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Abstract  
 

Single-molecule long-read sequencing with Nanopore provides an unprecedented opportunity to measure 

transcriptomes from any sample1–3. However, current analysis methods rely on the comparison with a 

reference genome or transcriptome2,4,5,  or the use of multiple sequencing technologies6,7, thereby precluding 

cost-effective studies in species with no genome assembly available, in individuals underrepresented in the 

existing reference, and for the discovery of disease-specific transcripts not directly identifiable from a 

reference genome. Methods for DNA assembly8–10 cannot be directly transferred to transcriptomes since their 

consensus sequences lack the required interpretability for genes with multiple transcript isoforms. To address 

these challenges, we have developed RATTLE, the first tool to perform reference-free reconstruction and 

quantification of transcripts from Nanopore long reads. Using simulated data, isoform spike-ins, and 

sequencing data from tissues and cell lines, we demonstrate that RATTLE accurately determines transcript 

sequence and abundance, is comparable to reference-based methods, and shows saturation in the number of 

predicted transcripts with increasing number of input reads.  
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Results 
 

RATTLE starts by building read clusters that represent potential genes. To circumvent the quadratic 

complexity of an all-vs-all comparison of reads, RATTLE performs a greedy deterministic clustering using a 

two-step k-mer based similarity measure (Fig. 1a). The first step consists of a fast comparison of the k-mers 

(k=6) shared between two reads (Supp. Fig. 1a), whereas the second step is based on the Longest Increasing 

Subsequence (LIS) problem to find the largest list of co-linear matching k-mers between a pair of reads, which 

defines the RATTLE similarity score (Supp. Fig. 1b). Clusters are greedily generated by comparing reads to 

a representative of each existing cluster at every step of the iteration. This process generates clusters that 

represent potential genes with reads originating from all possible transcript isoforms.  

 

Gene-clusters are subsequently split into sub-clusters representing candidate transcripts. These transcript-

clusters are built by determining whether every pair of reads in a gene-cluster is more likely to originate from 

different transcript isoforms rather than from the same isoform. This is estimated from the distribution of gap-

lengths between co-linear matching k-mers (Supp. Fig. 1c). RATTLE performs error correction within each 

one of these transcript-clusters by generating a multiple sequence alignment (MSA) (Fig. 1a). Each read is 

assessed for error correction taking into account the error probability for each base and the average error 

probability of the consensus at each MSA-column. RATTLE then builds the final transcripts after a polishing 

step to refine the cluster definitions. The transcript sequence is obtained from the consensus of the final 

transcript-cluster and the abundance is calculated as the total read count in that cluster (Fig. 1a). More details 

are provided in the Methods section. 

 

To evaluate the strength of RATTLE similarity score to perform read clustering, we simulated reads from 

different transcripts with DeepSimulator11, taking into account the read length distribution observed in a 

Nanopore cDNA sequencing run (Supp. Fig. 1d). RATTLE similarity score separates reads originating from 

different transcripts better than a minimizer-based score (Fig. 1b). To test the ability of RATTLE to separate 

reads from two transcript isoforms in a gene-cluster, we considered reads simulated from two transcripts that 

differ from each other only by an internal exon of 154nt, i.e. one transcript is a subsequence of the other 

(Supp. Fig. 1e). RATTLE approach was able to separate reads originating from the two different transcript 

isoforms better than using the number of common bases between reads (Fig. 1c).  
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To test the accuracy in the identification of gene-clusters, we compared RATTLE with two other methods to 

cluster long reads, CARNAC12 and isONclust13. We built several reference datasets of simulated reads from 

multiple genes with one or more transcripts per gene and with a different number of reads per transcript. 

RATTLE showed higher accuracy at recovering gene-clusters in most of the comparisons and using different 

metrics (Fig. 1d) (Supp. Table S1). At transcript level, we only tested RATTLE, as it is the only method that 

predicts transcripts, and it also showed high accuracy (Supp. Table S1). Moreover, RATTLE was faster than 

CARNAC and isONclust in all datasets (Supp. Table S1).  
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Figure 1. (a) Illustration of RATTLE workflow. (b) Comparison of the RATTLE similarity (k-mer) score (x axis), based on the 

longest increasing subsequence, and a similarity score based on minimizers (y axis), using k=6. Each dot represents a comparison 

between two simulated reads originating from the same (orange) or different (blue) transcripts from two different genes. (c) Number 

of common bases (x-axis) and variance in the distribution of gap-length differences between adjacent matching k-mers between 

two reads (y axis) from the comparison of reads simulated from two transcript isoforms from the same gene (Supp. Fig. 1e). Each 

dot is colored according to whether the reads originated from the same transcript (1-1, 2-2) or not (1-2). (d) Clustering accuracy of 

RATTLE, CARNAC and isONclust in terms of the V-measure (y axis), using simulated reads. Simulations (x-axis) were performed 

with single (SI) or multiple (MI) isoforms per gene, and using different number of transcripts per gene (t) and different number of 

reads (r), indicated as SIt-r or MIt-r. Other accuracy metrics are provided in Supp. Table S1. (e) Clustering accuracy using Spike-
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in RNA Variant (SIRV) genes as reference.  The plot shows the V-measure (y axis) for RATTLE, CARNAC and isONclust using 

SIRV reads from of the tested samples (x axis), using the direct RNA-seq protocol (RNA 1, 2) and the cDNA-seq protocol (cDNA 

1, 2, 3, 4) (Methods). (f) Percentage identity distributions of SIRV reads before (raw) and after correcting with RATTLE, 

CONSENT, Lorma, Canu and TranscriptClean (clean) for Nanopore cDNA-seq data (sample cDNA 3). Percentage identity was 

calculated as the number of nucleotide matches divided by the total length of the aligned region. Other samples are shown in Supp. 

Fig. 2. (g) Error rate distribution of SIRV reads before (raw) and after correction with RATTLE, CONSENT, Lorma, Canu and 

TranscriptClean (clean) for the same sample as in (f). Error rate was calculated as the sum of insertions, deletions and substitutions 

divided by the length of the read. Other samples are shown in Supp. Fig. 3. 

 

We further assessed the accuracy of RATTLE at recovering gene-clusters using Lexogen Spike-in RNA 

Variant Control Mixes (SIRVs). The SIRV genome (SIRVome) is organized into 7 different gene loci, each 

containing several transcript isoforms, conforming a total set of 69 transcripts with known coordinates, 

sequence and abundances. We used available MinION RNA-seq (RNA 1) and cDNA-seq (cDNA 1) samples 

from mouse brain that included SIRVs14. Additionally, we performed 4 different sequencing experiments with 

added SIRVs with MinION: cDNA sequencing (cDNA-seq) in human brain, two independent replicates 

(cDNA 2, cDNA 3), and in human heart (cDNA 4), as well as direct RNA (RNA-seq) in human heart (RNA 

2). We first used the SIRV transcripts aggregated per gene to evaluate the clustering at gene-level. RATTLE 

showed higher accuracy in the identification of SIRV genes compared with the other two methods using 

various metrics (Fig. 1e) (Supp. Table S2). Furthermore, RATTLE achieved a high accuracy at transcript 

level using multiple metrics (Supp. Table S2).  

 

To test RATTLE accuracy to correct errors in Nanopore reads without using a reference, we used the same 

SIRV reads and compared RATTLE results with CONSENT15, Canu8, and Lorma9, which are self-correction 

methods developed for DNA long reads. Reads were mapped to the SIRVome with Minimap216 before and 

after correction by each method. As a benchmark, we included TranscriptClean4 to correct the mapped raw 

reads with the SIRVome sequence but without using the SIRV annotations. After correction, all methods 

improved the percentage identity with the SIRV isoform sequences (Fig. 1f) (Supp. Fig. 2) and showed a 

decrease in the error rates (Fig. 1g) (Supp. Fig. 3). Compared with the other self-correction methods, RATTLE 

showed on average higher percentage identity and lower error rates, with values similar to TranscriptClean, 

despite not using the SIRVome sequence for correction. Notably, RATTLE was faster than the other methods 

in all tested samples, with runtimes 1.64-123.9 minutes (mins) (Supp. Table S3). From the other tools, 

TranscriptClean was the fastest for most samples with 13.06-223.00 mins, not considering the mapping of 

reads to the SIRVome (0.85-3.92 mins). Furthermore, RATTLE corrected approximately as many reads as 

Canu and TranscriptClean, and more than CONSENT and Lorma (Supp. Table S3). 
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We next evaluated the ability to accurately recover exon-intron structures after mapping the corrected reads 

to the SIRVome. We measured the exact coordinate match of the mapped reads with the SIRV annotation 

features: introns, intron-chains, as well as internal and external exons. RATTLE recovered similar proportion 

of introns as the other tools, but slightly fewer intron-chains (Fig. 2a). In contrast, RATTLE displayed higher 

precision values, especially for introns (Fig. 2b), suggesting that other tools produce more false positives. To 

further investigate this, we calculated a read-precision metric, defined as the proportion of correctly identified 

SIRV features over the total number of features predicted in all corrected reads, i.e. considering the number 

of reads supporting each predicted feature on the SIRVome. All tools, including RATTLE, showed an increase 

in read-precision with respect to precision (Fig. 2c), especially for intron-chains, where RATTLE had values 

higher than the other tools for most of the datasets tested. Similar trends were observed for internal exons 

(Supp. Fig. 4) (Supp. Table S4). In contrast, external exons showed lower values of recall, precision, and 

read-precision for all tools, indicating a general limitation to correctly recover terminal exons (Supp. Fig. 4) 

(Supp. Table S4). As before, RATTLE showed higher values of precision and read-precision compared with 

the other tools. Overall, as suggested by our analyses, the majority of false positives had low read support 

(Supp. Fig. 5). We decided to exploit this observation to establish the accuracy in terms of the read support. 

For each method, we calculated the recall, precision, and read-precision for SIRV introns at different 

thresholds of read support, and estimated the minimal read support needed to achieve a precision of 0.95. All 

correction methods showed an improvement over the raw reads (Fig. 2d) (Supp. Fig. 6). Moreover, RATTLE 

was the method that required the least read support and had the highest recall at 0.95 precision (Fig. 2d) (Supp. 

Fig. 6).  
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Figure 2. (a) Recall of unique SIRV introns and intron-chains obtained by mapping reads to the SIRV genome before (raw) and 

after correction with RATTLE, CONSENT, Canu, LORMA and TranscriptClean (clean) for the direct RNA-seq (RNA 1, 2) and 

the cDNA (cDNA 1, 2, 3, 4) samples. Recall was calculated as the fraction of unique annotated introns or intron-chains correctly 

(and exactly) found by each method with 5 or more supporting reads. (b) Precision values for introns and intron-chains for the same 

methods and datasets as (a). Precision was calculated as the fraction of unique introns or intron-chains predicted by reads that 

matched correctly (and exactly) the SIRV annotation with support of 5 or more reads. (c) Read-precision for introns and intron-

chains for the same methods and datasets as in (a). Read-precision was calculated as the fraction of all introns or intron-chains 

predicted in reads that corresponded to SIRV introns or intron chains and had support of 5 of more reads. (d) We plot the recall 

(green), precision (red) and read-precision (blue) of the SIRV introns (y axis), as a function of the number of minimum reads 

supporting the predictions (x axis). We indicate for each case the threshold at which a precision (red) of approximately 0.95 is 

achieved. For that threshold we indicate the corresponding recall (green) and read-precision (blue). The plot corresponds to the 

dataset cDNA 3.  Results for other samples are available in Supp. Fig. 6. 

 

We next tested the capacity of RATTLE to estimate the abundance of SIRV transcript isoforms. Using the 

same datasets, we compared RATTLE with StringTie25, FLAIR17, and TALON18, which use the genome and 

annotation references to delineate transcript isoforms and their abundances. Additionally, we considered the 
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approach of mapping raw reads to the SIRV isoforms with Minimap2 and then either assigned reads to SIRVs 

according to the best match or used NanoCount (https://github.com/a-slide/NanoCount), which assigns reads 

to isoforms using an expectation-maximization (EM) algorithm. For RATTLE, we assigned each SIRV to the 

most abundant matching predicted transcript. Despite not using any information from the SIRV genome or 

annotation, the correlation with SIRV isoform abundances achieved by RATTLE (Pearson R = 0.76) was 

comparable to those obtained with StringTie2 (R=0.73), FLAIR (R=0.79), and NanoCount (0.73), and 

superior to TALON (R=0.62), for RNA-seq data (RNA 1) (Fig. 3a) (Supp. Table S5). The correlation using 

cDNA reads was generally lower than using RNA reads for all methods and the correlation for RATTLE was 

generally comparable or higher than the correlation for the reference-based methods (Supp. Fig. 7) (Supp. 

Table S5). We next mapped the final set of transcripts predicted by RATTLE to the SIRVome and calculated 

the precision and recall for the recovery of annotated introns, at different thresholds of transcript abundance. 

For all datasets tested, RATTLE maintained a high precision (>0.75) at varying recall values (Fig. 3b) and 

achieved a maximum recall of over 0.75, confirming that RATTLE predictions attain high precision at 

different expression levels.  

 

To establish the robustness of the transcriptome predicted by RATTLE in a cellular system, we analyzed two 

replicates of cDNA and RNA sequencing with MinION from a lymphoblastoid cell line (LCL)2. The cDNA-

seq sequencing experiments contained 962,197 and 1,048,328 reads, and the RNA-seq experiments 181,465 

and 139,224 reads. Due to the correction step, RATTLE only produced transcripts with a minimum read 

support, which we took to be 5 for the analyses presented here. RATTLE identified 8,951 and 11,468 

transcripts from the cDNA-seq replicates, and 3,370 and 2,795 transcripts from the RNA-seq replicates, with 

>5 reads support (Supp. Table S6). The 5-mer content of the transcripts predicted by RATTLE showed a 

significant correlation with that of the human transcriptome annotation, for both RNA (Pearson R=0.92, p-

value<2e-16) (Fig. 3c) and cDNA (Pearson R=0.95, p-value<2e-16) (Supp. Fig. 8a) reads.  

 

We then mapped the transcripts predicted by RATTLE to the human transcriptome annotation with Minimap2 

and recovered 7,309 annotated transcripts in at least one of the two cDNA-seq replicates (4,005 in common), 

and 3,651 in at least one of the RNA-seq replicates (1,878 in common) (Supp. Table S6). Although RNA-seq 

produced fewer transcripts, a higher proportion of them (>97%) mapped to the annotated transcriptome 

compared to cDNA-seq (89-96%) (Supp. Table S6). The transcripts predicted from both replicates showed a 

high correlation of the abundances estimated by RATTLE (for RNA-seq: N=1,878, Pearson R=0.91, p-

value<2e-16; for cDNA-seq: N=4,005, Pearson R=0.87, p-value<2e-16) (Fig. 3d) (Supp. Fig. 8b). As a 

comparison, we mapped the raw reads from the same replicates to the transcript annotation and considered 
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the transcripts with more than 5 best-matching reads. This recovered a similar number of transcripts, with 

3,534 in at least one of the RNA replicates (2,197 in common), and 10,086 transcripts in at least one of the 

cDNA replicates (7,568 in common).  

 

Figure 3. (a) Comparison of the transcript abundances (y axis) predicted by RATTLE, FLAIR, StringTie2, TALON, NanoCount, 

and selecting the best match from Minimap2 (minimap2), with abundances of the SIRV transcript isoforms (x axis). In each panel 

we show the Pearson correlation r for the comparison of the abundance values. Units on the y-axis vary according to the method: 

RATTLE provides abundances in terms of read counts per million, similar to TALON and FLAIR. StringTie2 produces a TPM 

value. For NanoCount and minimap2 we give read counts per million. SIRV data corresponds to the RNA 1 sample (Methods). 

Correlations for other datasets are provided in Supp. Fig. 7. (b) Precision-recall curve for the prediction of SIRV introns by 

RATTLE transcripts for all datasets tested. (c) Correlation of the 5-mer counts (in log10 scale) in the annotation (x axis) and in the 

transcript sequences predicted by RATTLE (y axis) for transcripts with read-support >5, for a direct RNA-seq run in a human 

lymphoblastoid cell line (LCL) from the Nanopore sequencing consortium2 (Supp. Table S6). (d) Correlation of the transcript 

abundances calculated by RATTLE in two direct RNA-seq replicates of a human LCL from the Nanopore sequencing consortium2 

(Supp. Table S6). (e) Saturation plot of transcripts using direct RNA-seq reads from the 30 runs of the Nanopore sequencing 

consortium2. For each number of input reads (x axis) we give the number of transcripts identified (y axis) using the raw reads 

mapped to the transcriptome annotation (raw, in red), the RATTLE-corrected reads mapped to the transcriptome annotation 

(corrected, in green), the final RATTLE transcripts with a match to the transcript annotation (rattle transcriptome, in blue), and the 
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final RATTLE transcripts without any matches to the transcript annotation (novel, in purple). The number of transcripts and genes 

obtained are given in Supp. Table S9. 

 

We further measured the running times and memory footprint for RATTLE with increasing number of input 

reads. For different configurations of parameters (Supp. Fig. 9a) (Supp. Table S7), RATTLE showed slightly 

above linear running time (Supp. Fig. 9b) and its memory footprint grew linearly in the clustering step and 

was sublinear in the correction step (Supp. Fig. 9c) (Supp. Table S8). Finally, we used data from 30 RNA-

seq runs from the same LCL samples as above2 to investigate the transcriptome generated by RATTLE with 

increasing number of reads. We observed that the number of transcripts and genes predicted by RATTLE 

tended to saturate with increasing number of input reads (Fig. 3e) (Supp. Table S9), reaching a total of 18,806 

transcripts from 3M reads. The majority of those transcripts (>97%) had a match to the annotated 

transcriptome, and RATTLE transcripts as well as RATTLE corrected transcripts that matched the annotation 

followed a similar saturation trend as reads directly mapped to the annotation (Fig. 3e) (Supp. Fig. 9d) (Supp. 

Table S9). Moreover, the number of novel transcripts predicted by RATTLE, i.e. those without any match to 

the annotation, remained below 3% of the total predicted, reaching 480 for 3M input reads (Fig. 3e) (Supp. 

Table S9). In conclusion, RATTLE was able to effectively recover the known part of the transcriptome that 

is being expressed in a sample, while also being capable of identifying additional transcripts that might be 

cell type-specific and not be present in the annotation.  
 

Our analyses provide compelling evidence that RATTLE accurately builds transcripts and estimate their 

abundances from Nanopore reads without the use of a reference genome or annotation, and without the use 

of additional technologies. Importantly, RATTLE achieved in general higher precision compared to other 

methods, which will be fundamental to reliably identify new genes and transcript isoforms in unannotated 

samples. Our analyses also showed that despite increasing the number of input reads, the majority of the 

predicted transcripts may be already known. Although our analyses indicate that error-correction impacts the 

ability of identifying lowly expressed molecules, it remains an essential step in long-read processing. 

RATTLE modularity, with the ability to parameterize its different steps, means it can be easily applicable to 

any sample. Additionally, RATTLE’s rich output including information about the predicted transcripts and 

genes, and the reads used to build each transcript, will prove valuable in downstream applications, including 

the study of differential transcript usage19, the identification of transcript sequence polymorphisms between 

individuals20, and the analysis of single-cell long-read sequencing21. We anticipate that RATTLE will enable 

cost-effective long-read based transcriptomics in any sample and any species using only Nanopore 
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sequencing, and in particular, in species without an available genome reference and in populations 

underrepresented in the current human reference. 

 

Data availability 
 

Nanopore sequencing data generated in this study has been deposited in the European Nucleotide Archive 

(ENA) under study accession PRJEB39835 (http://www.ebi.ac.uk/ena/data/view/PRJEB39835). Further 

datasets used in this study is available in ENA under study accession PRJEB27590 

(http://www.ebi.ac.uk/ena/data/view/PRJEB27590) (runs ERR2680375 and ERR2680377)10, and from the 

Nanopore sequencing consortium from https://github.com/nanopore-wgs-consortium/NA12878 (under 

nanopore-human-transcriptome)2. 

 

Software availability  
 

RATTLE is written in C++ and is available at https://github.com/comprna/RATTLE under the GPL-3.0 

license. 

 

Methods 

 

RATTLE clustering algorithm 

 

Before running RATTLE, reads are pre-processed with porechop (https://github.com/rrwick/Porechop) and 

those of length 150nt or shorter are filtered out. RATTLE then sorts the reads in descending order by their 

length and processes one at a time in that order. In the first iteration, RATTLE creates a new cluster with the 

first unclustered read. All subsequent unclustered reads are then compared against each existing cluster and 

assigned greedily if the scores resulting from the comparison are above certain thresholds. Otherwise, a new 

cluster is created. In subsequent iterations, thresholds are decreased, and clusters are created or merged as 

initially. The first cluster is selected, and all other clusters are compared against that cluster, including single-

read clusters, i.e. singletons. If they are similar above the set thresholds, a new cluster is formed with the reads 

from the selected cluster and all the similar clusters. To ensure fast computation, cluster comparisons are 

performed using a representative read from each cluster, which is defined by the position in the ranking of 
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read lengths within the cluster and can be set as a parameter by the user. In our analyses, we used the read at 

the position 0.15 x (number of reads in the cluster). 

 

Reads are compared using a two-step similarity calculation. This circumvents the quadratic time complexity 

of an all-vs-all comparison and achieves both fast and sensitive comparisons. To reduce memory usage and 

for efficient calculation, sequence k-mers in reads are hashed to 32-bit integers with the hashing function 

H(A)=0, H(C)=1, H(G)=2, H(T)=3, such that for any k-mer s=b1…bk, H(s) = 4k-1H(b1) + 4k-2H(b2) + … + 

H(bk). First, a similarity score is calculated as the number of common 6-mers shared between two reads 

divided by the maximum number of 6-mers in either read. All 6-mers are extracted for each pair of reads and 

a 46-bit vector is created and the positions in the vector of the hashed 6-mers in each read are set to 1. An 

AND operation is then performed between the two vectors to obtain the number of common 6-mers. 

Extraction and hashing of 6-mers is performed only once per read in linear time, and the vector operations 

are performed in constant time. If this first score is above a previously set threshold, a second similarity 

calculation is performed. For the second metric, all k-mers both reads are extracted. Now k can be chosen on 

the command line, and k-mers are hashed as before. The intersection of the k-mers from both reads and their 

positions in each read are extracted to generate a list of triplets (s, p1, p2), where s is the hashed k-mer, p1 is 

the position of this k-mer in the first read, and p2 is the position of the same k-mer in the second read. These 

triplets are then sorted by p1 and the Longest Increasing Subsequence (LIS) problem is solved with dynamic 

programming for p2. This produces the longest set of common co-linear k-mers between a pair of reads. The 

similarity value is defined as the number of bases covered by these co-linear common k-mers over the length 

of the shortest read in the pair. If the orientation for cDNA reads is unknown22, RATTLE tests both relative 

orientations for each pair of reads. As a consequence, all reads within a cluster are oriented the same way.  

 

The number of iterations to be performed for clustering is specified in the command line by setting the initial 

and final thresholds for the first bitvector-based score (default 0.4 to 0.2) and a decreasing step (default 0.05), 

i.e. default iterations are performed for thresholds 0.4, 0.35, 0.3, 0.25, and 0.2. A final comparison is done 

using a threshold of 0.0, i.e. all remaining singletons and all cluster representatives are compared to each other 

using the LIS-based score. The LIS-based score threshold remains fixed over the entire clustering process. In 

our analyses, it was required to be 0.2 or larger. Analyses shown here were carried out for k=10. The initial 

and final thresholds in the bitvector-based comparison and the decreasing step, as well as the k-mer length 

and similarity thresholds in the LIS comparison (bases and variance) can be set up as input parameters. 

 

RATTLE transcript-cluster identification and error correction 
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Initial read clusters produced by the algorithm described above are considered to approximately correspond 

to genes, i.e. gene-clusters. Reads within each cluster are then separated into subclusters according to whether 

they are likely to originate from different transcript isoforms to form transcript-clusters. RATTLE takes into 

account the relative distances between co-linear k-mers calculated from the LIS-based score. Two reads in 

the same gene-cluster are separated into different transcript-clusters if the distribution of the relative distances 

between co-linear matching k-mers has a variance greater than a given threshold. That is, if co-linear matching 

k-mers calculated from the LIS algorithm show relative distances that would be compatible with a difference 

in exon content. Different thresholds were tested and the value 25 was used for the analyses. This value can 

also be modified as input parameter. 

 

RATTLE performs read correction within each transcript-cluster in two steps. First, each cluster with N reads 

is separated into blocks; each with a number of reads R. In our analyses, R was set to 200. If R≤N<2R, the 

cluster is split in half, and if N<R, we take a single block. To avoid length bias, blocks are built in parallel 

from the reads in the cluster sorted by length: to build K blocks, block 1 will be made from reads 1, K+1, 

2K+1, …, block 2 will be made from reads 2, K+2, 2K+2, … , and block K is made from reads K, 2K, 3K, 

… . A multiple sequence alignment (MSA) is obtained from each block using SIMD partial order alignment 

(SPOA) (https://github.com/rvaser/spoa)23. A consensus from each column in the MSA is then extracted in 

the following way: for each read and each base of the read, the base is changed to the consensus if the 

consensus base occurs with at least 60% frequency, but not if the base being assessed has an error probability 

(obtained from the FASTQ file) lesser than or equal to 1/3 times the average for the consensus base in that 

position of the alignment. Indels are treated similarly, but without the error constraint. This is only performed 

using aligned positions. That is, for a given base in a given read, other reads of the MSA contribute to the 

correction if they have in that position a base or an internal gap, i.e. we do not consider terminal gaps. The 

consensi from each block are then realigned with SPOA to obtain a final MSA for the transcript-cluster and 

an associated consensus is obtained as before. Only transcript-clusters with a minimum number of reads are 

corrected and considered for further analysis. Here we used transcript-clusters with more than 5 reads. The 

frequency of the consensus, error-probability cutoff, and minimum number of reads for a transcript cluster 

can be set up as input parameters. We observed that in MSAs many reads had a few bases wrongly aligned at 

the terminal regions. To try to fix these cases so that they do not affect the correction step, RATTLE identifies 

small blocks (less than 10nt) followed by large gaps (larger than or equal to 20 positions) at both ends of each 

aligned read and removes them. A block is defined as a subsequence that might have gaps shorter than or 
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equal to 3nt. RATTLE keeps removing blocks that satisfy these conditions at both ends of every aligned read 

until there no more such blocks are found. 

 

RATTLE transcript polishing and quantification 

 

To define the final list of transcripts, RATTLE performs a final polishing step of the transcript-cluster 

definitions. This is done to correct possible splitting into different transcript-clusters of reads originating from 

the same transcript (over-clustering). For this, RATTLE uses the same 2-step greedy clustering described 

above on the transcript-clusters using the representative read from each cluster in the comparison. In each of 

the resulting clusters, an MSA column consensus is calculated, with abundance given by all the reads 

contained in the final cluster. Additionally, the transcripts are given a gene ID that corresponds to the gene-

clusters they belong to. When two transcript clusters are merged, if they were part of the same original gene-

cluster, the resulting transcript stays in the same gene. If they were part of different genes, the gene with more 

transcripts absorbs the transcripts from the other gene to become one single gene.  

 

RATTLE outputs different files at different stages of its execution. In the clustering step, it can either output 

gene-clusters or transcript-clusters in binary files. These files can be then used to extract a CSV file containing 

each read ID and the cluster it belongs to. These same binary files are also used for the correction step. This 

step outputs three files, one file with the corrected reads, one with those that are left uncorrected, and one 

containing the consensus sequence for each cluster from the input (in FASTQ format). Finally, the transcript-

cluster polishing step receives as input the consensus sequences from the correction step and outputs a new 

file in FASTQ format with the final transcriptome. The quantification of each transcript is included in the 

header line. The quality per base in each FASTQ entry is calculated as the average of the PHRED quality 

scores from the bases in each column of the MSA in the transcript-cluster.  

 

Simulated reads and clusters 

 

We developed a wrapper script (available at https://github.com/comprna/RATTLE) for DeepSimulator11 to 

simulate a specific number of reads per transcript considering a read length distribution. The length 

distribution was calculated from a human cDNA sequencing sample from the Nanopore consortium2. To 

simulate the read sequences, we used the Gencode transcript annotation (v29), filtering out pseudogenes and 

genes from non-standard chromosomes, and removing transcripts that showed > 95% percentage identity with 

other transcripts using CDHIT24. We then randomly selected different number of genes and transcripts to 
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simulate reads. We considered genes with one single transcript isoform (SI), or genes with multiple isoforms 

(MI). For each case, various datasets were simulated using different number of reads per transcript and 

different number of transcripts per gene. To determine the accuracy of the clustering we used the adjusted 

rand index, which is a measure of the similarity between two cluster sets corrected for chance25. Additionally, 

we used homogeneity, completeness and the V-measure26. Homogeneity is maximal when each cluster 

contains only elements of the same class. Completeness is maximal when all the elements of a single class 

are in the same cluster. The V-measure is the harmonic mean of the completeness and homogeneity. We 

compared the clusters predicted by each method with the simulated clusters as reference set. We run 

isONclust13 (options: --ont --t 24), CARNAC-LR12 with Minimap2 overlaps (options: -t 24 -x ava-ont), and 

RATTLE clustering (options: -t 24 -k 10 -s 0.20 –v 1000000 –iso-score-threshold 0.30 –iso-kmer-size 11 –

iso-max-variance 25 –p 0.15). 

 

MinION sequencing and SIRV reads 

 

We used data from cDNA (ERR2680377) (cDNA 1) and direct RNA (ERR2680375) (RNA 1) sequencing of 

mouse brain including the E2 SIRVs14. Additionally, we performed Nanopore sequencing on two total RNA 

samples from human brain (Ambion - product num. AM7962; lot num. 1887911) and heart (Ambion - product 

num. AM7966; lot num. 1866106). Unless otherwise noted, kit-based protocols described below followed the 

manufacturer's instructions. Regular quality controls using qBIT, nanodrop and Bioanalyzer were performed 

according to manufacturer's protocols to assess the length and the concentration of the samples. rRNA 

depletion was performed using Ribo-Zero rRNA Removal Kit Human/Mouse/Rat (Epicentre - Illumina). 12 

ug of total RNA from each sample were prepared and divided into 3 aliquots (4 ug of total RNA each). 8ul of 

a 1:100 dilution (1 ng total) of synthetic controls (E2 mix lot number 001418 from SIRV-set, Lexogen) were 

added to each total RNA aliquot. Resulting ribosomal depleted RNAs were purified using 1.8X Agencourt 

RNAClean XP beads (Beckman Coulter). Samples were finally resuspended with 11 ul of RNA-free water 

and stored at -80ºC. The cDNA was prepared using 50 ng of rRNA depleted RNA. The cDNA synthesis kit 

(Takara) based on SMART (Switching Mechanism at 5' End of RNA Template) technology coupled with 

PCR amplification was used to generate high yields of full-length double-stranded cDNA. The sequencing 

libraries were prepared using 1 ug of full-length double-stranded cDNA following the standard ONT protocol 

SQK-LSK108 for an aliquot of the brain sample (cDNA 2), protocol SQK-LSK109 for 1 aliquot of the brain 

sample (cDNA 3) and 1 aliquot of the heart sample (cDNA 4). The direct RNA sequencing library was 

prepared using 500 ng of previously prepared ribosomal depleted sample (RiboZero kit, catalog num. 

MRZH11124, Epicentre-Illumina) from heart (RNA 2) with standard direct RNA ONT protocol SQK-
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RNA002, following manufacturer's instructions. The final libraries were loaded on an R9.4.1 flowcell, and 

standard ONT scripts available in MinKNOW were used for a total of 48 hours run for each flowcell. ONT 

sequencing data was basecalled using Guppy 2.3.1+9514fbc (options: --qscore_filtering --min_qscore 8 --

flowcell FLO-MIN106 --kit <kit> --records_per_fastq 0 --recursive --cpu_threads_per_caller 14 --

num_callers 1), where <kit> is the corresponding protocol, as specified above (SQK-LSK109, SQK-LSK108 

or SQK-RNA002). To select reads corresponding to SIRVs, we run porechop 

(https://github.com/rrwick/Porechop) and mapped the reads to the SIRV genome (SIRVome) with Minimap2 

(options: -t 24 -cx splice --splice-flank=no --secondary=no). We used seqtk (https://github.com/lh3/seqtk, 

option subseq) to extract the subset of reads with a hit on the SIRVome and being at least 150nt in length. 

These reads were then considered for further analyses.  
 

Clustering accuracy with SIRV reads 

 

We first built SIRV isoform clusters by mapping reads to SIRV isoforms with Minimap216 and selecting for 

each read the SIRV isoform with the best mapping score. All reads that mapped to the same SIRV gene were 

then considered a gene-cluster. We then clustered reads with RATTLE, CARNAC and isONclust and 

measured the accuracy of the predicted clusters by comparing with the built SIRV gene clusters using the 

same metrics as with the simulated data. We used subsets of 25,000 reads (subsampled with seqtk) from each 

sample, since we could not make CARNAC run for some of the complete datasets.  

 

Assessment of error correction accuracy 

 

Reads were mapped to the SIRV transcripts with Minimap2 before and after read correction. Here we used 

the complete dataset of SIRV reads. Each read was assigned to the best matching transcript according to the 

mapping score. From the CIGAR string of the SAM output the error rate was calculated as the sum of 

insertions, deletions and substitutions divided by the length of the read, and the percentage identity as the 

number of nucleotide matches divided by the total length of the aligned region. We compared RATTLE 

(options: -t24 –g 0.3 –m 0.3 –s 200) with CONSENT15 (options: consent-correct --type ONT), Canu8 (options: 

minReadLength=200 stopOnLowCoverage=0.10 executiveMemory=16 executiveThreads=24), LORMA9 

(options: -s -n -start 19 -end 61 -step 21 -threads 24 -friends 7 -k 19), and TranscriptClean4. TranscriptClean 

was run using as input the reads mapped with Minimap2 (options: -t 12 -cx splice --splice-flank=no --

secondary=no), but with no exon-intron information from the SIRV annotation.   
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To perform the accuracy analysis of the SIRV annotation features, PAF files from the mapping were compared 

with the annotation using ssCheck (available at https://github.com/comprna/RATTLE/). We developed 

ssCheck, as gffcompare (https://ccb.jhu.edu/software/stringtie/gffcompare.shtml) did not count correctly the 

matches when multiple copies of the same annotation feature were present in the reads. ssCheck works by 

comparing annotation features in the mapped reads with the annotation and calculates the number of unique 

features as well as the total number of features predicted in the mapped reads. As annotation features, we used 

introns, intron-chains. internal exons and external exons. An intron-chain was defined as an ordered sequence 

of introns in an annotated transcript or mapped read. Recall was calculated as the fraction of unique annotated 

features correctly found; precision was calculated as the fraction of unique predicted features that were in the 

annotation and read-precision was calculated as the fraction of the total number of predicted features in reads 

that corresponded to annotated features. Read-precision is influenced by abundance levels but better reflects 

the accuracy per read.  

 

Assessment of transcript quantification accuracy 

 

We used FLAIR17 (options: align, correct, collapse, quantify –tpm), StringTie25 (options: -p 24 –L) and 

TALON18 (talon_initialize_database, talon, talon_summarize, talon_abundance, talon_create_GTF) with the 

cDNA and RNA reads mapped to the SIRV genome with Minimap2 (options: -t 24 –ax splice –splice-

flank=no –secondary=no, with –MD tag for TALON). These methods perform read correction (FLAIR and 

TALON) and transcript quantification (FLAIR, StringTie2 and TALON) of annotated and novel transcripts 

using the mapped reads with the help of the annotation. For the same samples, RATTLE was run for clustering 

(options: -t 24, -k 10, -s 0.20 –v 1000000 –iso-score-threshold 0.30 –iso-kmer-size 11 –iso-max-variance 25 

–p 0.15), read correction (options: -t24 –g 0.3 –m 0.3 –s 200) and transcript polishing (options: -t24). As 

additional comparison, we mapped raw reads directly to SIRV isoforms with Minimap2 (options: -ax map-

ont  -t24) and estimated abundances with NanoCount (https://github.com/a-slide/NanoCount), which assigns 

reads to isoforms with an expectation-maximization (EM) algorithm. We also assigned reads directly to SIRV 

isoforms with Minimap2 (options: -t 24 -cx map-ont --secondary=no). FLAIR, StringTie2 and TALON 

provides the SIRV isoform ID with the predicted abundance. Sometimes, these methods give twice the same 

ID with two different abundances and exon-intron structures, likely due to both being equally good 

approximate matches to the annotation. In these cases, we only considered the prediction with the highest 

abundance. To assess the accuracy of RATTLE, we matched transcripts predicted by RATTLE to the SIRV 

isoforms using Minimap2 (options: -cx map-ont --secondary=no). If more than one transcript matched the 

same SIRV isoform, we selected the RATTLE transcript with the highest abundance.  
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Analysis of human transcriptomes 

 

We downloaded data from cDNA and RNA sequencing from the Nanopore consortium2. For the samples 

from Johns Hopkins (cDNA 2 replicates, RNA 2 replicates) and UCSC (cDNA 2 replicates, RNA 2 

replicates), we predicted the transcripts and their abundances with RATTLE for each sample independently. 

To calculate the correlation of RATTLE abundances between replicates we mapped RATTLE transcript 

sequences to the transcripts from the annotation (Gencode v29, after removing pseudogenes, genes from non-

standard chromosomes, and transcripts with > 95% percentage identity with other transcripts). Abundances 

of predicted transcripts mapped to the same annotated transcript were then compared. For comparison, raw 

reads were mapped to the same annotated transcripts with Minimap2 (options: -cx map-ont --secondary=no). 

As we built RATTLE transcripts from transcript-clusters with >5 reads, only transcripts in the annotation with 

>5 reads mapped were considered. The 5-mer content was calculated as the frequency of each 5-mer in all 

the transcripts predicted by RATTLE and in all annotated transcripts with >5 reads mapped to them. 

 

Time, memory footprint, and saturation analysis  

 

We took the pooled 30 direct RNA runs from the Nanopore sequencing consortium2 

(https://github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md) and generated subsamples 

with 100k, 250k, 500k, 750k, 1M, 2M, and 3M reads. Subsampling was performed with seqtk 

(https://github.com/lh3/seqtk). RATTLE was run in all these samples (options: -B 0.5 -b 0.3 -f 0.2) 

(configuration c5 in Supp. Table S7) using a machine with 24 cores. In each run 64Gb RAM were requested 

although RATTLE only used 20-30Gb of RAM.  
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