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ABSTRACT 

The outbreak of the 2019 Novel Coronavirus (SARS-CoV-2) rapidly spread from Wuhan, China 
to more than 150 countries, areas or territories, causing staggering number of infections and 
deaths. A systematic profiling of the immune vulnerability landscape of SARS-CoV-2, which 
can bring critical insights into the immune clearance mechanism, peptide vaccine development, 
and antiviral antibody development, is lacking. In this study, we investigated the potential of the 
SARS-CoV-2 viral proteins to induce class I and II MHC presentation and to form linear 
antibody epitopes. We created an online database to broadly share the predictions as a resource 
for the research community. Using this resource, we showed that genetic variations in SARS-
CoV-2, though still few for the moment, already follow the pattern of mutations in related 
coronaviruses, and could alter the immune vulnerability landscape of this virus. Importantly, we 
discovered evidence that SARS-CoV-2, along with related coronaviruses, used mutations to 
evade attack from the human immune system. Overall, we present an immunological resource 
for SARS-CoV-2 that could promote both therapeutic development and mechanistic research.  

Background 

In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) was reported in Wuhan, 
China (1). SARS-CoV-2 rapidly spread to other regions of China along with more than 150 other 
countries, at a speed that is much higher than the Severe Acute Respiratory Syndrome 
coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome coronavirus (MERS-CoV)  
(2). Despite the lower mortality rate of SARS-CoV-2 compared with SARS-CoV and MERS-
CoV, the scale of the SARS-CoV-2 contagion has already caused more casualties than either of 
the previous outbreaks. Early research into SARS-CoV-2 has mostly described its 
epidemiological features (1, 3), case reports (4), structural characterizations (5), basic genomics 
features (6, 7), etc.  

Scant works have reported on the immunological features of SARS-CoV-2, which could have 
significant bearing on our understanding of how this virus interacts with its host. Such analyses 
could also inform antiviral immuno-therapeutic development, which can be either T cell-based or 
B cell-based. Antibodies can neutralize viral infectivity in a number of ways, such as interfering 
with binding to receptors, blocking uptake into cells, etc. For SARS-CoV, the human ACE-2 
protein is the functional receptor, and anti-ACE2 antibody can block viral replication (8). On the 
other hand, previous studies have indicated a crucial role of both CD8+ and CD4+ T cells in 
SARS-CoV clearance (9, 10), while Janice Oh et al also observed that development of SARS-
CoV specific neutralizing antibodies requires CD4+ T helper cells (9). In fact, there are examples 
of vaccines for influenza that contain both antibody and T cell inducing components (11, 12). 

In this work, we performed a bioinformatics profiling of the class I and class II MHC binding 
potentials of the SARS-CoV-2 proteins, and also a profiling of the potential for linear epitopes of 
the viral proteins to induce antibodies. We correlated the immune vulnerability map of the 
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SARS-CoV-2 proteins with its genomic mutations, compared against those of SARS-CoV and 
MERS-CoV, and generated several interesting observations. We made the analyses publicly 
available as a resource to the research community, in the form of the SARS-CoV-2 Immune 
Viewer: https://qbrc.swmed.edu/projects/2019ncov_immuneviewer/. 

Results and Discussion 

To explore the immune vulnerability landscape of SARS-CoV-2, we used the netMHCpan 
software (13, 14) to predict the MHC class I and class II binding peptides of all SARS-CoV-2 
proteins, which could elicit CD8+ and CD4+ T cell responses for viral clearance (Fig. 1a). The 
counts of the MHC binders were weighted by the allele frequencies of the Chinese population 
(15), since most, if not all, samples analyzed in this study were obtained from Chinese patients. 
We found that there are a small number of genomic regions that showed high peaks of 
immunogenicity corresponding to a large number of MHC binders in a small neighborhood, 
which could be better potential vaccine targets (Sup. Table 1). The MHC binding peptide 
profiles of a different racial population, i.e. European ancestry (16), are shown in Sup. Fig. 1. 
Interestingly, the total T cell epitope intensities, calculated as the sum of the number of binders 
weighted by allele frequency, are slightly higher in the European population than the Chinese 
population (Fig. 1b and individual alleles shown in Sup. Fig. 2), which indicates that different 
susceptibility to this virus may exist between differential populations. The above analyses were 
performed for the SARS-CoV-2 reference genome. The viral strains that have been sampled and 
sequenced so far are highly similar to each other overall, with a segment of multiple alignment 
shown in Sup. Fig. 3.  

We also examined the potential of the viral proteins to encode linear epitopes that can elicit 
antibody responses using BepiPred 2.0 (17). We focused on linear epitopes, rather than 
conformational epitopes, because linear epitopes are more suitable for vaccine design (18, 19) 
and bioinformatics predictions are more feasible. Similar to T cell epitopes, contiguous stretches 
of >10 epitope-encoding residues, which are more representative of the usual length of B cell 
epitopes, are located in small genomic regions (red bars in Fig. 1c, and Sup. Table 2). We also 
focused on the receptor-binding motif (RBM) of the SARS-CoV-2 S protein, which attaches to 
the ACE-2 protein for entry into the human cell (20). We used BLAST to align the RBM 
sequence of the SARS-CoV-2 S protein with that of SARS-CoV, and found there is a relatively 
poor conservation between the two S proteins (Fig. 1d). This was supported by Wrapp et al (5), 
which reports no binding to the SARS-CoV-2 RBM by any of the three SARS-CoV RBM-
directed antibodies. Therefore, antibody-based therapeutic design should start with the SARS-
CoV-2 S protein de novo.   

For comparison, we also computed the immune vulnerability maps of SARS-CoV (Fig. 1e) and 
MERS-CoV (Fig. 1f), which are the two other coronaviruses known to have caused past 
outbreaks. We found that the B cell epitope profiles seem to be more consistent among the three 
viruses, while the T cell epitope profiles are more distinct.  
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Coronaviruses are RNA viruses (21), which generally have very high mutation rates (22). 
Therefore, we examined the effect of host immune pressure on genetic drifts in SARS-CoV-2. 
We showed the mutational rates in the viral genomes for SARS-CoV-2, SARS-CoV and MERS-
CoV (Fig. 2a-c). SARS-CoV-2 only emerged a short time ago, which likely explains the lack of 
significant amount of genetic variation (Fig. 2a, n=114). In comparison, SARS-CoV (Fig. 2b, 
n=19) and MERS-CoV (Fig. 2c, n=519) have both accumulated significant variation among the 
different strains. However, in SARS-CoV-2, the genomic regions with higher mutational rates 
can already be discerned (Fig. 2a), which are roughly 0-9kb and 21kb-30kb, and they largely 
overlap with the highly mutated regions of SARS-CoV and MERS-CoV (Fig. 2bc). This 
indicates that we may expect a similar level of genetic variation for this virus in the future, which 
might also occur in these same regions. 

Inspired by this observation, we examined whether we can detect any correlation between host 
immune pressure and genetic drifts of SARS-CoV-2, even at the early stage of viral evolution. 
We examined individual mutations in each SARV-CoV-2 isolate with respect to the reference 
genome. We predicted the T cell epitopes and B cell epitopes that would be lost and gained due 
to the mutations in each strain. For T cell epitopes, we take a sum of the lost/gained epitopes 
weighted by the Chinese HLA allele frequency, to generate an overall “lost” immunogenicity 
score, and an overall “gained” immunogenicity score. Fig. 2d (CD8+ T epitopes) and Fig. 2e 
(CD4+ T epitopes) show that the gained and lost immunogenicity scores are very comparable for 
most strains, which is just an effect of random change in the epitope profiles due to mutations. 
But strikingly, the strains that showed a large difference in the lost and gained immunogenicity 
almost all have dramatic net loss, rather than net gain, of immunogenicity (Fig. 2d and 2e). 
Similarly, we calculated the number of amino acid residues that could encode B cell epitopes 
predicted from the protein sequences of each SARS-CoV-2 strain (Fig. 2f), and also found that 
there is an overall decrease of the number of B cell epitopes in the isolates compared with the 
reference genome (Pval=0.001). We limited this analysis to amino acid residues in stretches of 
>10 epitope-encoding residues, and made the same observation (Pval=0.038, Sup. Fig. 4a). 
Furthermore, we grouped the SARS-CoV-2 strains by their collection times in Dec/2019, 
Jan/2020, and Feb/2020, and compared the changes in T cell and B cell immunogenicity (Sup. 
Fig. 5). We confirmed the latter appearing strains are indeed less immunogenic than earlier 
strains. Taken together, these observations show that the genetic evolution of SARS-CoV-2 in 
humans is subject to immune pressure, and SARS-CoV-2 may be using this mechanism to evade 
immune surveillance by the host. 

SARS-CoV-2 is still in the early stages of genetic drifts, which has brought difficulty to 
capturing the correlation between immune pressure and genetic drifts, given the low signal/noise 
ratio and low granularity of data. To further corroborate our observation, we performed the same 
analyses for SARS-CoV (Fig. 2g-i and Sup. Fig. 4b) and MERS-CoV (Fig. 2j-l and Sup. Fig. 
4c). We observed similar phenomena that the viral strains with large immunogenicity changes 
almost all have net loss, rather than net gain, of immunogenicity, for both T cell epitopes and B 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 23, 2020. ; https://doi.org/10.1101/2020.02.08.939553doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.939553
http://creativecommons.org/licenses/by-nc/4.0/


cell epitopes. This suggests that the immune pressure-induced genetic drifts are common to 
coronaviruses during human circulation, and further supports our conjecture that future genetic 
drifts can happen in SARS-CoV-2 under this mechanism.   

To facilitate immunological studies of SARS-CoV-2, we created the SARS-CoV-2 Immune 
Viewer (Sup. Fig. 6) to openly share the viral immunogenicity data of SARS-CoV-2, and also 
SARS-CoV and MERS-CoV. The Viewer displays a phylogenetic tree with annotations of the 
strains overlaid (Sup. Fig. 6a). The tree allows the users to highlight the strains of virus 
according to the annotations. Upon clicking the node of each tree, the user will be able to 
download a small data packet for that strain of SARS-CoV-2, which can be directly visualized on 
the desktop JBrowse software (23) (https://jbrowse.org/blog/). The JBrowse visualization 
demonstrates the genomic sequence, protein annotations, and T cell and B cell epitopes of each 
viral isolate (Sup. Fig. 6b). In addition to downloading of the JBrowse data, we also provided 
user-friendly visualization functionality for researchers to examine immunogenicity strength of 
different genomic regions of each of the three viruses online (Sup. Fig. 6c). Users can either 
zoom in or zoom out to focus on specific genomic regions or examine the global pattern of T 
cell/B cell epitope profiles. We also showed the mutational rates of the viral genome along with 
the immunogenicity maps.  

In summary, we characterized the immune vulnerability landscape of SARS-CoV-2, and 
compared it with those of SARS-CoV and MERS-CoV. We reported the viral genomic regions 
that encode high density T cell epitopes and B cell epitopes in each strain of SARS-CoV-2, 
which could be more suitable for peptide vaccine and anti-viral antibody development. Similar to 
a previous report (17), we also found that the amino acid sequences of the S protein RBMs of 
SARS-CoV and SARS-CoV-2 diverge in a manner that may reflect unique immune epitopes. To 
disseminate our research, we created a publicly accessible database, the SARV-CoV-2 Immune 
Viewer, for easy exploration and downloading of results. The database is under continuous 
development, and will be updated when new strains of SARS-CoV-2 are made available.   

We found evidence that the mutations in SARS-CoV-2 are more than merely random genetic 
drifts, by showing some strains of SARS-CoV-2 have immunogenicity loss for T cell-based 
and/or B cell-based host immune surveillance, and the latter appearing strains are less 
immunogenic than earlier strains. We found the same phenomenon in SARS-CoV and MERS-
CoV, which further supports the validity of this observation. Curiously, for all three 
coronaviruses, more viral strains showed large immunogenicity loss in class II MHC 
presentation, than class I MHC presentation. This suggests that the CD4+ T cell-class II MHC 
axis, compared with the CD8+ T cell-class I MHC axis, may be more important for viral 
recognition and clearance by the host immune system, in alignment with recent research showing 
the critical antiviral roles of CD4+ T cells (24–27). 

Genetic variations can modify the immunogenicity landscape of the virus, and impact its survival 
fitness. The selection of effective vaccination epitopes should focus on parts of viral proteins 
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with high potential for generating immunogenic epitopes, and with less chance of mutation. The 
low level of genetic variation in SARS-CoV-2 could merely be a sampling issue due to the short 
time this virus has circulated in humans. However, the domains of genomes that are highly 
mutated in SARS-CoV and MERS-CoV are already more highly mutated in SARS-CoV-2, 
which means that sustained mutations could happen in these same regions of SARS-CoV-2 in the 
future. 

Conclusions 

Overall, our work provides a window into the immunological features of SARS-CoV-2, and have 
yielded curious insights into the evolution of this virus. We hope our work could aid therapeutic 
development against this virus to stop this pandemic earlier and to prevent future outbreaks.  

Methods 

Acquisition of the viral genome sequences 

The SARS-CoV-2 complete genome sequences and meta data were downloaded from the 
https://bigd.big.ac.cn/ncov database, before the data lock of March 6th, 2020. The reference 
genome was acquired from NCBI, which is one of the first few isolates of SARS-CoV-2 
collected in late December of 2019: https://www.ncbi.nlm.nih.gov/nuccore/MN908947. The 
complete genome SARS-CoV and MERS-CoV sequences are also downloaded from NCBI: 
https://www.ncbi.nlm.nih.gov/nuccore/?term=txid694009%5BOrganism%3Anoexp%5D+and+c
omplete+genome and 
https://www.ncbi.nlm.nih.gov/nuccore/?term=txid1335626%5BOrganism%3Anoexp%5D+and+
complete+genome. 

Each isolate’s genomic sequence was aligned to the reference genome sequence using EMBOSS 
needle with the gap opening penalty of 20 and the gap extension penalty of 0. The sequence 
differences were identified as genomic variants and they were annotated using Annomen. In Fig. 
2a-c, the semi-transparent boxes mark the regions of high mutational rates due to artefacts of 
incomplete sequencing. These regions are shielded from calculations of genomic variants. The 
protein sequences of the isolates were determined based on the sequence differences and the 
reference gene annotations. The isolate protein sequences were then aligned to the reference 
protein sequences using EMBOSS needle and the strains whose protein alignments do not cover 
>90% of the reference protein sequence were ignored. 

Prediction of T cell and B cell epitopes 

NetMHCpan (v4.0) (28) and NetMHCIIpan (v3.2) (14) with default threshold options were used 
to predict T cell peptides from the viral proteins that bind to human MHC class I and II proteins 
for all the available HLA alleles. The HLA allele population frequency for the Chinese 
population was acquired from Kwok et al (15) and population frequency for the European 
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population was from Mack et al (16). The B cell epitope predictions were made by the BepiPred 
2.0 software (17), with default parameters. Amino acids with B cell epitope prediction scores 
>0.6 are regarded as having high likelihoods of generating linear antibodies.  

DNA and protein sequence alignment 

The command-line version of MUSCLE (v3.8.31) (29, 30) was used to perform multiple genome 
sequence alignment with diagonal optimization (-diags). The default number of iteration and the 
default maximum number of new trees were applied during the alignment. The protein sequence 
alignment between the S proteins, YP_009724390.1 (SARS-CoV-2) and NP_828851.1 (SARS-
CoV), was performed using EMBOSS needle (31) with the BLOSUM62 scoring matrix. 

Website development 

The Immune Viewer is a dynamic website. It is developed using HTML (HyperText Markup 
Language), JavaScript and CSS (Cascading Style Sheets). Specifically, we used the D3.js library 
to allow users to interactively explore the mutation rates or immunogenic scores across the viral 
genomic regions. We also used the D3.phylogram.js to visualize the phylogenetic tree and the 
Select2 library to facilitate users’ query for different SARS-CoV-2 strains across multiple 
geographic regions. The data packet downloaded for each viral strain can be directly visualized 
in the desktop JBrowse software, which can be downloaded from https://jbrowse.org/blog. 

Statistical analyses 

All computations and statistical analyses were carried out in the R and Python computing 
environment. For all boxplots appearing in this study, box boundaries represent interquartile 
ranges, whiskers extend to the most extreme data point which is no more than 1.5 times the 
interquartile range, and the line in the middle of the box represents the median. For the line plots, 
the viral genomes were binned by every 60 nucleotide, and the number of T cell and B cell 
epitopes falling into each window is calculated. For T cell epitopes, a sum of the number of 
epitopes weighted by the corresponding ethnic population’s HLA allele (A, B, C, and DRB1) 
frequency is calculated to form the T cell immunogenicity strength for that population. The 
genetic variation rate at each nucleotide is calculated by examining all viral strains and counting 
the proportion of strains with a different nucleotide or with an insertion/deletion, with respect to 
the reference genome. The genetic variation rates are also binned by the same length of windows 
and averaged. 

FIGURE AND TABLE LEGENDS 

Fig. 1 T cell- and B cell-mediated immune vulnerability landscape of SARS-CoV-2 in the 
Chinese population. (a) The CD4+ and CD8+ T cell epitope profiles of SARS-CoV-2. The Y axis 
shows the immunogenicity intensity as described in the method section. (b) The overall T cell 
and B cell immunogenicity strengths of SARS-CoV-2, SARS-CoV, and MERS-CoV in the 
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Chinese and European populations. (c) The B cell epitope profiles of the SARS-CoV-2. The Y 
axis shows the predicted B cell epitope score. Only showing residues with predicted epitope 
score >0.6. (d) BLASTing the motif binding domain of the SARS-CoV-2 S protein and the 
SARS-CoV S protein. (e) The T cell and B cell epitope profiles of SARS-CoV. (f) The T cell and 
B cell epitope profiles of MERS-CoV.  

Fig. 2 Genetic drifts in SARS-CoV-2 are influenced by host immune pressure. (a-c) The relative 
mutational rate profiles of the three coronaviruses: (a) SARS-CoV-2, (b) SARS-CoV, and (c) 
MERS-CoV. The relative mutational rates are calculated by the percentage of nucleotides (nts) 
from all strains of each virus (n=114 for SARS-CoV-2, 19 for SARS-CoV-, and 519 for MERS-
CoV) in each 60-nt bin that are different from the reference genome. The semi-transparent boxes 
mark the regions of high mutational rates due to artefacts of incomplete sequencing. These 
regions are shielded from calculations of gain and loss of immunogenicity. (d-f) The “lost” 
immunogenicity and “gained” immunogenicity due to mutations in each SARS-CoV-2 isolate 
compared with the reference genome. (d) CD8+ T epitopes, (e) CD4+ T epitopes, and (f) B cell 
epitopes. The red line indicates the total number of predicted B cell epitope-encoding amino 
acids in the reference sequence. (g-i) The same immunogenicity change analyses as in (d-f), but 
for SARS-CoV. (j-l) The same analysis for MERS-CoV. 

Sup. Fig. 1 The T cell epitope profiles of the European population. (a) SARS-CoV-2, (b) SARS-
CoV, and (c) MERS-CoV. 

Sup. Fig. 2 The variation of T cell epitope profiles for SARS-CoV-2, SARS-CoV and MERS-
CoV across populations. The heatmap represents the number of immunogenic binding epitopes 
across the binned genomes (500bp) of (a) SARS-CoV-2, (b) SARS-CoV and (c) MERS-CoV for 
the major HLA-A alleles shown as examples (allele frequency larger than 1%) in the European 
American (EA) and Hongkong Chinese (HK) populations. These major alleles are colored in 
black, blue or red if they are common to both EA and HK population, unique to EA population, 
or unique to HK population, respectively. On the right, the band of strength represents the 
cumulative number of immunogenic peptides, and the bands of EA and HK represent the HLA 
allele frequency of EA and HK populations, respectively.  

Sup. Fig. 3 Part of the multiple alignment results of all the SARS-CoV-2 strains. 

Sup. Fig. 4 B cell epitope-encoding amino acids in contiguous stretches of >10 epitope-encoding 
amino acids. (a) SARS-CoV-2, (b) SARS-CoV, and (c) MERS-CoV. Red lines denote the total 
numbers of epitope-encoding amino acids of the reference sequences.  

Sup. Fig. 5 The trend of immunogenicity to SARS-CoV-2 over time. (a) “Gained/lost” T cell 
immunogenicity (class I). (b) “Gained/lost” T cell immunogenicity (class II). (c) Changes in B 
cell immunogenicity (all epitope-encoding residues). (d) Changes in B cell immunogenicity 
(epitope-encoding residues in stretches of >10 epitope-encoding residues). The strains were 
grouped according to their collection time of Dec/2019, Jan/2020, and Feb/2020. Medians for 
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each group were listed below the plots; median=2875 residues for all groups in (d). One-way 
Wilcoxon rank-sum test was used to compare Feb/2020 vs. Dec/2019 groups in (a) (Pval=0.048) 
and (c) (Pval=0.0004). 

Sup. Fig. 6 A continuously updated database of the immune vulnerability landscape of SARS-
CoV-2. (a) Phylogenetic tree of viral strains, which allows subsetting based on annotations by 
going through a series of drop-down boxes. (b) Upon clicking each node, the user will be able to 
download a small data packet for the corresponding viral strain, which can be visualized in 
JBrowse desktop (https://jbrowse.org/blog). A screenshot of an example JBrowse session is 
shown. (c) Additional visualization functionality to examine immunogenicity profiles of the 
selected genomic region of the viruses (the Chinese population). Each line plot is divided into 
two panels stacked vertically together. At the bottom panel, the user can drag and set a region to 
zoom in, and the top panel zooms in and shows the details of that selected region. 

Sup. Table 1 Genomics regions of SARS-CoV-2 that are T cell epitope-enriched 

Sup. Table 2 Genomics regions of SARS-CoV-2 that are B cell epitope-enriched 
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