatory recurrent connection strength (reduced E/I ratio); 21 
each data point denotes 1 of the 29 nodes (top). Relative to the reference scenario, reduced 22 
excitatory-to-excitatory recurrent connection strength leads to a global reduction of INT values 23 
with the effect becoming more pronounced for regions with longer timescales in the healthy 24 
condition. The data are well described by an exponential model (R2 = 0.94). A scatterplot shows 25 
the t-statistic values from a regression model predicting INT group differences controlling for age, 26 
gender, framewise displacement, and data collection site, plotted as a function of the INT value in 27 
healthy subjects (determined from group-averaged INT map from HCP subjects to reduce 28 
circularity); each data point denotes the average of 6 parcels along the INT hierarchy for a similar 29 
number of data points as the biophysical model results (bottom). Similar to the biophysical model 30 
simulation, the data are better fit by an exponential model (Matlab fitnlm: F2,28 = 10.3, P = 0.003; 31 
BIC = 4.8), than a linear model (Matlab fitnlm: F1,29 = 1.4, P = 0.25; BIC = 9.3). Similar results are 32 
observed when no binning of the data is performed (exponential model: F2,185 = 8.3, P = 0.005; 33 
BIC = 366.4; linear model: F1,186 = 0.8, P = 0.38; BIC = 368.6). The findings are similar to a recent 34 
study that recapitulated the behavior of macaque monkeys on an evidence-varying decision-35 
making task following intramuscular administration of a subanesthetic dose of ketamine by 36 
reducing the strength of the couplings to the excitatory population from the local excitatory 37 
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population (𝑤!!) by 1.75% to achieve a global reduction of E/I ratio (Cavanagh et al., 2019). This 1 
is consistent with the NMDA-receptor hypofunction hypothesis of schizophrenia (Corlett et al., 2 
2011; Kehrer et al., 2008; Krystal et al., 2003; Lisman et al., 2008; Olney and Farber, 1995), and 3 
the use of ketamine as a model of schizophrenia (Becker et al., 2003; Corlett et al., 2011; 4 
Frohlich and Van Horn, 2014; Krystal et al., 1994). Furthermore, our biophysical model results 5 
support recent evidence of how global changes can preferentially affect higher-order brain 6 
regions (Yang et al., 2016); and our in vivo results lend additional (although preliminary) 7 
evidence.   8 
 9 
 10 
Figure 3—figure supplement 1. Controlling for medication dose does not change the 11 
distinct hierarchical-gradient effects of hallucination and delusion severity in the auditory 12 
and somatosensory systems. A) Scatterplots showing t-statistic values for hallucination-13 
severity (top) or delusion-severity (bottom) effects from parcels within the auditory (left), visual 14 
(middle), or somatosensory (right) hierarchies plotted as a function of hierarchical level. B) 15 
Summary of results from a model including symptom-severity effect (hallucination or delusion), 16 
hierarchical level, sensory system (auditory, visual, or somatosensory), and their interactions. We 17 
repeated the main analysis comparing the effects of hallucination and delusion severity when 18 
including medication dose as a covariate. Only 109 of the 127 patients had available data for 19 
chlorpromazine equivalents. All results were similar to those reported in the Main Text where the 20 
effect of medication dose was not controlled for. The model explaining symptom effects and their 21 
differences by hierarchical-level and their interaction by symptoms and sensory system was 22 
significant (omnibus F11,41 = 22.4, P < 10-13). Critically, we found significant hierarchical-gradient 23 
effects that differed between hallucinations and delusions (auditory system symptom-by-24 
hierarchical-level interaction: t42 = 4.48, Ppermutation = 0.002; visual: t42 = -0.88, Ppermutation = 0.560; 25 
and somatosensory: t42 = 3.92, Ppermutation = 0.001). These interactions were in the expected 26 
direction for 2/3 of the sensory systems auditory and somatosensory; negative hierarchical 27 
gradient for hallucinations and positive hierarchical gradient for delusions). In the auditory system, 28 
this effect was driven by significant hierarchical-gradient effects in opposite directions for 29 
hallucinations (hierarchical-level effect: t42 = -3.40, Ppermutation = 0.013) and delusions (hierarchical-30 
level effect: t42 = 2.94, Ppermutation = 0.028). In the somatosensory system, this effect was driven by 31 
a trend-level negative hierarchical-gradient effect for hallucinations (hierarchical-level effect: t42 = 32 
-2.25, Ppermutation = 0.064) and a significant negative hierarchical-gradient effect for delusions 33 
(hierarchical-level effect: t42 = 3.30, Ppermutation = 0.017).  34 
 35 
 36 
 37 
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Figure 3—figure supplement 2. Distinct hierarchical-gradient effects of hallucinations and 1 
delusions are robust to the choice of sensory hierarchies. Summary of results from a model 2 
including symptom-severity effect (hallucination or delusion), hierarchical level, sensory system 3 
(auditory, visual, or somatosensory), and their interactions for each of the 4 sensory-cortex 4 
hierarchies tested for the auditory (left), visual (middle), and somatosensory (right) systems 5 
during Selection and Multimodal Validation of Neural Hierarchies. For the auditory system, 6 
A1 was always the lowest order region while A4 and A5 were always the 6th and 7th level regions. 7 
For the visual system, V1, V2, and V3 were always the three lowest order regions. For the 8 
somatosensory system, 5m, 7b, and 7a were always the 5th, 6th, and 7th level regions 9 
respectively. For all 3 sensory systems, areas 8A and 46 were always the two highest order 10 
regions. The winning orderings from the selection process (Figure 1) are outlined in red. For this 11 
analysis, one sensory system hierarchical-ordering was tested while the other two sensory 12 
system hierarchical-orderings were chosen to be the winning orderings. Null distributions were 13 
generated by randomly permuting symptom-severity scores across patients in M1primary (2.5th – 14 
97.5th percentiles shown). 15 
 16 
 17 
Figure 3—figure supplement 3. Only positive symptoms show hierarchical-gradient effects 18 
in the auditory system and only delusions show a hierarchical-gradient effect in the 19 
somatosensory system. t-statistic values for the hierarchical-gradient effect of each symptom in 20 
the auditory and somatosensory systems. In the auditory system, all three positive symptoms 21 
(including conceptual disorganization) show significant effects while none of the negative 22 
symptoms show significant effects. In the somatosensory system, only delusions show a 23 
significant effect, although hallucinations show the strongest negative effect. These results reflect 24 
some level of selectivity that should be examined in more detail in future studies. It is important to 25 
note that the perceptual inference model of psychosis does not require these effects to be 26 
specific to hallucinations and delusions. Furthermore, an effect of conceptual disorganization—a 27 
positive symptom that unlike negative symptoms tends to correlate with hallucinations and 28 
delusions—may suggest extensions of the model to account for additional phenomena. 29 
 30 
 31 
Figure 3—figure supplement 4. Comparison of hierarchical-gradient effects in the dorsal 32 
and ventral auditory systems. A) Scatterplots showing t-statistic values for hallucination-33 
severity (top) or delusion-severity (bottom) effects from parcels within the dorsal auditory (left; 34 
areas 8a and 46) and ventral auditory (right; areas 10 and 12vl) hierarchies plotted as a function 35 
of hierarchical level. B) Summary of results from a model including symptom-severity effect 36 
(hallucination or delusion), hierarchical level, sensory system (dorsal or ventral auditory system), 37 
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and their interactions. These results demonstrate: (1) in both the dorsal and ventral auditory 1 
systems, there is a significant hierarchical-gradient effect of hallucination severity and these 2 
effects are not significantly different from another (a); (2) there is no significant difference in the 3 
relationship between hallucination severity and hierarchical level versus that for delusion severity 4 
and hierarchical level in the ventral auditory system (b); (3) there is no significant hierarchical-5 
gradient effect of delusion severity in the ventral auditory system. These findings add to previous 6 
evidence suggesting that the dorsolateral prefrontal cortex (area 46; included in dorsal but not 7 
ventral auditory system) may play a key role in delusions. 8 
 9 
 10 
Figure 3—figure supplement 5. Distinct hierarchical-gradient effects of hallucination and 11 
delusion severity in the auditory system are observed when using an anatomically 12 
agnostic definition of the hierarchy. Scatterplots showing t-statistic values for hallucination-13 
severity (left) or delusion-severity (right) effects from bins consisting of the average from 60 14 
voxels within the 9 auditory system parcels (600 voxels total) as a function of hierarchical level. 15 
Voxels were first ranked using their corresponding intrinsic neural timescale (INT) value in the 16 
HCP dataset group-averaged INT map and then averaged within 10 equally spaced bins. Similar 17 
to our main analysis results, we observe a significant symptom-by-hierarchical-level interaction, a 18 
significant negative hierarchical-gradient effect for hallucinations, and a significant positive 19 
hierarchical-gradient effect for delusions. 20 
 21 
 22 
Source Data 23 
Table 1-source data: Raw data for each individual subject in Table 1. 24 
Figure 1-source data: Data and code to reproduce Figure 1. 25 
Figure 2-source data: Data and code to reproduce Figure 2. 26 
Figure 3-source data: Data and code to reproduce Figure 3. 27 
Figure 4-source data: Data and code to reproduce Figure 4. 28 
 29 
 30 
References 31 
Adams, R.A., Napier, G., Roiser, J.P., Mathys, C., Gilleen, J., 2018. Attractor-like dynamics in 32 
belief updating in schizophrenia. Journal of neuroscience 38, 9471-9485. 33 

Adams, R.A., Stephan, K.E., Brown, H.R., Frith, C.D., Friston, K.J., 2013. The computational 34 
anatomy of psychosis. Frontiers in psychiatry 4, 47. 35 

Aine, C., Bockholt, H.J., Bustillo, J.R., Cañive, J.M., Caprihan, A., Gasparovic, C., Hanlon, F.M., 36 
Houck, J.M., Jung, R.E., Lauriello, J., 2017. Multimodal neuroimaging in schizophrenia: 37 
description and dissemination. Neuroinformatics 15, 343-364. 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

37 
 

Alpert, K., Kogan, A., Parrish, T., Marcus, D., Wang, L., 2016. The northwestern university 1 
neuroimaging data archive (NUNDA). NeuroImage 124, 1131-1136. 2 

Andreasen, N., 1983. The scale for the assessment of negative symptoms (SANS) Iowa City. IA: 3 
University of Iowa. 4 

Andreasen, N.C., 1984. Scale for the Assessment of Positive Symptons:(SAPS). University of 5 
Iowa. 6 

Association, A.P., 2013. Diagnostic and statistical manual of mental disorders (DSM-5®). 7 
American Psychiatric Pub. 8 

Baker, S.C., Konova, A.B., Daw, N.D., Horga, G., 2019. A distinct inferential mechanism for 9 
delusions in schizophrenia. Brain 142, 1797-1812. 10 

Barone, P., Batardiere, A., Knoblauch, K., Kennedy, H., 2000. Laminar distribution of neurons in 11 
extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and 12 
indicates the operation of a distance rule. Journal of neuroscience 20, 3263-3281. 13 

Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., Meyer-Lindenberg, 14 
A., 2008. Hierarchical organization of human cortical networks in health and schizophrenia. 15 
Journal of neuroscience 28, 9239-9248. 16 

Becker, A., Peters, B., Schroeder, H., Mann, T., Huether, G., Grecksch, G., 2003. Ketamine-17 
induced changes in rat behaviour: a possible animal model of schizophrenia. Progress in Neuro-18 
Psychopharmacology and Biological Psychiatry 27, 687-700. 19 

Binzegger, T., Douglas, R.J., Martin, K.A., 2009. Topology and dynamics of the canonical circuit 20 
of cat V1. Neural Networks 22, 1071-1078. 21 

Brodmann, K., 1909. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien 22 
dargestellt auf Grund des Zellenbaues. Barth. 23 

Brüne, M., Lissek, S., Fuchs, N., Witthaus, H., Peters, S., Nicolas, V., Juckel, G., Tegenthoff, M., 24 
2008. An fMRI study of theory of mind in schizophrenic patients with “passivity” symptoms. 25 
Neuropsychologia 46, 1992-2001. 26 

Brunel, N., Wang, X.-J., 2001. Effects of neuromodulation in a cortical network model of object 27 
working memory dominated by recurrent inhibition. Journal of computational neuroscience 11, 63-28 
85. 29 

Burt, J.B., Demirtaş, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, A., 30 
Anticevic, A., Murray, J.D., 2018. Hierarchy of transcriptomic specialization across human cortex 31 
captured by structural neuroimaging topography. Nature neuroscience 21, 1251. 32 

Bustillo, J.R., Jones, T., Chen, H., Lemke, N., Abbott, C., Qualls, C., Stromberg, S., Canive, J., 33 
Gasparovic, C., 2016. Glutamatergic and neuronal dysfunction in gray and white matter: a 34 
spectroscopic imaging study in a large schizophrenia sample. Schizophrenia Bulletin 43, 611-35 
619. 36 

Butler, P.D., Silverstein, S.M., Dakin, S.C., 2008. Visual perception and its impairment in 37 
schizophrenia. Biological psychiatry 64, 40-47. 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

38 
 

Cassidy, C.M., Balsam, P.D., Weinstein, J.J., Rosengard, R.J., Slifstein, M., Daw, N.D., Abi-1 
Dargham, A., Horga, G., 2018. A perceptual inference mechanism for hallucinations linked to 2 
striatal dopamine. Current Biology 28, 503-514. e504. 3 

Cavanagh, S.E., Lam, N.H., Murray, J.D., Hunt, L.T., Kennerley, S.W., 2019. A circuit mechanism 4 
for irrationalities in decision-making and NMDA receptor hypofunction: behaviour, computational 5 
modelling, and pharmacology. bioRxiv, 826214. 6 

Çavuş, I., Reinhart, R.M., Roach, B.J., Gueorguieva, R., Teyler, T.J., Clapp, W.C., Ford, J.M., 7 
Krystal, J.H., Mathalon, D.H., 2012. Impaired visual cortical plasticity in schizophrenia. Biological 8 
psychiatry 71, 512-520. 9 

Çetin, M.S., Christensen, F., Abbott, C.C., Stephen, J.M., Mayer, A.R., Cañive, J.M., Bustillo, 10 
J.R., Pearlson, G.D., Calhoun, V.D., 2014. Thalamus and posterior temporal lobe show greater 11 
inter-network connectivity at rest and across sensory paradigms in schizophrenia. NeuroImage 12 
97, 117-126. 13 

Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., Wang, X.-J., 2015. A large-scale circuit 14 
mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419-431. 15 

Corlett, P.R., Frith, C.D., Fletcher, P.C., 2009. From drugs to deprivation: a Bayesian framework 16 
for understanding models of psychosis. Psychopharmacology 206, 515-530. 17 

Corlett, P.R., Honey, G.D., Krystal, J.H., Fletcher, P.C., 2011. Glutamatergic model psychoses: 18 
prediction error, learning, and inference. Neuropsychopharmacology 36, 294. 19 

Corlett, P.R., Horga, G., Fletcher, P.C., Alderson-Day, B., Schmack, K., Powers III, A.R., 2018. 20 
Hallucinations and strong priors. Trends in cognitive sciences. 21 

Corlett, P.R., Murray, G.K., Honey, G.D., Aitken, M.R., Shanks, D.R., Robbins, T.W., Bullmore, 22 
E.T., Dickinson, A., Fletcher, P.C., 2007. Disrupted prediction-error signal in psychosis: evidence 23 
for an associative account of delusions. Brain 130, 2387-2400. 24 

Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance 25 
neuroimages. Computers and Biomedical research 29, 162-173. 26 

Davies, D.J., Teufel, C., Fletcher, P.C., 2017. Anomalous perceptions and beliefs are associated 27 
with shifts toward different types of prior knowledge in perceptual inference. Schizophrenia 28 
Bulletin 44, 1245-1253. 29 

Dayan, P., Hinton, G.E., Neal, R.M., Zemel, R.S., 1995. The helmholtz machine. Neural 30 
computation 7, 889-904. 31 

Ding, N., Melloni, L., Zhang, H., Tian, X., Poeppel, D., 2016. Cortical tracking of hierarchical 32 
linguistic structures in connected speech. Nature neuroscience 19, 158. 33 

Dondé, C., Silipo, G., Dias, E.C., Javitt, D.C., 2019. Hierarchical deficits in auditory information 34 
processing in schizophrenia. Schizophrenia research 206, 135-141. 35 

Dorph-Petersen, K.A., Pierri, J.N., Wu, Q., Sampson, A.R., Lewis, D.A., 2007. Primary visual 36 
cortex volume and total neuron number are reduced in schizophrenia. Journal of Comparative 37 
Neurology 501, 290-301. 38 

Durstewitz, D., Seamans, J.K., 2002. The computational role of dopamine D1 receptors in 39 
working memory. Neural Networks 15, 561-572. 40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

39 
 

Efron, B., 1987. Better bootstrap confidence intervals. Journal of the American statistical 1 
Association 82, 171-185. 2 

Eklund, A., Nichols, T.E., Knutsson, H., 2016. Cluster failure: Why fMRI inferences for spatial 3 
extent have inflated false-positive rates. Proceedings of the National Academy of Sciences 113, 4 
7900-7905. 5 

Felleman, D.J., Van, D.E., 1991. Distributed hierarchical processing in the primate cerebral 6 
cortex. Cerebral cortex (New York, NY: 1991) 1, 1-47. 7 

Fischl, B., 2012. FreeSurfer. NeuroImage 62, 774-781. 8 

Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T., Mohlberg, H., Amunts, 9 
K., Zilles, K., 2008. Cortical folding patterns and predicting cytoarchitecture. Cerebral cortex 18, 10 
1973-1980. 11 

Fletcher, P.C., Frith, C.D., 2009. Perceiving is believing: a Bayesian approach to explaining the 12 
positive symptoms of schizophrenia. Nature Reviews Neuroscience 10, 48. 13 

Foss-Feig, J.H., Adkinson, B.D., Ji, J.L., Yang, G., Srihari, V.H., McPartland, J.C., Krystal, J.H., 14 
Murray, J.D., Anticevic, A., 2017. Searching for cross-diagnostic convergence: neural 15 
mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum 16 
disorders. Biological psychiatry 81, 848-861. 17 

Friston, K., Kiebel, S., 2009. Predictive coding under the free-energy principle. Philosophical 18 
Transactions of the Royal Society B: Biological Sciences 364, 1211-1221. 19 

Frohlich, J., Van Horn, J.D., 2014. Reviewing the ketamine model for schizophrenia. Journal of 20 
psychopharmacology 28, 287-302. 21 

Galaburda, A.M., Pandya, D.N., 1983. The intrinsic architectonic and connectional organization of 22 
the superior temporal region of the rhesus monkey. Journal of Comparative Neurology 221, 169-23 
184. 24 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., 25 
Andersson, J., Beckmann, C.F., Jenkinson, M., 2016. A multi-modal parcellation of human 26 
cerebral cortex. Nature 536, 171. 27 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., 28 
Jbabdi, S., Webster, M., Polimeni, J.R., 2013. The minimal preprocessing pipelines for the 29 
Human Connectome Project. NeuroImage 80, 105-124. 30 

Glasser, M.F., Van Essen, D.C., 2011. Mapping human cortical areas in vivo based on myelin 31 
content as revealed by T1-and T2-weighted MRI. Journal of neuroscience 31, 11597-11616. 32 

Glaze, C.M., Kable, J.W., Gold, J.I., 2015. Normative evidence accumulation in unpredictable 33 
environments. Elife 4, e08825. 34 

Gollo, L.L., 2019. Computational Psychiatry: Exploring atypical timescales in the brain. Elife 8, 35 
e45089. 36 

Hasson, U., Chen, J., Honey, C.J., 2015. Hierarchical process memory: memory as an integral 37 
component of information processing. Trends in cognitive sciences 19, 304-313. 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

40 
 

Hasson, U., Yang, E., Vallines, I., Heeger, D.J., Rubin, N., 2008. A hierarchy of temporal 1 
receptive windows in human cortex. Journal of neuroscience 28, 2539-2550. 2 

Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., Van De 3 
Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., 2012. An anatomically comprehensive atlas 4 
of the adult human brain transcriptome. Nature 489, 391-399. 5 

Hilgetag, C.-C., Van Essen, D.C., O'Neill, M.A., Young, M.P., Felleman, D.J., 1996. Indeterminate 6 
organization of the visual systemon hierarchies: Response to hilgetag et al. rejoinder: Further 7 
commentary: Determinate or indeterminate organization. Science 271, 776-776. 8 

Honey, C.J., Thesen, T., Donner, T.H., Silbert, L.J., Carlson, C.E., Devinsky, O., Doyle, W.K., 9 
Rubin, N., Heeger, D.J., Hasson, U., 2012. Slow cortical dynamics and the accumulation of 10 
information over long timescales. Neuron 76, 423-434. 11 

Horga, G., Abi-Dargham, A., 2019. An integrative framework for perceptual disturbances in 12 
psychosis. Nature Reviews Neuroscience, 1-16. 13 

Hyvärinen, J., Poranen, A., 1978. Receptive field integration and submodality convergence in the 14 
hand area of the post-central gyrus of the alert monkey. The Journal of physiology 283, 539-556. 15 

Jardri, R., Hugdahl, K., Hughes, M., Brunelin, J., Waters, F., Alderson-Day, B., Smailes, D., 16 
Sterzer, P., Corlett, P.R., Leptourgos, P., 2016. Are hallucinations due to an imbalance between 17 
excitatory and inhibitory influences on the brain? Schizophrenia Bulletin 42, 1124-1134. 18 

Javitt, D.C., Sweet, R.A., 2015. Auditory dysfunction in schizophrenia: integrating clinical and 19 
basic features. Nature Reviews Neuroscience 16, 535-550. 20 

Javitt, D.C., Zukin, S.R., Heresco-Levy, U., Umbricht, D., 2012. Has an angel shown the way? 21 
Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophrenia 22 
Bulletin 38, 958-966. 23 

Ji, J.L., Spronk, M., Kulkarni, K., Repovš, G., Anticevic, A., Cole, M.W., 2019. Mapping the 24 
human brain's cortical-subcortical functional network organization. NeuroImage 185, 35-57. 25 

Kaas, J.H., Hackett, T.A., 2000. Subdivisions of auditory cortex and processing streams in 26 
primates. Proceedings of the National Academy of Sciences 97, 11793-11799. 27 

Kay, S.R., Fiszbein, A., Opler, L.A., 1987. The positive and negative syndrome scale (PANSS) for 28 
schizophrenia. Schizophrenia Bulletin 13, 261-276. 29 

Kehrer, C., Maziashvili, N., Dugladze, T., Gloveli, T., 2008. Altered excitatory-inhibitory balance in 30 
the NMDA-hypofunction model of schizophrenia. Frontiers in molecular neuroscience 1, 6. 31 

Kiebel, S.J., Daunizeau, J., Friston, K.J., 2008. A hierarchy of time-scales and the brain. PLoS 32 
computational biology 4, e1000209. 33 

Kiebel, S.J., Daunizeau, J., Friston, K.J., 2009. Perception and hierarchical dynamics. Frontiers in 34 
neuroinformatics 3, 20. 35 

Krystal, J.H., D'Souza, D.C., Mathalon, D., Perry, E., Belger, A., Hoffman, R., 2003. NMDA 36 
receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm 37 
shift in medication development. Psychopharmacology 169, 215-233. 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

41 
 

Krystal, J.H., Karper, L.P., Seibyl, J.P., Freeman, G.K., Delaney, R., Bremner, J.D., Heninger, 1 
G.R., Bowers, M.B., Charney, D.S., 1994. Subanesthetic effects of the noncompetitive NMDA 2 
antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine 3 
responses. Archives of general psychiatry 51, 199-214. 4 

Lam, N.H., Borduqui, T., Hallak, J., Roque, A.C., Anticevic, A., Krystal, J.H., Wang, X.-J., Murray, 5 
J.D., 2017. Effects of Altered Excitation-Inhibition Balance on Decision Making in a Cortical 6 
Circuit Model. bioRxiv, 100347. 7 

Lawson, R.P., Mathys, C., Rees, G., 2017. Adults with autism overestimate the volatility of the 8 
sensory environment. Nature neuroscience 20, 1293. 9 

Lee, T.S., Mumford, D., 2003. Hierarchical Bayesian inference in the visual cortex. JOSA A 20, 10 
1434-1448. 11 

Leitman, D.I., Sehatpour, P., Higgins, B.A., Foxe, J.J., Silipo, G., Javitt, D.C., 2010. Sensory 12 
deficits and distributed hierarchical dysfunction in schizophrenia. American Journal of Psychiatry 13 
167, 818-827. 14 

Lerner, Y., Honey, C.J., Silbert, L.J., Hasson, U., 2011. Topographic mapping of a hierarchy of 15 
temporal receptive windows using a narrated story. Journal of neuroscience 31, 2906-2915. 16 

Lewandowski, K.E., DePaola, J., Camsari, G.B., Cohen, B.M., Ongur, D., 2009. Tactile, olfactory, 17 
and gustatory hallucinations in psychotic disorders: a descriptive study. Ann Acad Med Singapore 18 
38, 383-385. 19 

Lim, A., Hoek, H.W., Deen, M.L., Blom, J.D., Bruggeman, R., Cahn, W., de Haan, L., Kahn, R.S., 20 
Meijer, C.J., Myin-Germeys, I., 2016. Prevalence and classification of hallucinations in multiple 21 
sensory modalities in schizophrenia spectrum disorders. Schizophrenia research 176, 493-499. 22 

Lisman, J.E., Coyle, J.T., Green, R.W., Javitt, D.C., Benes, F.M., Heckers, S., Grace, A.A., 2008. 23 
Circuit-based framework for understanding neurotransmitter and risk gene interactions in 24 
schizophrenia. Trends in neurosciences 31, 234-242. 25 

Major, G., Tank, D., 2004. Persistent neural activity: prevalence and mechanisms. Current 26 
opinion in neurobiology 14, 675-684. 27 

Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T., 2013. Context-dependent computation by 28 
recurrent dynamics in prefrontal cortex. Nature 503, 78. 29 

Markov, N., Misery, P., Falchier, A., Lamy, C., Vezoli, J., Quilodran, R., Gariel, M., Giroud, P., 30 
Ercsey-Ravasz, M., Pilaz, L., 2010. Weight consistency specifies regularities of macaque cortical 31 
networks. Cerebral cortex 21, 1254-1272. 32 

Markov, N.T., Ercsey-Ravasz, M., Lamy, C., Gomes, A.R.R., Magrou, L., Misery, P., Giroud, P., 33 
Barone, P., Dehay, C., Toroczkai, Z., 2013. The role of long-range connections on the specificity 34 
of the macaque interareal cortical network. Proceedings of the National Academy of Sciences 35 
110, 5187-5192. 36 

Markov, N.T., Ercsey-Ravasz, M., Ribeiro Gomes, A., Lamy, C., Magrou, L., Vezoli, J., Misery, P., 37 
Falchier, A., Quilodran, R., Gariel, M., 2012. A weighted and directed interareal connectivity 38 
matrix for macaque cerebral cortex. Cerebral cortex 24, 17-36. 39 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

42 
 

Markov, N.T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., 1 
Misery, P., Giroud, P., Ullman, S., 2014. Anatomy of hierarchy: feedforward and feedback 2 
pathways in macaque visual cortex. Journal of Comparative Neurology 522, 225-259. 3 

Mazurek, M.E., Roitman, J.D., Ditterich, J., Shadlen, M.N., 2003. A role for neural integrators in 4 
perceptual decision making. Cerebral cortex 13, 1257-1269. 5 

Morel, A., Garraghty, P., Kaas, J., 1993. Tonotopic organization, architectonic fields, and 6 
connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335, 7 
437-459. 8 

Moutoussis, M., Bentall, R.P., El-Deredy, W., Dayan, P., 2011. Bayesian modelling of Jumping-9 
to-Conclusions bias in delusional patients. Cognitive neuropsychiatry 16, 422-447. 10 

Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-Schioppa, 11 
C., Pasternak, T., Seo, H., Lee, D., 2014. A hierarchy of intrinsic timescales across primate 12 
cortex. Nature neuroscience 17, 1661. 13 

Olney, J.W., Farber, N.B., 1995. Glutamate receptor dysfunction and schizophrenia. Archives of 14 
general psychiatry 52, 998-1007. 15 

Poldrack, R.A., Congdon, E., Triplett, W., Gorgolewski, K., Karlsgodt, K., Mumford, J., Sabb, F., 16 
Freimer, N., London, E., Cannon, T., 2016. A phenome-wide examination of neural and cognitive 17 
function. Scientific data 3, 160110. 18 

Postmes, L., Sno, H., Goedhart, S., Van Der Stel, J., Heering, H., De Haan, L., 2014. 19 
Schizophrenia as a self-disorder due to perceptual incoherence. Schizophrenia research 152, 41-20 
50. 21 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but 22 
systematic correlations in functional connectivity MRI networks arise from subject motion. 23 
NeuroImage 59, 2142-2154. 24 

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., 25 
Laumann, T.O., Miezin, F.M., Schlaggar, B.L., 2011. Functional network organization of the 26 
human brain. Neuron 72, 665-678. 27 

Powers, A.R., Mathys, C., Corlett, P., 2017. Pavlovian conditioning–induced hallucinations result 28 
from overweighting of perceptual priors. Science 357, 596-600. 29 

Rao, R.P., Ballard, D.H., 1999. Predictive coding in the visual cortex: a functional interpretation of 30 
some extra-classical receptive-field effects. Nature neuroscience 2, 79. 31 

Sarkissov, S., Filimonoff, I., Kononowa, E., Preobraschenskaja, I., Kukuew, L., 1955. Atlas of the 32 
cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz 20. 33 

Shadlen, M.N., Shohamy, D., 2016. Decision making and sequential sampling from memory. 34 
Neuron 90, 927-939. 35 

Shergill, S.S., Samson, G., Bays, P.M., Frith, C.D., Wolpert, D.M., 2005. Evidence for sensory 36 
prediction deficits in schizophrenia. American Journal of Psychiatry 162, 2384-2386. 37 

Shergill, S.S., White, T.P., Joyce, D.W., Bays, P.M., Wolpert, D.M., Frith, C.D., 2014. Functional 38 
magnetic resonance imaging of impaired sensory prediction in schizophrenia. JAMA psychiatry 39 
71, 28-35. 40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

43 
 

Shrout, P.E., Fleiss, J.L., 1979. Intraclass correlations: uses in assessing rater reliability. 1 
Psychological bulletin 86, 420. 2 

Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., Duff, 3 
E., Feinberg, D.A., Griffanti, L., Harms, M.P., 2013. Resting-state fMRI in the human connectome 4 
project. NeuroImage 80, 144-168. 5 

Spence, S.A., Brooks, D.J., Hirsch, S.R., Liddle, P.F., Meehan, J., Grasby, P.M., 1997. A PET 6 
study of voluntary movement in schizophrenic patients experiencing passivity phenomena 7 
(delusions of alien control). Brain: a journal of neurology 120, 1997-2011. 8 

Stephan, K.E., Weiskopf, N., Drysdale, P.M., Robinson, P.A., Friston, K.J., 2007. Comparing 9 
hemodynamic models with DCM. NeuroImage 38, 387-401. 10 

Stephens, G.J., Honey, C.J., Hasson, U., 2013. A place for time: the spatiotemporal structure of 11 
neural dynamics during natural audition. Journal of neurophysiology 110, 2019-2026. 12 

Sterzer, P., Adams, R.A., Fletcher, P., Frith, C., Lawrie, S.M., Muckli, L., Petrovic, P., Uhlhaas, 13 
P., Voss, M., Corlett, P.R., 2018. The predictive coding account of psychosis. Biological 14 
psychiatry 84, 634-643. 15 

Teufel, C., Subramaniam, N., Dobler, V., Perez, J., Finnemann, J., Mehta, P.R., Goodyer, I.M., 16 
Fletcher, P.C., 2015. Shift toward prior knowledge confers a perceptual advantage in early 17 
psychosis and psychosis-prone healthy individuals. Proceedings of the National Academy of 18 
Sciences 112, 13401-13406. 19 

Transtrum, M.K., Machta, B.B., Sethna, J.P., 2010. Why are nonlinear fits to data so challenging? 20 
Physical review letters 104, 060201. 21 

van der Gaag, M., Hoffman, T., Remijsen, M., Hijman, R., de Haan, L., van Meijel, B., van Harten, 22 
P.N., Valmaggia, L., De Hert, M., Cuijpers, A., 2006. The five-factor model of the Positive and 23 
Negative Syndrome Scale II: a ten-fold cross-validation of a revised model. Schizophrenia 24 
research 85, 280-287. 25 

Van Essen, D.C., Anderson, C.H., Felleman, D.J., 1992. Information processing in the primate 26 
visual system: an integrated systems perspective. Science 255, 419-423. 27 

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, 28 
W.-M.H., 2013. The WU-Minn human connectome project: an overview. NeuroImage 80, 62-79. 29 

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., Chang, A., 30 
Chen, L., Corbetta, M., Curtiss, S.W., 2012. The Human Connectome Project: a data acquisition 31 
perspective. NeuroImage 62, 2222-2231. 32 

VandenBos, G.R., 2007. APA dictionary of psychology. American Psychological Association. 33 

Vázquez-Rodríguez, B., Suárez, L.E., Markello, R.D., Shafiei, G., Paquola, C., Hagmann, P., Van 34 
Den Heuvel, M.P., Bernhardt, B.C., Spreng, R.N., Misic, B., 2019. Gradients of structure–function 35 
tethering across neocortex. Proceedings of the National Academy of Sciences 116, 21219-21227. 36 

Vogt, O., 1911. Die myeloarchitektonik des isocortex parietalis. J Psychol Neurol 18, 107-118. 37 

Von Economo, C., 1929. The cytoarchitectonics of the human cerebral cortex. H. Milford Oxford 38 
University Press. 39 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

44 
 

Wagstyl, K., Ronan, L., Goodyer, I.M., Fletcher, P.C., 2015. Cortical thickness gradients in 1 
structural hierarchies. NeuroImage 111, 241-250. 2 

Watanabe, T., Rees, G., Masuda, N., 2019. Atypical intrinsic neural timescale in autism. Elife 8, 3 
e42256. 4 

Waters, F., Fernyhough, C., 2017. Hallucinations: a systematic review of points of similarity and 5 
difference across diagnostic classes. Schizophrenia Bulletin 43, 32-43. 6 

Weinberger, D.R., 1987. Implications of normal brain development for the pathogenesis of 7 
schizophrenia. Archives of general psychiatry 44, 660-669. 8 

Weinstein, J.J., Chohan, M.O., Slifstein, M., Kegeles, L.S., Moore, H., Abi-Dargham, A., 2017. 9 
Pathway-specific dopamine abnormalities in schizophrenia. Biological psychiatry 81, 31-42. 10 

Yang, G.J., Murray, J.D., Wang, X.-J., Glahn, D.C., Pearlson, G.D., Repovs, G., Krystal, J.H., 11 
Anticevic, A., 2016. Functional hierarchy underlies preferential connectivity disturbances in 12 
schizophrenia. Proceedings of the National Academy of Sciences 113, E219-E228. 13 

Young, M.P., 1993. The organization of neural systems in the primate cerebral cortex. 14 
Proceedings of the Royal Society of London. Series B: Biological Sciences 252, 13-18. 15 

 16 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.02.07.939520doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.07.939520
http://creativecommons.org/licenses/by-nc-nd/4.0/

