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ABSTRACT 

Seizures are a disruption of normal brain activity present across a vast range of species, diseases, 

and conditions. Here we introduce an organizing principle that leads to the first objective 

Taxonomy of Seizure Dynamics (TSD) based on bifurcation theory, and applied it to the analysis 

of EEG data. The “dynamotype” of a seizure is the part of its dynamic composition that defines its 

observable characteristics, including how it starts, evolves and terminates. Analyzing over 2000 

focal-onset seizures recorded from 7 epilepsy centers on five continents, we find evidence of all 16 

dynamotypes predicted in TSD. We demonstrate that patients’ dynamotypes evolve during their 

lifetime and display complex but systematic variations including hierarchy (certain dynamotypes 

are more common), non-bijectivity (a patient may display multiple dynamotypes) and pairing 

preference (multiple dynamotypes may occur during one seizure). TSD not only provides a way to 

stratify patients in complement to present practical classifications but also guides biophysically 

based mechanistic approaches and provides a language to describe the most critical features of 

seizure dynamics.  

 

Impact statement: 

Taxonomy of Seizure Dynamics (TSD)  provides a rigorous method for classifying and 

quantifying seizures and a principled framework for understanding seizure initiation and 

propagation. 
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INTRODUCTION 

 

Epilepsy is one of the most common neurological disorders with an estimated prevalence of 50 

million worldwide (World Health Organization, 2017). It is characterized by spontaneously 

recurring seizures, which are “a transient occurrence of signs and/or symptoms due to abnormal 

excessive or synchronous neuronal activity in the brain” (Fisher et al., 2005). However, there are 

a vast array of signs, symptoms, and underlying causes of seizures.  Thus, despite high prevalence 

and considerable morbidity and mortality, it has been challenging to characterize, treat, and 

understand seizures, which prevents the development of reasoned, mechanistic approaches to 

therapy and improved patient care. Seizure classifications to date have been purely descriptive of 

empirical data: clinical manifestations (e.g. focal vs. generalized) that are based upon the region of 

brain affected rather than the seizure itself, and visual descriptions of electroencephalogram (EEG) 

waveforms. These classifications have been subjected to numerous revisions.  In its latest position 

paper, the International League Against Epilepsy states: “Because current knowledge is insufficient 

to form a scientifically based classification, the 2017 Classification is operational (practical)” 

(Fisher et al., 2017). In effect, that classification is based upon the epilepsy phenotype—the clinical 

symptoms that arise during a seizure. Over the past several years, a separate approach has arisen: 

investigating the genotype of specific epilepsies (EPGP Collaborative et al., 2013; Epi4K 

Consortium et al., 2013), which may lead to more informed treatment decisions that match deficits 

with mechanisms. And for decades, intractable epilepsy has been treated with epilepsy surgery, 

which relies upon the high spatial resolution of imaging and implanted electrodes to find a seizure 

focus. These approaches are based upon our available tools: clinical expertise, genetics, imaging, 

pathology, and surgery. However, seizures are by definition dynamic phenomena, and none of 

these tools characterize the fundamental dynamics of seizures.  

 

In this work, we introduce an organizing principle of seizure dynamics based on nonlinear 

dynamics and bifurcation theory. Bifurcations are sudden qualitative changes in behavior, 

including onset and offset of oscillations. Here we introduce the term “dynamotype” to describe a 

seizure’s composite, observable, dynamic characteristics in electrophysiological recordings 

comprising seizure onset and offset. Together, dynamotype, phenotype and genotype provide a 

rich, multifaceted description of the dynamics, clinical manifestation, and underlying pathology of 
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a seizure. The organization of seizures along dynamotypes leads naturally to a Taxonomy of 

Seizure Dynamics (TSD) providing practical, objective metrics for classification. As the periodic 

table of elements is a tabular display of chemical elements arranged according to proton number 

and electronic configuration, TSD is a tabular arrangement according to bifurcation type of seizure 

onset and offset. Furthermore, the organization of the periodic table can be used to derive 

relationships between the various element properties and predict chemical properties and behaviors 

of undiscovered or newly synthesized elements. Here we explore the capacity of TSD to fulfill this 

second functional part of the analogy also and demonstrate the existence of all dynamotypes in 

human epilepsy. We then discuss TSD in the context of a canonical model in nonlinear dynamics 

and identify the relations amongst the seizure dynamotypes. TSD is available for immediate 

transfer to clinical practice, providing a rational method of characterizing seizures and 

subsequently a better understanding of the underlying principles governing seizure generation and 

termination. 

 

The basis of TSD is the observation that seizures are characterized by abrupt changes in the EEG 

waveform at seizure onset and offset, which we interpreted as bifurcations known from dynamic 

system theory (Lopes da Silva et al., 2003b). As a seizure evolves, the brain moves from a normal 

state into a seizure and back again. Recent work has focused on describing these transitions with 

empirically-chosen visual patterns and has found interesting relationships with underlying 

pathology (Perucca et al., 2014), surgical outcome, (Jimenez-Jimenez et al., 2015; Lagarde et al., 

2016) and Sudden Unexpected Death in Epilepsy (Rajakulendran and Nashef, 2015). However, 

these transitions can also be described more rigorously and mathematically as bifurcations.  

Bifurcations represent qualitative changes that both define and constrain the system dynamics 

(Strogatz, 2015). The concept has been used to understand neuronal firing: when a neuron goes 

through a bifurcation, the emergent dynamics often comprise a new set of behaviors such as 

multiple stable fixed points (rest activity) or limit cycles (oscillatory activity) (Izhikevich, 2000). 

When a neuron oscillates quickly about a limit cycle, it produces fast repetitive activity known 

generically as bursting, which is a periodic wave form with periods of oscillatory spiking and 

periods of quiescence. These dynamics can be described by a set of differential equations and 

accompanying parameters. The concepts about periodic wave forms with alternating periods of 

oscillations and quiescence have been extended to EEG wave forms in seizures (Jirsa et al., 2014), 
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where oscillatory (ictal) states and quiescent (non-ictal) states alternate. Two variables are the 

minimum necessary to generate oscillations, and in systems with two variables there are only six 

types of bifurcations involved in bursting (Fig. 1, for further details also see (Saggio et al., 2017)). 

Four can be used to enter the bursting regime, and another four to exit, giving a total of sixteen 

possible dynamotypes (Izhikevich, 2000). A key benefit of this organizing principle is that it 

unambiguously identifies the invariant properties of individual events, which may provide 

mechanistic insight into the underlying causes and response to specific interventions. It also 

provides a model that not only accounts for the effects of noise on the system (Suffczynski et al., 

2005) and multistability (Lopes da Silva et al., 2003a; Milton, 2012), but also generates a time 

series.  Generalizing this to epilepsy, (Jirsa et al., 2014) proposed the existence of 16 theoretically 

possible dynamotypes (i.e. seizure types), and found one seizure offset bifurcation that was present 

across multiple species, brain regions, and pathologies, including a small cohort of humans.  Based 

on that initial work, we now expand and present a taxonomy of seizure dynamotypes. In the 

following, we begin with the definition of the different types of seizures based on dynamics at their 

onset and offset. Then, we show that seizures recorded from different centers in the world can be 

rigorously classified, and how classification can be performed in daily clinical practice. Next, we 

introduce a canonical model in nonlinear dynamics (Saggio et al 2017) with two important 

properties: 1) the model is canonical, which means that under certain mild conditions (see Methods) 

the behaviors of other models of arbitrary physiological detail can be represented and explained by 

the canonical model; 2) the canonical model captures all dynamotypes in a single mathematical 

representation. Transitions between types can be obtained through an ultra-slow modulation of the 

model’s parameters providing a map of the parameter space, which systematically predicts 

relations between dynamotypes, including a hierarchy across dynamotypes. We demonstrate from 

a large repertoire of empirical data that patients navigate this seizure map to express the different 

types of seizures. Finally, we discuss how TSD can be used in a wide range of novel applications 

in clinical care and research. 

 

METHODS 

Classification of seizure dynamics 

The goal of this work is to characterize seizures by their underlying onset and offset dynamics, 

which depends upon identifying reliable, canonical dynamic features. While the dynamics of a 
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single neuron have already been described (Izhikevich, 2000), linking that behavior to a seizure 

generated by millions of neurons is complex.  We chose to analyze the EEG signal from standard 

intracranial electrodes, as it is the most clinically-relevant and widely-studied method to measure 

brain dynamics. These patterns, which are visible within the EEG waveform, identify the 

bifurcations that define the invariant properties, and thus the first rigorous classification of seizure 

dynamics. Fig. 1 demonstrates these different bifurcations, showing how the signal changes in 

terms of amplitude and frequency of successive spikes and may contain a shift in the baseline as 

the seizure starts or stops. Of note, in dynamical terms, a “spike” is defined as any prominent sharp 

transient associated with the dynamical process. For human EEG, we assume this includes all fast 

transients < 200 ms with amplitude that is distinguishable from the background.  Of note this 

dynamical definition also includes the fast, low amplitude spiking seen at the beginning of some 

seizures.      

 

In this work we present algorithms to measure the invariant properties, which can then be used to 

classify the seizure types. While the theory behind this classification has been proven 

mathematically (Kuznetsov, 2004), measurement of these values under real conditions is 

challenging.  This is because 1) EEG recordings of the brain are much more complex than single 

bursting cells, 2) EEG is notoriously noisy, and 3) there is limited understanding of the underlying 

physiology that produces the EEG waveforms (Einevoll et al., 2013; Reimann et al., 2013). Despite 

these limitations, we previously found strong evidence that at least one dynamotype exists across 

multiple species (Jirsa et al., 2014). Herein, we present both an automated algorithm and a visual 

method to analyze these noisy data. We find that visual analysis is quite reliable and often 

preferable under clinical conditions, as demonstrated by recent work in other noisy neural signals 

(Haddad and Marder, 2018). Therefore, while we do present the algorithm results as validation, the 

final clinical analysis is based upon the visual classifications. 

 

 

Onset Types: As described in Fig. 1, there are four onset bifurcations. Two of these progress 

gradually from resting state into seizure via specific scaling laws for the amplitude or frequency 

(Strogatz, 2015): in the supercritical Hopf bifurcation (SupH), the amplitude of the oscillations 

starts at zero and increases proportionally to the square root of the distance from the bifurcation 
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point; the Saddle-Node on an Invariant Circle (SNIC) bifurcation has oscillations that increase in 

frequency as the square-root of the same distance. The other two, Saddle-Node (SN) and subcritical 

Hopf (SubH) bifurcations, have abrupt amplitude and frequency changes that do not follow specific 

scaling laws. The SN can contain a jump in the signal baseline (i.e. direct current (DC) shift), but 

in the absence of a detectable DC shift these two types can be difficult to distinguish even 

theoretically. SN without DC shift (“SN (-DC)”) and SubH are thus grouped together in this work. 

Further demonstration of the generation of these time series can be found in (Jirsa et al., 2014; 

Saggio et al., 2017). 

 

Offset Types: Two of the bifurcations are characterized by decreasing frequency, following 

square-root scaling for the SNIC and logarithmic scaling for the Saddle-Homoclinic (SH) 

bifurcation.  Both of these dynamics manifest as slowing of the seizure down to zero near its end, 

which is the well-known clinical hallmark of a seizure (2016; St. Louis and Frey, 2016). This 

“slowing” at seizure termination has been identified as an inherent characteristic of seizures across 

all spatial scales (Kramer et al., 2012), and in multiple species and brain regions (Jirsa et al., 2014).  

Due to the small number of spikes near the end of seizures, it is difficult to distinguish between 

these two scaling laws when using only frequency of spikes (Jirsa et al., 2014); throughout this 

work, when we refer to “slowing-down” it refers to logarithmic or square root scaling, implying 

scaling down to zero. The other two bifurcations do not require slowing at termination: the SupH 

bifurcation with square-root-scaled decreasing amplitude and no scaling law for the frequency, and 

the Fold Limit Cycle (FLC) that has no specific scaling law for either frequency or amplitude.  Note 

that these two offset types may appear somewhat atypical to a clinician, as “slowing down” is 

expected at the end of most seizures. The only dependence on a DC shift is that only the SH can 

have a shift, but the absence of a shift the slowing down pattern can be SH (-DC) or SNIC.   

 

 

Patient selection and seizure analysis to create human seizure taxonomy 

We analyzed seizures from 120 patients recorded on intracranial EEG in 7 centers worldwide 

(Appendix I.1) (Ihle et al., 2010; Cook et al., 2013; Kanazawa et al., 2015; Wagenaar et al., 2015) 

to identify the bifurcations at onset and offset. All patients had focal onset seizures.  Results are 

shown in Fig. 2. 
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Accurate identification of bifurcations:  The canonical features necessary to distinguish the 

bifurcations are the dynamics of the amplitude and interspike intervals (ISI) and the 

presence/absence of a DC shift (Fig. 2A). We identified the spike timing and amplitude to allow 

for both visual and mathematical analysis (Appendix I.2). In order to validate the analysis, we first 

compared the results of three human reviewers (Appendix I.3) and an automated algorithm 

(Appendix I.4) in a gold-standard computational model that generated 60 seizures of each type 

(Saggio et al., 2017). These methods were very successful in distinguishing the different 

bifurcations in the model data, although we had to consider SN (-DC) and SubH as a single group 

for seizure onset, and SH (-DC) and SNIC as a single group for offsets because there is no method 

to distinguish them. We then compared these same methods on 120 human seizures.  We found 

that concordance was also reliable in human data (Appendix I.5). These results show that the 

chosen features are capable of distinguishing the different bifurcations reliably for both human 

visualization and algorithms, that human seizure dynamics are consistent with the modeled 

bifurcations, and that human reviewers can use the methods described in the next paragraphs to 

classify onset and offset bifurcations reliably. In addition, we found that human reviewers were 

more reliable than the automated algorithm in noisy clinical data.  We then used the human 

markings on the clinical data for the taxonomy in Fig. 2. Note however that the identification of 

bifurcations from empirical data is notoriously difficult and generally cannot unambiguously prove 

that a given bifurcation is present, although it allows assessment of self-consistency. Further 

investigation may use additional tools, such as perturbations of the system, to corroborate these 

results further. 

 

Onset dynamics - To analyze onset dynamics, we first investigated all 51 patients that had been 

recorded using equipment capable of visualizing DC shifts. Of note, DC shift alone has previously 

been shown to be highly correlated to the seizure onset zone (Ikeda et al., 1996; Ikeda et al., 1999; 

Kanazawa et al., 2015). Many seizures (41%) started with constant amplitude spikes and a DC 

shift, signifying SN bifurcation (Fig. 2E). The second most frequent was similar 

amplitude/frequency dynamics without a DC shift (either SubH or SN, 37%), followed by SupH 

(14%) and SNIC (6%). Ambiguities in the classification were treated systematically as detailed in 

the Appendix (I.6), and only 1/51 seizures could not be agreed upon by the reviewers. Despite the 
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inability to distinguish SN (-DC) and SubH, we demonstrate that at least three of the predicted 

bifurcation types are present at onset in human seizures. Importantly, some seizures display 

complex dynamics because they go through more than one bifurcation as the seizure begins. For 

example, nearly half of the seizures labeled as SN onset progressed into square-root amplitude 

scaling after 2-5 seconds, consistent with a switch to SupH dynamics; we only labeled the initial 

bifurcation herein. For this reason, we have slightly modified the definition of onset bifurcation as 

compared to the literature. Here the onset bifurcation is the one causing a departure from the resting 

state, even if it is not directly causing the onset of oscillations as there can be intermediate states 

(Appendix II.1).   

 

We next looked at the onset bifurcations in the other 69 seizures that were recorded with non-DC 

coupled hardware. Of the four onset bifurcations, SN and SubH become indistinguishable without 

a DC shift available. Combining these two into a single group, we found that 67% were SN-SubH, 

26% were SupH, 6% were SNIC, and only one seizure did not have reviewer consensus. 

 

Offset dynamics – We first examined offsets in those patients with DC recordings for the most 

robust classification.  The analysis of the interspike intervals (ISI) and spike amplitudes revealed a 

logarithmic/square-root slowing-down with constant amplitude in 20/51 patients, and of those 10 

had DC shifts at offset. Thus, 10/51 (20%) were SH (+DC), while the remaining 10 (20%) were 

potentially SH(-DC) or SNIC (Fig. 2F). The remaining 31 patients did not have slowing at the end 

of their seizure (53% FLC, 6% SupH, 2% no reviewer consensus).  

 

For non-DC coupled data, we grouped SH and SNIC in the remaining 69 patients. The majority of 

seizures had arbitrary ISI and/or amplitude (54% FLC), while 41% had slowing down characteristic 

of SH(-DC)-SNIC. The remaining seizures either had constant ISI with amplitude that decreased 

as a square root (SupH, 3%) or had no consensus among reviewers (3%).  To supplement the 

examples in Fig. 2, as well as to clarify how to approach several challenging scenarios, there is a 

primer with examples of all the different bifurcations in Appendix I.7. 

 

Analyzing arbitrary dynamics.  One significant challenge in the above analyses was the presence 

of noise. Within the theoretical model, “arbitrary” dynamics refer to abrupt changes at seizure 
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onset/offset without clear scaling laws to or from zero. We would still expect a smooth behavior 

for amplitude and frequency close to (not at) the onset/offset point, and specific trends (increasing, 

constant, decreasing) are possible even though not prescribed (Appendix V). However, in human 

data analysis “arbitrary” includes a wide range of other behaviors, especially noise. It is important 

to note that the taxonomy above includes the first seizure that could be analyzed from every 

patient—we did not restrict the analysis to “clean” seizures. Some of the seizures were noisy, either 

from technical concerns or physiological effects of the seizure. We chose this method in order to 

provide a robust, real-world demonstration of this analysis. Because noise can be classified as 

“arbitrary,” this analysis may overestimate the numbers of SubH-SN (-DC) onsets and FLC offsets.  

However, it was clear that this limitation was not merely technical: several patients had complex 

physiological dynamics. Four of the FLC seizures were highly unusual from a clinical perspective: 

one had increasing amplitude for the last 10 seconds, one consisted of low-voltage fast activity that 

ended abruptly without any other change, one ended with irregular spike waves, and one had 

accelerating frequency at the end (Appendix I.8 and V). These examples highlight the vast 

heterogeneity of seizures, as well as the need for a valid taxonomy that allows for scientific 

discussion of the critical dynamical properties. 

 

Data availability 

Code and data for validation analysis in “Accurate Identification of bifurcations” are freely 

available for download (Crisp et al., 2019). 

 

 

RESULTS 

 

Taxonomy of Seizure Dynamics (TSD) 

Sixteen seizure dynamotypes – The preceding data validate that at least three types of onset and 

offset are systematically present in human focal epilepsy. As detailed above, real clinical data are 

challenging: the lack of DC shift makes it difficult to distinguish some bifurcations, and the 

noisiness of EEG is hard to distinguish from arbitrary dynamics.  Nevertheless, these results show 

robust evidence that human seizures conform to both the onset and offset bifurcations predicted by 

our framework. These combinations lead to a taxonomy containing sixteen dynamotypes of 
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electrographic seizures (Jirsa et al., 2014). We identified the dynamotypes in patients with DC 

recordings.  Two patients did not achieve reviewer consensus (one onset, one offset), leaving 49 

patients (Fig. 2F).  We identified 12 different dynamotypes, with the limitation that several of the 

dynamotypes cannot be fully distinguished in the absence of a DC shift (e.g. SH(-DC) – SNIC 

offsets). The taxonomy was dominated by seizures with either SN or SubH onsets and slowing 

(SH-SNIC) or arbitrary dynamics (FLC) at the end.  In this cohort of focal onset seizures, the SupH 

and SNIC onsets were less common, accounting for all 4 dynamotypes that were absent.  

 

Correlation between clinical data and seizure dynamotype 

We compared all available clinical metadata from patients with their dynamotype and found no 

correlation between seizure type and patient gender, pathology, or localization. There was a 

correlation with age, as older patients tended to have more SupH onsets (Appendix I.9).  We also 

compared these results with a prior visual classification that identifies 7 basic seizure onset patterns 

(Perucca et al., 2014), and found 6/7 patterns without any apparent relationship to clinical data or 

pathology (Appendix I.10). There were no significant similarities between the dynamotype and the 

visual classification. 

 

Seizure dynamics vary in human epilepsy 

While analyzing this dataset, we noted that one patient had two consecutive seizures belonging to 

different types: one supH/supH and one supH/SH, raising the possibility that an individual may 

express different types of seizures. This finding was surprising, as many clinicians assume that a 

person’s seizure should be “stereotyped”, i.e. consistent over time. In fact, multiple medical devices 

have been designed under the presumption that a patient’s seizures would have similar appearance 

over time (Morrell, 2011; Cook et al., 2013).  To test whether individuals display different types 

of seizures over time, we used a unique dataset from Melbourne in which patients had intracranial 

EEG recorded continuously for many months (Cook et al., 2013). We analyzed over 2000 seizures 

from 13 patients. Given the size of the sample, we limited the analysis to the most straightforward 

metric: the ISI at seizure offset to determine whether there was slowing at seizure termination. This 

allowed us to differentiate the SH/SNIC from the supH/FLC bifurcations (i.e. slowing-down or 

constant ISI). There were 658 seizures of sufficient length (> 25 seconds) to measure the offset ISI. 

To be conservative, we only classified seizures as slowing-down or constant if such a determination 
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was unequivocal and labeled the rest as “not assessed,” meaning that the determination was not 

readily evident on brief visual inspection. As seen in Fig. 3, all 13 patients expressed at least two 

offset patterns. Note that this is likely an underestimation of the heterogeneity in seizure types: 

these recordings did not contain DC coupling so onset bifurcations were not assessed, and we did 

not distinguish the offsets into all four types. Nevertheless, we can unambiguously conclude that 

individuals have seizures from different dynamotypes over time.  

 

Organizational principles of seizure dynamics based on bifurcation theory  

The clinical data above show that seizures can be classified based on their onset/offset bifurcations 

and that a patient’s seizures may display multiple dynamotypes. To gain a deeper understanding of 

the relations between dynamotypes, we formalize these findings within a single unifying 

mathematical framework, which can account for all these behaviors. During seizures, the firing 

activity of neurons becomes organized, enabling the emergence of oscillatory activity that can be 

observed in electrographic recordings. This greatly reduces the degrees of freedom necessary to 

describe the observed activity, i.e. a small number of differential equations are sufficient to describe 

the collective behavior (Fig. 4A). We here consider a system with the minimum number of 

variables necessary to produce oscillatory activity, two. Based on the parameter values, two states 

can be distinguished: resting (fixed point) or oscillatory (limit cycle). When these two states coexist 

for the same range of parameter values (bistability), transitions between them can be promoted by 

noise if the system is sufficiently close to a bifurcation (Lopes da Silva et al., 2003b; Kalitzin et 

al., 2010). However, the statistics of ictal durations (Suffczynski et al., 2006) points to the existence 

of a deterministic process governing this transition for seizure offset and possibly for the onset. 

This can be achieved with the addition of a third variable acting on the timescale of ictal duration. 

We previously validated this approach with the “Epileptor,” a set of five differential equations able 

to account for the most dominant dynamotype (Jirsa et al., 2014) (SN/SH, also known as ‘square-

wave’ bursting (Rinzel, 1987)) . In the Epileptor, the transition from “normal” to seizure state and 

back again, as well as the seizure dynamics, are controlled by a collective permittivity variable that 

evolves on a slow time scale. However, the Epileptor accounts in principle for only a single 

dynamotype and is not sufficient to explain the data presented above (note that systematic 

parameter variations also show a range of other bifurcations (El Houssaini et al., 2020), although 
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these variations are model-specific and not canonical). The fact that individuals can express 

different types of seizures over time leads to two predictions that must be included within a model 

of human seizure dynamics: different dynamotypes must coexist in the same model, and there must 

be an endogenous mechanism by which the brain can transition slowly between dynamotypes.  

Addressing these predictions within the framework of bifurcation analysis provides the entry point 

to propose a general taxonomy of seizure dynamics and postulate the existence of an ultraslow 

modulation. Previous mathematical work demonstrated that the procedure to build a minimal 

model for the SN/SH type (Golubitsky et al., 2001) provides a two-dimensional map for the 

parameter space of the fast variables on which all the six bifurcations can be placed (Dumortier et 

al., 1991). In effect, the map is a representation of the range of states in which a brain region can 

exist, oscillatory (ictal) and non-oscillatory (interictal), and the transitions between them.  The 

oscillatory state produces spiking activity that is described by the fast variables (millisecond scale 

activity).  However, on a slower time scale of the order of seizure length, the brain can move 

towards a transition to an interictal state, as described by a slow variable. Migrations to different 

locations on the map can occur on a usually even slower timescale (10’s-1000’s of seconds), which 

we call here “ultraslow”.  Saggio et al. showed that the use of an ultraslow variable allows full 

exploration of the map (Saggio et al., 2017). Applying these general mathematical principles to 

epilepsy implies that any brain region able to generate SN/SH seizures can potentially generate 

other types by navigating to different dynamical regimes (i.e. changing the parameters of 

differential equations). That work also showed that a large number of physiological neuron and 

neural population models can be mapped upon a canonical dynamic model under certain mild 

conditions (existence of a Bogdanov-Takens point). All physiological parameters are then absorbed 

in only three generic parameters, which span a three-dimensional parameter space, in which all 

bifurcations are represented. Detailed bifurcation analysis reveals that all neighborhood relations 

between bifurcations can be displayed (without loss of generality) as projections onto the spherical 

surface within the parameter space, yielding a canonical 2D map (Saggio et al., 2017). This allows 

the map to be projected onto a sphere, as shown in Figure 4B-C. This map displays the basic 

topology of all possible relations between bifurcation lines, including identity of the bifurcation 

and the organization of its nearest neighborhood including proximity and intersection of 

bifurcations. As one (or multiple) of the parameters is continuously varied, trajectories are traced 

out in this map, eventually connecting two bifurcation lines and thus establishing a seizure’s 
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dynamotype. The navigation of the canonical 2D map (that is a flat projection of a spherical 

surface) through continuous parameter changes selectively generates dynamotypes and justifies 

that we call it a seizure map. The state of a brain region at any moment can be represented as a 

location on the map, which defines its dynamical properties. Regions in the map that correspond 

to different regimes, including quiescent and ictal states, are separated by bifurcation curves. 

Seizures are represented as black arrows, each arrow corresponding to one dynamotype. To 

produce a seizure, the system, which is initially in the quiescent state within the bistability region, 

heads towards the onset bifurcation curve. When this curve is reached, the quiescent state 

disappears and the system is forced to go into the oscillatory seizure regime within the bistability 

region. This transition in state causes an inversion in the trajectory of brain state, with the system 

now heading towards the offset bifurcation curve. When the offset is reached, the system goes back 

to rest and inverts direction again.  Movement along the black arrow is produced by slow (of the 

order of the ictal length) mechanisms leading to seizure offset. Note that the movement towards 

the onset and offset bifurcations at this timescale occurs in both cases from within the bistability 

region. Ultraslow movements on the seizure map are responsible for changing the location of the 

brain state while at rest (as may happen during the night and day cycle)  and enable the expression 

of different types of seizures as observed clinically. This framework thus provides a potential 

explanation for the clinical observation of multiple types of seizures in a single patient, and the 

seizure map provides a hypothesis to describe how a patient’s current state (i.e. location on the 

map) can affect seizure dynamics (whether a seizure is likely to occur, and what type is most likely). 

Figure 4C depicts paths (black arrows) for seven of the 16 dynamotypes placed on a two-parameter 

map. Adding one additional parameter allows this map to be extended and create seven other types 

in three dimensions, while the final two types require even higher dimensions to create (Saggio et 

al., 2017). These higher-dimensional types require very fine parameter tuning, and thus are less 

likely to occur (Golubitsky et al., 2001; Saggio et al., 2017). TSD does not predict the likelihood 

of dynamotypes, but in conjunction with the seizure map and choice of slow dynamics, a hierarchy 

of seizures can be established, which is supported by our clinical data (Appendix II. 5), for instance 

the dynamotypes that occurred the most (e.g. SN/FLC and SN/SH) were predicted to be among the 

most likely to occur.  

 

It is important to distinguish the two types of fluctuations within the brain map. The slow 
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permittivity variable affects the general brain state, or position on the map, on the scale of minutes 

to hours. It represents underlying, and sometimes varying, conditions of the system than determine 

the position in the map, which has broad physiological implications. There are also fast fluctuations 

on the scale of msec to sec, better described as perturbations of the brain state from its current 

location on the map. These perturbations are modeled as “noise” within the model, but in reality 

they also include many physiological phenomena such as afferent signals and neural potentials—

in effect anything that perturbs the system (Jirsa et al., 2014). Thus, although the model refers to 

the addition of “noise” to the system, these effects can readily be attributed to physiological neural 

activity. Both types of fluctuations can lead to seizures by pushing the system across the 

bifurcation.  

 

 

Ultraslow fluctuations to navigate the seizure map  

It is important to note that the topology of the map in Fig. 4 was initially proven mathematically to 

be generic and rigorously valid for bursting (Dumortier et al., 1991; Baer et al., 2006). This 

invariance establishes the ground truth to define the relationships between the different bifurcations 

in the proximity of the SN/SH type, which leads to a key prediction: transitions between certain 

types may be more common due to their proximity on the map. For example, considering the 

bistability region in the upper part of the map, we note that the offset curves of SH and SupH 

approach until they meet. When the curves are very close, even small fluctuations in the parameters 

can cause a transition between types. If fluctuating internal conditions allow individuals to move 

around these regions of convergence, patients may have seizures belonging to different types over 

time, as observed in our longitudinal analysis. The model predicts that transitions between specific 

types are more likely to occur if these types are close in the map, in the sense just shown of 

bifurcation curves approaching each other within the same bistability region. On the contrary, 

transitions between types belonging to distant bistability regions require stronger changes in the 

ultraslow permittivity variable(s) and are thus less likely to occur.  

 

Two dynamotypes are paired when they share the same seizure onset or the same offset, and a 

continuous change of parameters in the seizure map can lead from one type to the other, sometimes 

even during a seizure. The seizure map predicts possible pairings as motions towards different 
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bifurcations while a seizure is ongoing. As proof of concept, we found several examples of such 

fluctuations in our cohort.  In Fig. 5A, one patient’s seizure had constant ISI and square-root 

amplitude scaling for approximately 70 seconds, properties exhibited when approaching the SupH 

bifurcation. The seizure appeared to be terminating, but then it abruptly restarted to terminate with 

slowing-down ISI and constant amplitude (SH/SNIC bifurcation). We found five examples of this 

behavior in our data (out of >2000 seizures) and reproduced it with our model. By definition, the 

dynamotype includes only the onset and final offset bifurcation, but the behavior during this seizure 

is intriguing and can be explained by the model. We considered a path for the SN/SupH type with 

an ultraslow drift of the offset point that changed the path to SN/SH and added noise to all variables 

to simulate fluctuations. With these settings, we ran 100 simulations, which generated several 

different dynamotypes, predominantly SN/SH, SupH/SH, and SN/SupH (Appendix III).  Several 

had transitions during the seizure from one bifurcation to another, 10 of which in the same manner 

as the data in Fig. 5A, switching from SupH to SH offset.  Thus, the clinical example is one of the 

most favorable combinations within the model, as the SupH and SH bifurcations are so close that 

small fluctuations can cause the switch. 

 

Status epilepticus:  Explorations of the seizure map also demonstrated another effect sometimes 

seen clinically: status epilepticus.  Simulations with the previous settings in some cases produced 

continuous seizures that did not resolve by the end of the simulation, equivalent to status epilepticus 

(El Houssaini et al., 2015). We analyzed the corresponding trajectories on the map to determine 

how this had occurred. Prolonged seizures occurred when the brain state crossed the SN onset curve 

but was unable to return to rest through the offset bifurcation and remained mainly in the violet 

“seizure only” region in Fig. 5G.  The slow variable naturally drives the state towards offset, but 

in these cases was continually overridden by noise, causing the state to ‘escape’ from the bistability 

region. We then analyzed this effect by simulating various levels of noise and showed that there 

was a clear correlation between the noise variance and the likelihood of entering status epilepticus 

(Appendix IV). We compared these results with our clinical data, which had two examples of non-

convulsive status epilepticus. In both cases, the seizures began in typical fashion, but instead of 

terminating began having long periods of constant ISI with varying periods of amplitude 

fluctuations. There were many abrupt transition periods during which the ISI and amplitudes 

became arbitrary. After these brief periods of disorganization, the dynamics returned to constant 
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ISI. We compared the dynamics of our model results with these human seizures and found that the 

transition between different dynamics is quite similar. In Fig. 5D, we show a portion of two human 

seizures and one example of the simulation (Fig. 5E-F) and movement on the map (Fig. 5H-I). 

Further demonstration of the patients’ status epilepticus is provided in Appendix IV.  The patterns 

of organized- alternating with disorganized- firing, often known clinically as “waxing and waning 

seizures,” are entirely consistent with the model: the seizure undergoes periods in which it 

progresses towards termination, then because of noise it reverts to a point farther away from the 

offset bifurcation, as described previously (Kramer et al., 2012). 

 

Accelerating seizure: We then analyzed the seizure offset that increased in frequency described in 

Appendix V. In this case, we explored conditions on the map that could produce “speeding up” at 

the end of the seizure. We identified multiple trajectories in the map of brain states capable of 

producing these unusual seizure dynamics. As in the case of status epilepticus, these unusual 

patterns are dependent upon the relative position within the brain map, in this case occurring when 

brain states along a trajectory are affected by multiple bifurcations that are in close proximity 

(Appendix-Fig. 9-11). These results demonstrate the explanatory value of the seizure map and 

show how it provides a rational explanation for a wide range of physiological dynamics.  

 

DISCUSSION 

Seizures have been recognized clinically for millennia, but after nearly a century of electrographic 

recordings we still do not have a translatable method of characterizing their dynamics. We here 

address this issue and provide the first principled approach towards the organization of seizures in 

a Taxonomy of Seizure Dynamics (TSD). TSD establishes 16 dynamotypes of seizures, which 

could be extended to more exotic dynamotypes when considering non-planar bifurcations (see 

Appendix II.6). As TSD provides the classification of seizures, it remains completely unbiased to 

each seizure type. This invariance is broken by the seizure map, which establishes relations 

between dynamotypes and introduces a bias in the taxonomy, laying the grounds for a hierarchy of 

dynamotypes. The hierarchy is based on the mathematical consequences of how bifurcations are 

related to each other (Saggio et al., 2017). The relations can be considered as structural in the sense 

that they rely on the static properties of location, shape, branching and topology of bifurcation 

curves in the seizure map. The implications are functional in the sense that they determine the non-
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static properties of a seizure’s discharge patterns including frequency, acceleration/deceleration, 

amplitude and amplitude growth. As such TSD and the seizure map provide another example of 

the ubiquitous link of structure and function in biology.  

 

Our classification aims at precisely identifying the seizure type in terms of dynamics, without any 

dependence upon specific symptoms, pathology, or localization. Thus, it is highly complementary 

to the classical operational classifications used by clinicians to diagnose and treat patients, which 

are based upon those factors without addressing dynamics (Fisher et al., 2017). The dynamotype 

describes the behavior of the seizure itself, while the clinical classification describes the patient’s 

symptoms: together, both classifications are synergistic and can be used to improve patient 

stratification, providing more insight into diagnosis and treatment. TSD is based on simple, 

invariant, objective metrics that have compelling scientific rationale. With DC-coupled recordings, 

it is possible to distinguish the types with high fidelity, even with visual inspection. This method 

is thus readily available to clinicians, as many standard EEG acquisition devices now have 

excellent resolution near DC (<0.1 Hz). 

 

Our interpretation of the results relies on some key assumptions. First, we are assuming that the 

onset and offset of seizures are brought about by bifurcations.  Another common mechanism in the 

literature is noise-induced transitions (Lopes da Silva et al., 2003b), which our model can 

reproduce (see Appendix II.3 for a discussion of how this would affect our classification). Second, 

we rely on the assumption of timescale separation between the dynamics of the spikes within 

seizures and the slower dynamics controlling seizure threshold and termination (both in theory and 

in the simulated sample of data). If this assumption does not hold, different phenomena could occur 

and the scaling laws could be impossible to identify. Third, we only considered planar bifurcations 

for simplification (Appendix II.6). These assumptions were the axioms for developing the theory 

and data analysis. Future work will address the validity and consequences of these simplifying 

assumptions.   

 

Similar to sleep, seizures are universal from insects to humans, leading to the proposal that seizures 

are an inherent property of a brain, i.e. they are endogenous to the brain, perhaps as an emergent 

property of complex neuronal networks (Jirsa et al., 2014). This may explain why, despite the vast 
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range of genetic, structural, chemical, and developmental conditions that cause epilepsy, seizures 

have a remarkably limited set of dynamical behaviors. It is therefore not surprising that elementary 

mathematical laws can describe their electrophysiological signature. However, clinical 

interpretation of seizure dynamics has been almost universally based on simple observation, in 

which clinicians report the frequency and morphology of spikes.  This method is helpful to identify 

primary generalized epilepsies, but within focal seizures has limited clinical use.  TSD by itself 

does not have any bias either regarding the dynamotype, but when linked to the seizure map shows 

certain dynamotypes to be more prevalent than others. Empirically, low voltage fast activity 

(Wetjen et al., 2009) and focal DC shifts (Ikeda et al., 1999) have been found to be highly 

predictive of the true seizure focus, which are both patterns corresponding to common 

dynamotypes, suggesting clinical utility.  

 

One limitation of previous clinical descriptions of seizures is that it has been unclear which 

dynamical features are relevant.  There is high variability in the frequency and morphology of 

spikes due to individual fluctuations and noise, as seen in spontaneous seizures recorded in humans 

and experimental models (Jirsa et al., 2014). Our analysis identifies the invariant dynamics that 

impose important constraints on the system. A crucial aspect of our approach is that it allows us to 

disentangle characteristics that are necessary to describe the dynamics from other seizure related 

phenomena that are not fundamental to our simplified model (e.g. spike and wave complexes, 

preictal spikes, sentinel spikes (see Appendix I.2)). This is not to suggest that such biomarkers are 

not relevant to epilepsy: they have well-known correlation with the epileptogenic zone (Conrad et 

al., 2020) and can predict the occurrence of the first spontaneous seizure during experimental 

epileptogenesis (Chauviere et al., 2012). The Epileptor model, which comprises the SN-SH 

dynamotype, generates both spikes and seizures (Jirsa et al., 2014).  The spikes are important 

indicators of the organization of the networks, but not part of the generic features of onset and 

offset dynamics and thus not appear in the generic model  (Saggio et al., 2017). If additional 

mechanisms are introduced based on other forms of reasoning, as in (Jirsa et al., 2014) via a second 

population, spikes can be included in the dynamics.  It is important to note that we only analyzed 

the particular case of drug-resistant epilepsies investigated with invasive intracranial recordings; 

however, it is unlikely that this theory is specific to such epilepsies as seizures forced in non-

epileptic networks follow the same universal rules (Jirsa et al., 2014).  We note that prior work 
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focusing on individual bifurcations are all also entirely consistent with TSD, which encompasses 

all these onset and offset possibilities and further shows how they interact (Appendix VII).  

 

This work does not include data from generalized onset epilepsies, as these are not typically 

recorded with intracranial EEG. Our taxonomy is, however, fully consistent with past work on 

generalized epilepsy dynamics (Wendling et al., 2015). Absence seizures, for instance, begin with 

sudden onset and offset of ~ 3 Hz large amplitude oscillations without a DC shift (Slaght et al., 

2004) and terminate abruptly without slowing down to zero, which would point to a SubH/FLC 

type (which is the most likely dynamotype (Golubitsky et al., 2001), see Appendix II.5). In this 

work with focal epilepsies, the most common dynamotypes were the SN (+DC)/FLC and SN/SH 

(which are also likely types).   

 

When comparing our results with a past visual classification system of spike frequency (Perucca 

et al., 2014), we found no correlation with pathology in our cohort of 120 patients.  However, our 

cohort did not have any patients with tuberous sclerosis, which was the only pathology associated 

with burst suppression in that prior work. Combining the data from both studies, the different 

patterns appear to be either evenly distributed or too rare to find robust correlations with pathology. 

Similarly, dynamotypes are not strongly correlated with pathology. In terms of the seizure map, we 

hypothesize that what determines the seizure dynamics is not the pathology per se, but the location 

of the brain on the map. Specific pathologies may predispose to certain regions, but there are many 

complex dynamics affecting brain state and many conditions that can produce similar dynamics.  

This coincides with the idea of the seizure map showing the full range of potential seizure onset 

and offset activity. 

 

There is great clinical and research potential in characterizing a seizure’s dynamotype, as it 

provides a unique perspective on brain networks. The current standards of epilepsy care focus on 

phenotype, genotype, and the time/location of seizure onset. While those methods have obvious 

utility, they do not address the underlying dynamics and thus have left several questions 

unanswered for decades. How do seizures start, stop and spread? How do we tell the difference 

between inter- or pre-ictal spiking and seizure initiation? Is it possible to measure the distance to 

seizure threshold, i.e. determine seizure risk at a given moment? How do we compare two different 
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seizures? Is it possible to measure if a treatment is working by moving the brain “farther away” 

from seizure onset, rather than waiting to see if seizures recur? These questions all require an 

understanding of the dynamics—an understanding that is not addressed by the current clinical tools. 

This is where the utility of the dynamotype is manifest. At its most basic, the dynamotype is a 

quick description of the key dynamics of a particular seizure, a clinical language that focuses on 

the aspects that are most important. This would supplement current visual descriptions, which 

typically are limited to amplitude and frequency. But there are many deeper applications of this 

tool as well. We have previously demonstrated that very different biophysical mechanisms can 

produce the same dynamotype (Jirsa et al., 2014). Here we show that seizures from 120 patients 

contain almost the entire taxonomy of dynamotypes, and that a wide array of focal pathologies can 

be grouped into similar dynamotypes. Our interpretation is that this is because the seizures depend 

heavily on “local” dynamics, i.e. the current brain state (location on the map) and acute 

perturbations (noise in the system), more than that a single pathology would necessarily predispose 

to a specific location on the seizure map. 

 

There are many other potential applications for TSD in basic research as well. For instance, our 

group recently published an analysis quantifying how epileptogenesis progresses in the tetanus 

toxin model in rats (Crisp et al., 2020). That work showed that the dynamotype evolved over time, 

starting with SN and moving into SNIC (Appendix-Fig. 2D) and sometimes SupH onsets over the 

course of weeks. A clinical trial is currently underway in France using the SN-SH dynamotype to 

model seizure foci and spread (HBP, 2018). Future versions of such tools could utilize the whole 

taxonomy to be much more comprehensive, tailoring models to the key underlying dynamics of 

specific patients. These models would greatly enhance modern network analytic tools (Stacey et 

al., 2020), which would be greatly enhanced with a rational model to describe the underlying 

dynamics. 

 

One novel aspect of dynamotype is that understanding the underlying dynamics can help in the 

design of strategies to control seizures, such as with electrical stimulation (Kalitzin et al., 2010). 

Studies on neuronal bursters (Izhikevich, 2000), which are organized in similar dynamic types, 

demonstrate that types have different sensitivity to stimulation. For example, SubH onset acts as 

resonators, which require a resonant frequency in the stimulus to trigger oscillations, while SN 
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onset behaves as an integrator in which the nature of the stimulus (excitatory or inhibitory) rather 

than the frequency plays a key role (Izhikevich, 2000).  There is a long history of using perturbation 

to probe the proximity of a nearby bifurcation in disciplines such as electrical power (Chow et al., 

1990) and reservoirs (Heppell et al., 2000). Past work on stimulation to assess epileptogenicity 

(Alarcon, 2005; Kalitzin et al., 2005; David et al., 2010) is similar to such work and would be 

greatly enhanced with the insight gained from this model to understand the nearby bifurcations. 

There is a long history of bifurcation research in other fields that may also be applicable to seizures, 

such as using perturbations to assess proximity to a SubH or SupH bifurcation (Bryant and 

Wiesenfeld, 1986; Vohra et al., 1994; Yaghoobi et al., 2001). Further theoretical and clinical work 

is necessary to assess whether knowledge of the dynamotype could also improve the ability to abort 

seizures with tailored stimulation. The second important prediction is that the synchronization 

properties of coupled bursters are bifurcation-dependent (Wang et al., 2011; Reimbayev and 

Belykh, 2014; Belykh et al., 2015). This is a key issue for seizure propagation, as it predicts that 

the ability of a seizure to spread is dependent upon its type. Since the spatiotemporal organization 

of the seizure is part of the data features used to personalize brain network models (Virtual Epileptic 

Patient (Jirsa et al., 2017; Proix et al., 2017)) and functional connectivity based approaches 

(Hutchings et al., 2015; Sinha et al., 2017; Taylor et al., 2017), the choice of the right dynamotype 

is critical for successful patient modeling and clinical translation.  

 

Another significant contribution of this work concerns the dynamics of the slow permittivity 

variable to explain how slow changes in the behavior/state of a brain region can bring it closer or 

farther away from different bifurcations, i.e. seizure threshold. The fact that all 13 patients had 

seizures belonging to at least two types implies that the permittivity variable moves on a dynamical 

map in which different types of bifurcations can occur. Each parameter of the map should be 

considered as a representation of a manifold of physiological variables that cooperate to produce a 

particular change in the system. Given the slow timescale at which these changes occur, 

neurochemical substances (e.g. hormones, neuromodulators etc.) are the best candidates. Within 

the permittivity variable we can here distinguish two timescales: a slow timescale of the order of 

the ictal length, and an ultra-slow timescale of the order of the interictal length (hours, days, 

months, years). Typical examples include the circadian regulation of seizures (Karoly et al., 2017) 

and catamenial epilepsy. Interestingly, both males and females display ultraslow (weeks) 
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modulation of seizure probability both in rats (Baud et al., 2019) and humans (Karoly et al., 2017; 

Baud et al., 2018), further suggesting that these results are species- and sex-independent. Those 

results and ours strongly support the proposal that patients move closer and farther away from 

seizure threshold (i.e. “travel the map”) during their lifetime. This interpretation may also be 

helpful in assessing a brain’s current proximity to seizure bifurcations, i.e. predict the risk of 

seizures occurring. Several features are altered when nearing the onset bifurcations, such as preictal 

spikes (Jirsa et al., 2014), variance of the signal (Meisel et al., 2015), and reaction to electrical 

probing of cortical excitability (Freestone et al., 2011). Recent work has shown that interictal 

discharges act like system perturbations that behave like the slow approach to bifurcations, just as 

predicted by our model (Chang et al., 2018). Seizure forecasting, based on electrographic 

recordings, is already enhanced when circadian rhythms are used to inform the model (Karoly et 

al., 2017). If the ultraslow physiological correlates of the map’s parameter could be identified, 

measured, and manipulated, this would open new possibilities to assess when the patient is moving 

towards unsafe regions of the map and to alter their trajectory, i.e. control seizures before they 

occur.  

 

Our proposed framework provides an organizational principle of seizure dynamics, which, when 

linked to canonical dynamic systems, identifies a generic seizure map charting out characteristics 

of dynamotypes including prevalence of a dynamotype and possible pairings of dynamotypes that 

can occur during a seizure, as well as others that are prohibited. TSD does not describe all possible 

seizure features, but relies on seizure onset and offset classification, which is why we defend a 

complementary approach, combining it with traditional operational classifications. However, it 

provides a unique avenue to classify seizures based upon their key dynamical features, while 

providing insight into how seizures become more or less likely to occur at a given time. A corollary 

is that, although TSD has been developed in the context of seizure dynamics, it likely extends to 

physiological function of the healthy brain (e.g. alterations between REM and slow wave sleep, 

and the appearance of gamma frequencies or ripples during slow wave sleep) and stipulates the 

existence of at least two time scales in any theory of the brain. Slow time scales are present in many 

theories of brain function, but typically have been limited to the domain of learning and adaptation, 

thus functionally separated from fast processes. Here the functional integration and co-evolution 

of the fast neuroelectric and slow permittive time scales suggests emergent and inherent properties 
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of brain processes.  
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Figures 

 

 

 
 

Figure 1: Scaling-laws of bifurcations. Six bifurcations are responsible for the transition from 

rest to seizure and vice-versa. For each bifurcation we report: name and abbreviation; an example 

of timeseries; whether the amplitude or frequency of the oscillations goes to zero at the bifurcation 

point, and if they do how they change as a function of the distance to the bifurcation point (λ); 

whether the baseline of the signal shows a baseline shift; and if the bifurcation can be used to start 

(→) or stop () a seizure or both (→). 
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Figure 2: Seizure dynamics taxonomy.  A: interspike intervals (ISI) and peak-to-peak amplitude 

were measured for every spike during seizures. DC shift was defined as sharp (< 0.5 s) deflections 

that rise > 5 times the background variance and persist for at least 1 s. B: DC-coupled (red) and 
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high-pass filtered (black) data of a seizure shows SupH onset and SH offset.  C: SN onset 

characterized by DC shift at onset.  Ambiguous seizure offsets were included in the analysis as 

FLC.  D: SupH onset and offset. Although this patient did not have DC-coupled recordings, the 

amplitude scaling is clearly most consistent with SupH. Scale bars: 10 sec.  E. Final results for all 

onset and offset bifurcations tested. All four bifurcation types were present.   F: Final taxonomy of 

the 39 patients with onset+offset classifications. In patients with DC recordings, SH offset was 

sometimes distinguishable from SNIC.  
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Figure 3:  Manual classification of seizures from long-term intracranial recordings. As a 

conservative analysis, colored bars show seizures with unequivocal slowing-down (blue) or 

constant (grey) scaling, demonstrating that all 13 patients had both types of seizure offset. 

Additional seizures that had more difficult classification (white) were not needed for this analysis, 

as each patient had already demonstrated both offset types.  
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Figure 4: Modeling seizures. A: During a seizure the microscopic variables, which compose a 

brain region, organize so that the emergent global activity can be described by a few collective 

variables. These collective variables, on the other hand, act on the microscopic variables, 

‘enslaving’ them. B: The fast variables can be in different states depending on the values of the 

parameters. In our model we have three parameters (𝜇2, −𝜇1, 𝜈), however the relevant dynamics 

occurs on a sphere with fixed radius. We thus consider the two-parameter spherical surface (𝜃, 𝜙) 

that can be sketched with a flat map as shown in C. C:Bifurcation curves divide the map in regions 

where different states are possible: healthy state (white), ictal state (violet), coexistence between 

healthy and ictal states (yellow), coexistence between healthy and ‘active’ rest (a non-oscillatory 

state with a different baseline than the healthy state (gray)). When a seizure starts because the 

system crosses an onset bifurcation, the slow variable enables movement along the black arrow (a 

path in the map) to bring the system back to rest. Note that in this model, the system alternates 

between the resting and seizing states within the bistability regions. The shape of the arrow is meant 
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to better show the trajectory followed by the system, however movement in the model occurs back 

and forth along the same curve. Insets show example of timeseries for different paths.  SubSH: 

Subcritical Saddle Homoclinic, an unstable limit cycle that occupies a small portion of the map but 

is incapable of starting/stopping seizures, and thus is not included in Fig. 1 nor the rest of the 

analysis.  D: An expanded view of one trajectory followed in C. The path (double arrow) represents 

movement from resting to seizure state and back by crossing the bifurcations, which in this case 

are SN and SH. This activity forms a seizure in the time series. The resting state is represented by 

a black line (fixed point), the minimum and maximum of the amplitude of the seizure (limit cycle) 

by gray lines. 
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Figure 5: Fluctuations in the ultra-slow modulation of the path causes changes in the 

dynamics of the seizure. A: A recording in which the seizure begins to go towards a SupH offset 

(square-root decreasing amplitude), but the amplitude increases again and the final offset is SH. B: 

A portion of the simulation of the model in (Saggio et al., 2017) done to reproduce the dynamics 

observed in the recording. This timeseries is high pass filtered to simulate the effect of AC 

recordings. The non-filtered simulation is shown in C.  D: A portion of a long status epilepticus 

recorded in one patient. The status epilepticus was characterized by transitions in the dynamics 

(such as at 70s and 230s). E: High-pass filtered, and F: unfiltered portion of model data simulating 

the behavior in D. G: A zoomed, flattened projection of the map in Fig. 4B (see Appendix), for 

reference in H-I. H,I: Amplitude and frequency maps showing trajectories (white) of the modelled 

seizures in C,F.  The seizure from C begins (red triangle) and naturally moves upwards towards 

the supH bifurcation, but a change in the ultraslow drift prior to termination pushes the system 

downward, changing the offset from SupH to SH.  Conversely, the seizure from F begins (black 

triangle) and repeatedly moves towards the SH termination due to the ultraslow drift, but is pushed 
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back into the seizure regime repeatedly by high levels of noise, which overrides the role of the slow 

variable in terminating the seizure.  
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APPENDIX 

 

I. Methods 

I.1 Data collection 

Human EEG data 

Data were collected from seven international epilepsy centers: University of Michigan, 

Mayo Clinic, Hospital of the University of Pennsylvania, Children’s Hospital of Philadelphia, 

University of Melbourne, University of Freiburg, and Kyoto University Hospital (Ihle et al., 2010; 

Cook et al., 2013; Kanazawa et al., 2015; Wagenaar et al., 2015). All patients consented to share 

their data according to the local institution’s review board policy. Data were de-identified EEG 

collected with each institution’s clinical EEG equipment.  All EEG data used in this work were 

from either grid or depth intracranial electrodes. All sampling rates were > 200 Hz and antialiasing 

filters > 100 Hz, but there was variability between centers (XLTek, Nicolet, Natus, Nihon Kohden, 

NeuroVista).  The Melbourne patients had ambulatory devices that recorded data for several 

months 3, while all the others were acquired during acute inpatient recording sessions.  As the 

analysis was limited to amplitude and interspike intervals that should not be affected by the 

different techniques used, we did not stratify by center, but we did verify that the results did not 

depend upon center for offset dynamics. For onset dynamics, there were only two centers (Kyoto, 

Michigan) that had amplifiers that recorded low enough frequency content (high pass filter 0.016 

Hz) (Kanazawa et al., 2015) to allow analysis of direct current (DC, i.e. very low frequency) shifts, 

and so only those centers were included in the analyses that involved DC coupling.   

In every patient, EEG from a single electrode was used for analysis.  The electrode was 

chosen in each case by reading the official clinical report to identify the seizure onset zone and 

choosing the electrode with the highest amplitude within the seizure.   

 

Simulated seizures 

 Validation of the classification scheme required a gold standard dataset, which we 

generated by simulating 60 random iterations of each type of onset and offset bifurcation. The 

simulation used the model and methods to begin/end at specific bifurcations described in Saggio 

et al (Saggio et al., 2017) and a function to generate a trajectory across each bifurcation. The 

trajectory was an arc of great circle as described in section II for the model, but the crossing point 

on the bifurcation curve and the inclination of the path with regards to the bifurcation curve 

changed randomly at each iteration to produce adequate variability within each bifurcation type. 

These conditions were implemented to create a robust data set that would mimic biologic 

variability. We simulated an equal number of seizures per bifurcation. The final result was 240 

seizure onset and 240 seizure offsets, each with random characteristics and spanning a wide range 

of physiologically-relevant parameters. The 480 seizures were used to assess the accuracy of both 

the human and algorithm classification schemes. 

 For each bifurcation, we created an algorithm able to choose a random point on the 

bifurcation curve (see section V) and a random point on a curve we designed to run parallel to the 

bifurcation curve. A trajectory linking the two points would cross the bifurcation curve with 

different inclinations at each iteration. The combination of a random point on the bifurcation curve 

and different inclination gives different amplitude/frequency behaviors, as shown in Appendix – 

Figs. 10 and 11. Given that variability in the non-prescribed trends is due to the presence of other 
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bifurcations nearby, we ignored portions of the bifurcation curves far from others, such as the 

portion of SupH behind the sphere as compared to the bistability regions. Two of the onsets (SubH 

and SupH) required a small amount of noise to be added to the simulations in order for the system 

to be able to leave the unstable equilibrium. The velocity of the slow variable, c, was choosen for 

each type to be small enough to ensure time scale separation so that the prescribed scaling law 

would be visible.  

 As these simulations had arbitrary timescale and different levels of background noise, we 

then post-processed the data to blind the reviewers.  We first added normal random noise 

(MATLAB’s ‘normrnd’, mu = 0, sigma = 0.01) to all samples of every signal based upon the 

existing noise.  We then rescaled all seizures so that the final interspike intervals would be ~0.2 s, 

then downsampled (‘decimate’ function in Matlab) so the sampling rate would be ≤ 200 Hz. All 

code is available for download at https://doi.org/10.7302/ejhy-5h41 (Crisp et al., 2019). 

 

I.2 Spike analysis 

As stated in the main body, we define a “spike” in dynamical terms: any prominent sharp 

transient associated with the dynamical process, which for these human EEGs means any fast 

transient < 250 ms long and amplitude discernable from the background. Inter-spike interval (ISI) 

is defined as the time between sequential spikes. Amplitude for a given spike is defined as the 

absolute maximum peak-to-peak difference in a window of time ranging from the halfway point of 

the first spike and the halfway point of the latter spike (see Fig. 2A in main body). 

Beginning/ending spikes utilize only the halfway point of the nearest spike. All analyzed data were 

decimated to ~200 Hz for efficient analysis. In order to remove slow transients and identify the 

local spike amplitudes, raw EEG data were first high-pass filtered (MATLAB’s ‘highpass’, 1 Hz).  

Peaks were found in Matlab using the ‘findpeaks’ function, after manually optimizing amplitude, 

time, and prominence for each patient.  This process required iterating the features until visually 

confirming that spikes were correctly detected, using plots in Matlab with the spike detections 

superimposed upon the EEG signal (see Appendix – Fig. 1). Due to the wide variability between 

patients, we were unable to develop a reliable automated method to determine the spike locations 

in every patient.   

Sentinel spikes.  Some seizures began with a single high amplitude ‘sentinel spike,’ which 

typically was present in many electrodes, often far more than were involved in the subsequent 

seizure. We used this spike to indicate the initial seizure onset time based upon the decision of our 

clinical experts. However, these spikes were not included in the analysis of dynamotype because 

1) the sentinel spikes often occur on channels that are not involved in the later seizure, which calls 

into question their suitability as a canonical feature of the dynamotype; 2) their presence has no 

clear relationship with the subsequent dynamotype; 3) according to the basic dynamics principles, 

they are not a canonical feature of any of the onset bifurcations; and 4) in typical human recordings 

it is not possible to discern when these are true spike-wave discharges versus filtered transients of 

a DC shift (e.g. the first spikes seen in Fig. 2B&C, Appendix – Fig. 1A&C). Thus, in this work, 

we note their presence to determine seizure onset time, but at present do not include them within a 

framework of a canonical model of seizure dynamics.  

Spike-wave complexes. Some seizures had spike-wave complexes in which the aftergoing 

slow wave was very prominent, similar to the waveforms seen in absence epilepsy.  In these cases, 

the highest amplitude of the whole complex was used, even if it was the slow wave, and only a 

single event was counted from each complex (see Appendix – Fig. 1C).   
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Clonic spiking.  As described previously (Jirsa et al., 2014), when there was clonic spiking 

at the end seizures, the interclonic interval was used to evaluate the presence of slowing down, and 

the ISI between successive fast spikes within each clonic burst were ignored (see Fig. 2B & 

Appendix – Fig. 1D,G).  

It is important to note that this analysis does not address every feature of the seizures.  There 

are many phenomena, such as the three listed above, the shape and frequency of the spikes, and 

other complex patterns, that are not invariant features of the bifurcations. While these are important 

to the clinical description and can be relevant to understand the underlying dynamics, in the 

framework here proposed they do not contribute to defining the dynamics of seizure onset and/or 

offset, and are thus uninvolved in dynamotypes. 

 

I.3 Visual classification of seizure dynamics 

 The key to differentiating the bifurcation type is to identify the invariant dynamical features, 

which can be summarized as the presence of a DC shift and the behavior of the ISI and amplitude 

(see Fig. 1). These features are typically quite easy to distinguish. The only prominent ambiguity 

is that it is not feasible under clinical conditions to distinguish between the logarithmic and square 

root functions at offset, as previously described (Jirsa et al., 2014). Thus, our first test was to 

determine if human reviewers can classify the different bifurcations visually using simple rules.  

The presence of a DC shift and the general trends of ISI and amplitude can readily be 

determined upon visual analysis. The basis for this analysis is to determine whether the amplitude 

and ISI scale to zero.  For ISI, this appears as a decreasing frequency as T approaches 0, i.e. slowing 

down at seizure offset, or speeding up after seizure onset.  For amplitude, it appears as a gradual 

change in the spike amplitudes, with the spike at T=0 being very small compared to the baseline, 

then increasing further away from T=0.  This description is qualitative but is readily applied to 

typical EEG data.  Since the onset/offset dynamics are typically defined by only 5-10 spikes and 

there is considerable noise and variability in real EEG signals, rigorous curve fitting is rarely 

possible (though we included it in the examples in Appendix – Fig. 1).  Just as with clinical EEG 

reading, we found that a much simpler and more reliable classification system was to visualize the 

ISI and amplitude plots of the first and last 10 spikes and determine whether the trends were scaling 

to zero, constant, or arbitrary, and if there was a DC shift. For amplitude, we defined ‘scaling to 

zero’ as steadily diminishing to less than 3 times the background level near T=0. For ISI, we define 

it as steadily larger ISI near T=0, with the last two ISI > 50% larger than the mean ISI 10 seconds 

prior. All analysis for onset and offset concentrated on the first/last 5 seconds of data, but 

occasionally used up to 15 seconds to observe the full patterns. Using these definitions, we 

developed a visual classification system (Appendix – Table 1). 
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Onset  

DC Shift SN (+DC) 

Amplitude increasing SupH 

Interspike interval (ISI) decreasing (i.e. frequency increasing) SNIC 

ISI and Amplitude constant/arbitrary (no DC shift) SN(-DC) or SubH 

  

Offset  

DC Shift SH 

Amplitude decreasing SupH 

ISI increasing (frequency decreasing) (no DC shift) SH(-DC) or SNIC 

ISI and amplitude constant/arbitrary (no DC shift) FLC 

Appendix – Table 1: Visual classification system  

Classification relies upon visualization of the given features.  In case of multiple features 

present, the bifurcation listed on top takes priority.  DC shift: a sharp deflection > 5 times 

the background that occurs in < 0.5 s, then lasts > 1 s.  Constant: the value is consistent 

and does not trend upward or downward for 10 spikes. Arbitrary: no consistent unimodal 

trend over 10 spikes. 

 

 

I.4 Features for automated classification of seizure dynamics 

We also developed an analytical tool to use quantitative features and machine learning to 

identify the dynamotype. The goal of this analysis was to determine if the features used in the 

qualitative study were robust. We designed features based upon the visual classification system in 

Appendix – Table 1, focused on quantifying DC shift, amplitude trends, and interspike interval 

trends. Definitions, feature computation, and feature descriptions are as follows: 

 

Baseline Definition: Several features require definition of the baseline, i.e. seizure activity vs. non-

seizure activity. All analyzed waveforms include a period of baseline, followed by seizure activity, 

followed by more baseline. Computationally, the term ‘baseline’ below is defined here as the 

segment of the waveform that started before/after a seizure. For an onset baseline, this segment 

was taken as the start of the waveform up until seizure onset. For an offset baseline, this segment 

was taken as the point after seizure offset to the end of the waveform.  

DC vs. Non-DC:  Data acquired at Kyoto (Nihon Kohden EEG 1100 amplifier) or Michigan (Natus 

Quantum amplifier), both of which record down to 0.016 Hz, were included in the DC cohort, and 

all other data was considered “non-DC”. Non-DC data were first filtered with 1 Hz highpass filter 

(Matlab ‘highpass’), then all features extracted. On the DC data, features were computed on the 

raw, unprocessed EEG. 

Preprocessing steps:  1) Onset/offset times, as well as the relative bifurcation window lengths, were 

determined by a trained epilepsy specialist. 2) Spikes were identified using findpeaks.m (Matlab) 

to locate upper (maxima) and lower (minima) spikes. 3) Seizure polarity was determined by 
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determining whether the median of the upper or lower spikes had a greater absolute difference from 

the baseline median. The value with larger difference was chosen as the true “spikes” and were 

used for all further analysis.  All amplitudes were taken as absolute values. This step accounts for 

the fact that spikes can be either positive or negative in intracranial electrodes. 

Feature 1 – ISI trend: The ISI of all spikes were computed and plotted consecutively. A simple line 

was fit to the data with a least square algorithm and the slope of the line fit was extracted as the 

overall ISI trend. For onset (offset), the first (last) 5-15 spikes were used, using as many as possible 

until a clear inflection point in the line.  The order was reversed for offset.   

Feature 2 – Amplitude trend: This feature was computed exactly as in ISI trend, except the peak-

to-peak spike amplitudes were used in place of the ISI. 

Features 3&4 – normalized upper and lower peak median: The signed distance between the median 

of the upper peaks and the baseline median was computed (upm). That same was done for the lower 

peaks (lpm). If |upm| > |lpm|, then normalized values were nupm = 1, nlpm = upm/lpm. If |lpm| > 

|upm|, then nlpm = -1, and nupm = - lpm / upm (note that lpm is negative in all cases).  These 

features identified DC shifts. 

 

I.5 Validation of classification methods 

 In our prior work with the Epileptor model (the SN/SH type), we proved the goodness-of-

fit to the logarithmic equation for terminal ISI (Jirsa et al., 2014). However, in the current work we 

found that GoF methods were not robust when discerning between multiple seizure types in noisy 

data. This is because the number of samples (spikes) is small, while the combined uncertainty in 

the noise as well as the classification of the different types can be significant. The result was that 

the variability due to noise was often more prominent than the differences between bifurcation 

types. This difficulty is not surprising, as seizures are notoriously difficult for automated algorithms 

to identify under clinical (noisy) conditions, and classification will be even more difficult. More 

importantly, even under ideal conditions any such analysis would be limited due to the lack of a 

gold standard. We therefore decided on an alternate and more rigorous approach, appropriate for 

the data quality of clinical seizures. 

 In order to validate our classification system, we used a multi-step approach.  The key to 

this validation was the generation of a gold-standard with simulated data, in which we know which 

bifurcation is present. Using the gold standard, we first used machine learning tools to assess how 

accurately our chosen features are capable of identifying the differences between the bifurcations.  

We then tested how accurately human reviewers could identify each bifurcation using visual 

review.  After proving that the human reviewers were accurate and reliable in the gold standard, 

we tested their reliability in the true clinical dataset.  These steps are detailed below.   

 

Step 1: Feature validation and bootstrapping:  

OBJECTIVE: Determine whether the chosen features capable of discerning between the 

four bifurcations in the gold standard.  

METHODS: Using the simulated seizures (240 onsets, 240 offsets), supervised learning 

was chosen to quantify how well the simple features in I.4 captured the differences between the 

different dynamotypes. This was performed by fitting labeled features to a statistical model to 

generate a goodness-of-fit measurement. Specifically, we used a multinomial logistic regression 

model (‘mnrfit’, Matlab), which outputs a model parameter ‘deviance’ that estimates the Goodness-

of-Fit. The GoF was compared with the gold standard in the simulation data. Note that this method 
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is not used for classification nor to determine the “best” potential fits. Rather, we used the GoF 

statistic to assess whether our chosen features were capable of discerning between the four 

bifurcations. While there certainly could be better features, we chose these because they 

recapitulate what experts use for visual analysis, which is what this test is trying to validate. 

 To provide reference for the GoF computation, we performed a permutation test by 

randomly scrambling the bifurcation labels and re-fitted the data to the model. This was repeated 

10,000 times to provide the distribution of random GoF, which can then be compared with the 

index case and provide a p-value, a process known as bootstrapping.  

RESULTS: For both onset and offset bifurcations, the GoF with true labels was better than 

all 10,000 permutations (p < 1e-4). This result indicates that the 4 features are very effective in 

capturing the differences between the 4 onset and offset bifurcations and extremely unlikely to be 

due to chance.  

CONCLUSION: The chosen features are capable of discerning between the bifurcations. 

 

Step 2: Human visual analysis of simulated data:   

OB JECTIVE: Validate whether visual analysis by human reviewers accurately identifies 

the different bifurcations in the gold standard. 

METHODS: Using the simulated seizures (240 onsets, 240 offsets), three independent 

reviewers labeled all bifurcations using an in-house Matlab viewing program that kept labels 

blinded while also randomizing the order in which the seizures were viewed. DC-coupled data were 

shown with two waveforms: raw data and 1 Hz highpass filtered data (‘highpass’, Matlab), in order 

to highlight DC components while also allowing viewing of spike dynamics. Reviewers had to 

choose exactly one of the four potential bifurcations for each example. 

 RESULTS: For onsets, all three reviewers unanimously agreed in 80%, 2/3 agreed in 

18.3%, and no agreement was found in 4/240 (1.7%). Compared to ground truth, reviewer 1, 2, and 

3 had 100%, 97.92%, and 80.42% accuracy, respectively.  For offsets, there was majority 

agreement in all 240 seizures, 78.75% of which were unanimous.  The Fleiss Kappa score for these 

results has a p-value that is lower than the smallest number possible to express in Matlab (p < 

4.94e-324). Compared to ground truth, reviewer 1 and 2 both had accuracies of 99.85% while 

reviewer 3 had 78.75%.  

CONCLUSION: These results clearly show that the visual classification system can 

distinguish the four bifurcation types, and that human reviewers are accurate and consistent. 

 

 

Appendix – Table 2: Reviewer agreement on simulated data  

Reviewers were highly consistent with each other in the simulated data. The interrater 

reliability is extremely high, as the p-value (Fleiss Kappa, 3 reviewers) is negligible. 

 

Step 3: Validation on clinical data:  

OBJECTIVE: The strong results of Steps 1 and 2 validate the use of these methods in 

clinical data. The goal of the present step is to determine reliability of the three reviewers when 

labeling the human seizures, and to use these labels for the taxonomy in Fig. 2. 

 Unanimous 2/3 agree No consensus P value 

Onset (N=240) 192 44 4 P< 4.9 e-324 

Offset (N=240) 189 51 0 P< 4.9 e-324 
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METHODS: We evaluated the 51 DC-coupled seizures and 69 non-DC-coupled seizures 

separately (see main paper). We used similar methods as in Step 2 to classify the human seizures. 

One important difference in this analysis is that SubH onsets were grouped with SN (-DC), and 

SNIC offsets with SH (-DC), as described. We calculated the Fleiss Kappa statistic between the 

three reviewers to assess inter-rater agreement. 

RESULTS: As seen in Appendix – Table 3, the three reviewers had high agreement, 

especially in the DC-coupled data. We also used the majority labels with the bootstrapped 

automated feature analysis as in step 1, to determine how well the given features captured the 

specific chosen bifurcation. These results showed that the DC onset and offset both had excellent 

GoF with the chosen features.  Non-DC offset was also excellent, but the non-DC onset had less 

consistent results (p=0.0969).  This demonstrates the usefulness of DC-coupled recordings to 

identify the onset bifurcations.  

CONCLUSION: These results show that the labels are highly consistent between different 

reviewers. Given the results from Steps 1 & 2, we conclude that is it highly likely that the 

bifurcations are present in the data and that these methods are correctly identifying them. Given 

these positive results, we used the majority-vote classification for the taxonomy seen in Fig. 2.  

 

 

 

 

 

 

 

 

               A. Reviewer agreement on human data                

B. Automated features permutation test 

Appendix – Table 3: Accuracy identifying bifurcations in clinical data  

A. Reviewers were highly consistent with each other scoring the bifurcations in the clinical 

data. (Fleiss Kappa, 3 reviewers). Each patient was stratified based upon whether their EEG 

had DC-coupled recordings, as the non-DC group could not disambiguate SN or SH with DC 

shifts. B. The model fit of the automated features to each chosen bifurcation was performed 

versus human majority vote, then bootstrapped as in Step 1. The chosen model parameters were 

clearly highly descriptive of chosen bifurcations in DC onset and offset and non-DC offset. As 

expected, the lack of DC coupling makes it difficult to disambiguate the four onset bifurcations. 

 
 

I.6 Challenges with classification 

There were several conditions in the data that required rules for disambiguation between the 

different bifurcations: 

1. Amplitude scaling. Amplitude was often arbitrary in our clinical data, showing considerable 

variability from spike to spike. This variability sometimes made it difficult to determine if 

there was scaling to zero (square-root).  In those cases, we observed the spikes closest to 

 DC (N=51) Non-DC (N=69) 

Onset P = 1.78e-15 P = 4.51e-12 

Offset P = 4.51e-11 P = 9.72e-4 

 DC Non-DC 

Onset P < 1e-4 P = 0.0969 

Offset P = 7e-4 P < 1e-4 
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T=0: if the first 5-10 spikes appeared to arise from the baseline noise and consistently grow 

in later spikes, it was classified as square-root scaling (SupH).  If the first 5-10 spikes were 

clearly > 3 times higher than baseline noise, the seizure was classified as constant (i.e. 

arbitrary) amplitude even if later spikes increased in amplitude.   

2. Late amplitude increase. In many seizures, after ~10 seconds it was common for the spiking 

activity to increase in amplitude as the seizure spread to neighboring electrodes. This late 

increase was not part of the onset bifurcation, and only the initial trend during the first 10 

seconds was used for classification, which was typically not SupH. 

3. ‘Arbitrary’ scaling usually constant. Although the “non-zero” scaling listed in Fig. 1 

theoretically includes many arbitrary patterns, we found that the vast majority of examples 

manifested as a constant value, similar to the analysis in (Jirsa et al., 2014).  For instance, 

nearly all SN onsets had constant amplitude and ISI, and SH offsets had constant amplitude. 

4. Mixed dynamics. In cases where features from more than one bifurcation were present in 

the data (e.g. DC shift and amplitude scaling), we used the following prioritization order: 

DC shift → amplitude scaling → frequency scaling. The highest priority was used as the 

final bifurcation, e.g. if DC shift and amplitude scaling were both present, it was classified 

as SN (onset) or SH (offset).  Appendix – Table 1 presents the bifurcations in this order. 

5. Unusual dynamics. There were rare examples in which the dynamical behavior was highly 

unusual, all of which we present in this Appendix (Appendix – Figs. 1F, 2, 9-11). Each of 

these patterns was classified as ‘arbitrary’. See section I.8 for further details. 

Despite these rules, there were examples in which the human reviewers were either incorrect in the 

simulated data or did not agree with each other in the clinical data. While these errors were 

uncommon, we evaluated each case to determine the conditions responsible. The following are a 

list of the conditions that can make classification difficult. “a” and “b” were specific to the 

simulated data, as it is necessary to know the ground truth to identify these problems. 

 

a. Misclassifying arbitrary bifurcations (in simulated data). This occurred when an arbitrary 

bifurcation had parameters that produced trends very similar to scaling laws (either 

amplitude or ISI). This is expected, as the full range of “arbitrary” can encompass some of 

the other parameters.   

b. Distinguishing SN from SupH onsets (in simulated data). This was due to a technical aspect 

of the simulation, which is a manifestation of the proximity of the SN and SupH bifurcations 

as described in the first paragraph of “Ultraslow fluctuations to navigate the seizure map” 

in the main body. In order to produce the full range of SupH parameters, some of the 

simulations passed through the SN bifurcation first, producing a DC shift, immediately 

followed by amplitude scaling. By our definition, this bifurcation is defined as a SN; 

however, some of these examples were produced by parameters designed to generate SupH 

bifurcations. This is an issue of labeling of the simulation parameters, but is not a failing of 

model or TSD; as seen in Fig. 5 and explained in the text, TSD predicts this very effect, 

and we saw several examples of it in our clinical data (SN and SupH coexisting in the same 

human epileptic network).  

The following phenomena are not described by the canonical features of the bifurcations, and were 

difficult for the reviewers to classify.  The majority of disagreements between reviewers contained 

at least one of the following: 
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c. Polyspikes or spike waves at seizure onset, especially prior to low voltage fast activity 

d. Preictal spikes 

e. Noisy data, especially ‘extraneous’ spikes that disrupt scaling laws and “Unusual 

dynamics” (#5 in preceding section) 

f. Ambiguous seizure onset/offset times 

g. Low voltage fast activity that speeds up at seizure onset 

These patterns (a-g) are inherent challenges of seizure data, and such conditions have the potential 

for ambiguous classification. However, we do not consider this to be a failure of our method—

rather, our framework provides a method of identifying and quantifying these conditions.  While 

some of these phenomena are common, they are not invariant features that define the bifurcation. 

In effect, the fact that they deviate from the basics of TSD not only allows us to identify them as 

atypical, but also to quantify how and why they are atypical.   

  

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.02.08.940072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.940072
http://creativecommons.org/licenses/by/4.0/


I.7 Examples of classifying clinical bifurcations 

 

 Due to the large degree of heterogeneity and noise in clinical recordings, it is common to 

have patterns that do not fit perfectly with the theoretical dynamotype. The following figures 

demonstrate how the method described above can be used to classify real-world scenarios reliably. 

Each of the examples below had a consensus among the three reviewers except as noted. 

 The key to this approach is to follow the prioritization described in Appendix-Table I, I.3 

and I.6. If there is a DC shift, the dynamotype is SN onset (or SH offset), regardless of other 

patterns. If not, amplitude scaling determines if it is SupH, followed by frequency scaling for SNIC, 

and finally other patterns are SubH/SN onset (FLC offset). Following this progression as indicated, 

we validated this with three independent reviewers. Note that Fig. 2 has several clear examples of 

the classification, only one of which is repeated in this section. The consensus values in Fig. 2 and 

Appendix-Tables 2 and 3 are validation that this method is reliable. The data are presented in the 

same priority as Appendix-Table 1. Each figure first shows the raw data, often with a filtered 

version directly below, as well as the spike detections that are used to determine ISI and amplitude. 

Below the raw data are the ISI and amplitude plots, which are used to assess for trends.  However, 

these quantitative tools and equation fits are not necessary for the classification scheme, which we 

have proven to be accurate with human review rather than choosing the “best fit” from an algorithm 

(Appendix I.5). We include these graphical fits and RMSE for constant and square root/logarithmic 

equations to demonstrate how this tool may be used to determine parameters for these equations, 

which can be used for quantitative analysis, comparison, and robust discussion of seizure dynamics 

in future work. 

Each example shown has some heterogeneity—perfect examples are quite rare. Instead, 

these examples are meant to show how to classify under realistic clinical conditions. It is critical 

to note that, following the steps in Appendix-Table I, each of these was reliably classified 

independently. We have included some of the “challenges” listed in I.6 to show how they can be 

approached. In addition, where possible we also describe how the other half of the seizure would 

have been classified (e.g. how to classify the offsets in Fig 1A,B, which were chosen to show 

onsets). These are included for transparency, as it is important to be able to deal with the 

heterogeneity seen in clinical conditions. We do not claim this (or any other) classification scheme 

can describe all seizures; however, our classification provides the language and framework to 

identify which specific features of a seizure are dynamical anomalies. Thus, even when strict 

classification of dynamotype is ambiguous, our method provides the means to describe how it is 

ambiguous. However, it is important to note that, as a whole, the reviewers were able to reach a 

high level of agreement (see Fig. 2)—most seizures can be classified reliably by following these 

rules. 

1A: SN (+DC) 

1B: SupH onset after uncertain start (better SupH onset seen in Fig. 2 and Appendix 1H) 

1C: SNIC onset after uncertain start 

1D: SNIC onsets from rat data 

1E: SubH or SN (-DC) 

1F: SubH or SN (-DC) 

1G: SNIC or SH (-DC) 

1H: SupH offset (also SupH onset) 

1I: FLC offset (additional examples in Appendix-Figs. 1C, F, 2, 9) 
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Appendix – Fig. 1A: Saddle Node Onset 

DC-coupled recordings (green, top) show DC shift that occurs immediately upon seizure onset.  To 

determine spike amplitudes and ISI, data must be high-pass filtered (black). Those filtered data are 

then used to identify the spikes (red circles) for analysis. The interspike intervals (ISI, middle) and 

amplitude (bottom) of each spike are then plotted versus time since seizure onset for visual analysis 

and curve fitting. The seizure begins with fast 20 Hz firing at arbitrary amplitude for over 5 

seconds.  This is followed by changing amplitude, irregular firing, and then clonic bursting, but 

those are clearly after the initial onset. The combination of arbitrary amplitude, ISI, and DC shift 

is consistent with Saddle Node. 

Onset Classification: DC shift: yes, therefore SN onset. All 3 reviewers agreed. 
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Offset Classification: This is an example of a challenging offset. Analysis is uncertain because 

seizure offset time is unclear (is it when the fast spikes stop, when the slower oscillations stop, 

when the low voltage fast activity stops, or when the large final spike occurs?). Thus, the method 

is uncertain. DC shift: no. Amplitude decreasing: uncertain. ISI increasing: uncertain. This offset 

is ambiguous and reviewers were unable to reach consensus. One reviewer felt the high amplitude 

spiking fit with increasing ISI (SH or SNIC). Another felt it should be FLC because of the arbitrary 

patterns. Another was uncertain how to score given the ambiguity of seizure offset. It was listed as 

“no consensus”. 
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Appendix – Fig. 1B: Supercritical Hopf Onset  

DC-coupled recordings (green, top) do not have a DC shift at onset.  The ISI is arbitrary at onset, 

then after 10 s starts to decrease (middle). This irregular spiking prior to the seizure (*) is not part 

of a clear seizure onset, does not conform to any initial bifurcation, and thus was not chosen as the 

unequivocal seizure onset.  The sustained spiking that begins at 8 seconds, however, follows the 

SupH dynamics very well. Amplitude shows steady increase in linear scale, which appears as a 

straight light in loglog plots, consistent with a square root power law (loglog plot). This seizure is 

most consistent with SupH due to the amplitude scaling. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.02.08.940072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.940072
http://creativecommons.org/licenses/by/4.0/


Onset Classification: This onset is somewhat challenging because there was some disagreement 

about when the seizure started. A more straightforward SupH onset is seen in Appendix-Fig. 1H 

and Fig. 2. In this case, two reviewers felt the irregular spiking was not a sustained start of the 

seizure and potentially was just preictal. One reviewer thought it could be the start and the seizure 

might be an arbitrary pattern (SubH or SN (-DC)). After discussion, reviewers agreed that the 

primary sustained pattern was increasing amplitude. Final analysis—DC shift: no. Amplitude 

increasing: yes, therefore SupH onset, but with note made of irregular spiking at seizure onset of 

uncertain significance.   

Offset Classification: This offset is difficult because there is decreasing amplitude like the onset, 

but then a persistent low voltage fast activity. DC shift: no. Amplitude decreasing: There was 

disagreement about whether the decrease comprised the final dynamotype of the seizure terminus, 

or if the low voltage fast activity that persisted at the end was a separate pattern. ISI increasing: 

no. Thus there was disagreement about whether this should be a SupH or FLC: there is a 

decreasing amplitude similar to the SupH onset pattern, followed by 15 seconds of constant ISI low 

voltage spiking.   
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Appendix – Fig. 1C: SNIC Onset 

The seizure begins at some point after a sentinel spike. The true starting time of this seizure is 

debatable, as there are three spike-waves with large ISI and amplitude but they do not persist. At 

3.9 s after the sentinel spike (*) there is a fourth spike wave that leads into the unequivocal seizure 

onset, with accelerating frequency until 5 s.  Whether one chooses T=0 or T=3.9 as the starting 

time can change the determination. At 3.9 s, the pattern starts with high amplitude spike waves that 

accelerate in frequency, characteristic of the SNIC. At 0 s, there was uncertainty whether the initial 

spike waves should be treated like a SNIC with a pause, or an arbitrary pattern. Spike wave 

discharges were present in both patients that we classified as SNIC, but are not a requirement. In 

this case, visual inspection was more reliable than fitting equations to make the determination 

because seizure onset was irregular. 
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Onset Classification: DC shift: no. Amplitude scaling: no. ISI decreasing: yes, therefore a SNIC.  

However, there was concern that by starting at T=0 this could be arbitrary rather than decreasing. 

After discussion it was felt this was most consistent with SNIC, as it appears to have accelerating 

ISI with a pause, rather than a truly arbitrary pattern. However, only 2/3 reviewers agreed. 

Offset Classification:  DC shift: no. Amplitude or ISI scaling: no. This was classified as FLC. It 

has irregular gaps during the seizure that are not well described by the basic dynamotypes. 
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Appendix – Fig. 1D: SNIC Onset in rats 

There were no unequivocal examples of SNIC onset in our human data. However, our group 

recently published data from the tetanus toxin model in rats that has excellent SNIC onsets (Crisp 

et al., 2020). Shown are data from two rats, adapted from Fig. 5 in that paper (see that work for 

details on experimental procedures). Both animals have clonic bursts, and in the presence of such 

discharges the dynamotype is characterized by the inter-clonic interval, rather than the fast runs 

of spikes within the burst (Jirsa et al., 2014; Bauer et al., 2017). In both cases the seizure begins 

with increasing ISI and essentially constant amplitude. 

 

Onset Classification: DC shift: no. Amplitude increasing: no. ISI decreasing: yes, therefore SNIC 

onset. Note, there is sometimes a continuum between some of the bifurcations; here, the clonic 

bursts have some characteristics of a DC shift, but since they all return to baseline before the next 

burst this is not considered a sustained DC shift. Additional details are discussed in (Crisp et al., 

2020). 
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Appendix – Fig. 1E: Saddle Node or Subcritical Hopf Onset 

DC-coupled recordings (green, top) show some baseline fluctuations that are not consistent and 

too slow to be considered a DC shift.  This recording was capable of showing DC, but this patient’s 

data did not have a clear DC onset. The ISI and amplitudes are both arbitrary and do not scale 

from zero.  This seizure is consistent with either SN or SubH.   

 

Onset Classification: Seizure onset time is somewhat ambiguous, but in this case does not matter 

for the classification because there is no consistent change regardless of starting point. DC shift: 

no. Amplitude increasing: no (not consistent). ISI decreasing: no (not consistent). Therefore this is 

an arbitrary pattern and is a SN (-DC) or SubH.  All reviewers agreed. 
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Offset Classification: Seizure offset is not seen in this view. 
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Appendix – Fig. 1F: SN or SubH onset after delta brush  

After a sentinel spike, there is a burst of fast spikes, followed by low voltage fast spikes that lead 

into an unusual slow wave similar to the “delta brush” pattern.  The onset pattern is unusual: there 

are fast polyspikes with arbitrary amplitude after the sentinel spike, then the delta brush, and it is 

unclear whether there was a DC shift or a slow wave. These early patterns do not fit with any 

bifurcation. This seizure was labeled as SN or SubH due to the arbitrary amplitude and constant 

ISI, but is an outlier due to unusual pattern. The delta brush pattern was consistent with Perucca 

type (vii), see Appendix – Table 5. 

 

Onset Classification: Onset has several unusual patterns in a row. DC shift: no (there appears to 

be two slow waves at onset, which both begin to recover rather than maintaining a DC shift). 
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Amplitude increasing: no (spikes are quite variable). ISI decreasing: no. Thus, this is an arbitrary 

pattern and fits with SN (-DC) or SubH. All reviewers agreed.  

 

Offset classification: Offset time is somewhat ambiguous, but likely occurs 10 s before the end of 

the tracing, and is followed by two large polyspike discharges. DC shift: no. Amplitude decreasing: 

no. ISI increasing: no. This is an arbitrary pattern, so is likely FLC offset. 
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Appendix – Fig. 1G: Saddle Homoclinic or SNIC offset 

In this case the terminal ISI clearly increases as the end approaches and the amplitude of spikes 

does not scale all the way to zero (top). For visualization, we reverse the spike plots to coincide 

with the direction of the seizure, but to determine offset t=’time until end of seizure’, i.e. it is 

counting down.  Hence the ‘0’ is at the right of the plots.  ISI shows log scaling in ‘semilogy’ plots, 

which continues out to 25 s (not shown). The amplitude is somewhat variable but does not diminish 

to 0. This is consistent with a SH offset. This could also be a SNIC, as a square root function (loglog 

plot) is very similar at this scale for the ISI (not shown). 
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Offset Classification: DC shift: no. Amplitude decreasing: no. ISI increasing: yes. This is a SH (-

DC) or SNIC. This is a very common seizure termination dynamotype. 
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Appendix – Fig. 1H: Supercritical Hopf onset and offset 

This is the seizure from Fig. 2D. Here, the terminal ISI is nearly constant and does not have any 

“slowing down.” The amplitude, on the other hand, clearly diminishes and trends to zero as a 

square root power law by the end of the seizure. There are even some potential smaller spikes seen 

after the seizure (*), as if the spikes have vanished into the background noise. In this case, the 

seizure stops because the amplitude, rather than the frequency, has gone to zero. The constant ISI 

and diminishing amplitude are indicative of the SupH offset. The same pattern occurs at onset. 
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Offset Classification: DC shift: no. Amplitude decreasing: yes. This is a SupH offset. The ISI is 

also constant, which is consistent but not necessary for the classification due to prioritization. 

 

Onset Classification: DC shift: no. Amplitude increasing: yes. This is a SupH onset. 
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Appendix – Fig. 1I: Fold Limit Cycle offset 

The primary feature of the FLC is the lack of scaling laws.  In this case, the ISI is constant until 8 

sec prior to the termination, then begins to increase until 6.5 s, then decreases until 2 sec, then 

increases again.  Even if including the one low-amplitude “failed” spike at the *, the ISI is still 

arbitrary and does not follow log or square root scaling laws (#- location of ISI if the extra spike 

is included).  The end of the seizure is abrupt. This arbitrary pattern is consistent with FLC offset. 

Other examples of FLC-terminal seizures are shown in Appendix – Figs. 1C, F, 2, 9. 

 

Offset Classification: DC shift: no. Amplitude decreasing: no. ISI increasing: no (not consistent). 

Thus this is a FLC offset. 
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I.8 Unusual seizure dynamics   

There were rare seizures that contained some unusual dynamical phenomena in the 

amplitude and ISI. We labeled these as arbitrary, which led to classification as SN or SubH at onset 

or FLC at offset. However, it is important to reiterate that the vast majority of ‘non-zero scaling’ 

dynamics were constant values, rather than arbitrary patterns that appear clinically unusual. We 

have identified several examples of these unexpected patterns that we wish to highlight (1 onset, 4 

offsets).  For onset, there was a single example in which a delta brush pattern arises at seizure onset 

after several polyspikes, shown in Appendix – Fig. 1E. The pattern lasted <1 s then progressed to 

arbitrary spiking.  While this pattern is ‘arbitrary,’ it is very distinct from the other patterns seen 

with SN-SubH onset. For offset, there were four seizures encompassing a wide range of unusual 

dynamics.  Appendix – Fig. 2 shows three that were classified as FLC.  Each of these tracings is 

highly irregular for a classical seizure offset, and some might question whether the electrode is 

truly in the seizure focus or if the seizure was correctly labeled; however, in each case a clinical 

epileptologist verified that this was indeed the focus and there was clear clinical correlation with 

these events, ending at seizure offset.  These dynamics were not felt to be due to spatial 

undersampling, as the seizure onset in each case was clearly on the given electrode, and all 

neighboring electrodes had similar offset dynamics. The fourth offset example had an increasing 

frequency, and is analyzed in section V (Appendix – Figs. 9-11). 

 

 

 

Appendix – Fig. 2: Unusual Fold Limit Cycle seizures.   

Each example is a single electrode from a separate patient, showing the voltage trace at the seizure 

focus.  A: spike amplitude increases at end of seizure.  B: abrupt start/stop of low voltage fast 

activity, without any change in frequency. (Note: the slow downward deflection was too slow to be 

labeled a DC shift). C:  Seizure with low voltage fast that progresses into arbitrary spike waves.   

Scale bars: 1 mV by 10 sec.  
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I.9 Patient metadata 

 
Full clinical metadata were available for 88 of the patients (Appendix – Table 4). We stratified all 

patients by their onset and offset bifurcations and evaluated the prevalence of gender, age, 

pathology, and seizure localization in each case.  Due to the vast heterogeneity of electrode 

locations, all electrodes were stratified into the four main lobes (frontal, occipital, parietal, 

temporal).  Note that not all patients had onset bifurcations available, and some of the rows do not 

reconcile because some patients had portions of the metadata missing, most commonly the 

pathology. For simplification and to include all data, all SN and SH were treated as if there were 

no DC coupling, and so were grouped with the SubH and SNIC bifurcations as shown. There was 

a correlation between patient age and onset bifurcation, with a higher proportion of SupH in ages 

41-60 (p=0.0019 after Bonferroni correction). There was no significant correlation between any of 

the bifurcations and pathology, or location (chi-square test).  Note that some bifurcations were rare, 

so even with 88 patients they did not have sufficient numbers to make strong conclusions.   

 
Onset  Sex  Age  Pathology  Location  
  M  F  1-20  21-40  41-60  CD  MTS  T  O  Te  F  Oc  P  
SN-SubH  30 23  13  29  10  20  17  1  1  26  12  5  8  
SNIC  3  3  4  2  0  2  2  1  1  2  0  0  0  
SupH  10  4  2  3  9  2  5  2  0  9  4  2  2  
                            
Offset                            
SH-SNIC  17  13  5  16  8  10 10  1  1  17  9 2  3  
SupH  1  0  0  0  1  0  1  0  0  1  1  0  0  
FLC  23  19  12  19  9 14  12  3  1  20  8  5  8  

  
  

Appendix – Table 4: Comparison of bifurcations with metadata 

All available patient metadata from all centers are included. CD: cortical dysplasia 

(including 2 heterotopias). MTS: mesial temporal sclerosis. T: tumor. O: other. F: frontal. 

Oc: Occipital. P: parietal. Te: temporal. 

 

I.10 Comparison with previous classification method 

We also compared our results with a previous classification method (Appendix – Table 5). 

The classifications from Perucca et al.(Perucca et al., 2014) are as listed: (i) low-voltage fast, (ii) 

low-frequency high-amplitude periodic spikes, (iii) sharp activity, (iv) spike-and-wave activity, (v) 

burst of high-amplitude polyspikes, (vi) burst suppression, and (vii) delta brush. Additionally, we 

created the category (U) to indicate seizure onsets that were not explained by the Perucca 

classification. In our analysis, we did not find any seizure onsets that corresponded with (vi). There 

was no significant correlation between the onset types and any of the patient metadata (chi-square).  

In addition, we compared these classifications with the onset and offset bifurcations. A chi-squared 

test was performed on all combinations of Jirsa onset (i.e. based upon bifurcations in  (Jirsa et al., 
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2014) ), Jirsa offset, and Perucca onset. There was no significance between any of the pairings.  

Note that two patients had type (vii) (delta brush, see Appendix – Fig. 1E), but did not have the 

expected anti-NMDA receptor encephalitis that was originally described with this pattern (Schmitt 

et al., 2012). 
  
onset  Sex  Age  Pathology  Location  
  M  F  1-10  21-40  41-60  CD  MTS  T  O  Te  F  Oc  P  
i.  15  15  7  10  12  9  10  1  1  18  5  1  5  
ii.  9  8  5  8  4  6  6  2  0  7  5  4  3  
iii.  13  10  6  14  3  7  8  0  1  13  7  0  4  
iv.  3  2  2  3  0  2  2  0  0  3  1  0  1  
v.  2  2  2  2  0  1  0  0  1  0  1  2  1  
vii.  1  1  0  2  0  0  0  0  0  0  1  0  0  
U  5  2  1  5  1  1  2  2  1  6  4  0  0  
  
    Jirsa Onset  Jirsa Offset  
    SN/SubH  SNIC  SupH  SH/SNIC  SupH  FLC  
Perucca Onset  i.  21  2  8  12 0  17 

ii.  14  2  6  10 0  13 
iii.  22  1  4  12 1 14 
iv.  4  1  0  3 0  3 
v.  3  0  2  1 1  3 
vii.  2  0  0  0 0  2 
U  1  0  2  2 0  0  

Jirsa Offset  SH/SNIC  30  3  14        
SupH  1  1  3        
FLC  53  3  7        

  

Appendix – Table 5: Comparison of visual with dynamic classifications 

Top: Metadata stratified by Perucca classification.  There is no clear correlation between 

Perucca onset type and any of the clinical metadata.  Bottom: Comparison of Perucca 

visual onset classification with our bifurcation analysis.  There was no significant 

correlation between the two classifications.  Note that numbers sometimes do not reconcile 

between different sections and between Appendix – Tables 4 and 5 due to lack of metadata 

in some patients. U: unclassifiable.  
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II. Construction of the dynamotype model and the dynamic map  

 

In this work we used the model in (Saggio et al., 2017) and we refer to that paper for details. 

It consists of three ordinary differential equations: 

 
Equation 1: 

 
𝑑𝑥

𝑑𝑡
= −𝑦 

𝑑𝑦

𝑑𝑧
= 𝑥3 − 𝜇2(𝑧)𝑥 − 𝜇1(𝑧) − 𝑦(𝜈(𝑧) + 𝑥 + 𝑥2) 

𝑑𝑧

𝑑𝑡
=  −𝑐(√(𝑥 − 𝑥𝑆(𝑧))

2
+ 𝑦2 − 𝑑∗) 

 
The first two of them are based on the normal form of the unfolding of the degenerate 

Takens-Bogdanov singularity (Dumortier et al., 1991). They depend upon three parameters 
(𝜇2, 𝜇1, 𝜈). We can consider a sphere, with radius R, centered at the origin in the three-dimensional 

parameter space. On the spherical surface there are curves of bifurcations that divide the surface 

into regions with different sets of attractors. It can be shown that, up to a certain value of the radius, 

the bifurcation diagrams on the spherical surface do not change (Dumortier et al., 1991). For this 

reason, the number of parameters relevant to describe the bifurcations in the system can be reduced, 

from the three Cartesian parameters (𝜇2, 𝜇1, 𝜈) to the two spherical parameters (, ) keeping the 

radius fixed. In the present work we use a radius R=0.4. This reduction allows for easier analysis 

and visualization of the parameter space. A flat sketch of the spherical surface and its bifurcations 

can be found in the map in Fig. 4C. A flat projection of the real map, as shown in Fig. 5, is obtained 

with Lambert equal area azimuthal projection. Details on how to reconstruct these maps can be 

found in (Saggio et al., 2017) . Movement on the sphere is promoted by making the three Cartesian 

parameters (or the two spherical ones) depending on a third variable, z, acting on a slower timescale 

described by the parameter 0 < 𝑐 ≪ 1. Movement is implemented so that, when the fast subsystem 

(𝑥, 𝑦) is in the resting state (𝑥𝑆, 0), it moves towards the onset bifurcation, and when the distance 

from the resting state is bigger than 𝑑∗ it moves towards the offset bifurcation. When 𝑑∗ >0 this 

gives periodic bursting.  

 

The shape of the path along which the fast subsystem moves is taken to be the arc of the 

great circle linking the offset point 𝑨 to the onset point 𝑩 on the sphere. It is described by the 

following parameterization: 

 
 Equation 2: 

𝝁 = (
𝜇2

−𝜇1

𝜈 
) 

 
𝝁(𝑧) = 𝑅(𝒆 cos 𝑧 + 𝒇 sin 𝑧) 
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where 𝒆 = 𝑨/𝑅 and 𝒇 = ((𝑨 × 𝑩) × 𝑨)/‖(𝑨 × 𝑩) × 𝑨‖. An example of path for each type is 

sketched in Fig. 4C with a black arrow.  

In this model the dynamics of 𝑧 exploit feedback from the fast subsystem. This is possible because 

the fast subsystem exhibits bistability and hysteresis along the bursting path (‘hysteresis-loop 

bursting’ in Izhikevich nomenclature (Izhikevich, 2000)). This allows having bursting with one 

slow variable only. Other possibilities exist, in which the slow subsystem oscillates independently 

from the fast one (‘slow-wave bursting’ in Izhikevich nomenclature (Izhikevich, 2000)). The 

hysteresis-loop mechanism is well suited to model the mechanisms leading to seizure termination, 

which are thought to be triggered by the presence of the seizure itself, as done in (Jirsa et al., 2014). 

For this reason in this work we focus on this type of mechanism for bursting. However, a slow-

wave mechanism may be possible and we refer to (Saggio et al., 2017) for details on how to obtain 

slow-wave bursters for all the types of the taxonomy using the same map.  

 

II.1 Definition of onset 

While previous works on the taxonomy define the onset bifurcation as the bifurcation that 

starts the oscillatory activity (Izhikevich, 2000; Jirsa et al., 2014; Saggio et al., 2017), we here 

define the onset bifurcation as the first one that destabilizes the resting state (or healthy condition). 

This affects the types in which transition to the ‘active rest’ (onset bifurcation with the present 

definition) precedes the transition to the limit cycle (onset bifurcation with the definition in the 

literature). This does not change the mechanism or dynamics of seizure initiation, merely the 

nomenclature. We chose this method because under clinical conditions the “seizure initiation” is 

defined as the first departure from resting state. We note that this definition, which we used for 

practical reasons, highlights that the mechanisms triggered by the seizure, such as the inversion in 

the direction of the slow variable, may be triggered before oscillations are evident. Examples of 

this effect are shown in the next paragraph, in which we use a different label for two of the types 

in (Saggio et al., 2017) in which SupH (which started the oscillations) was preceded by SN (which 

destabilized the resting state): SupH/SH becomes a different realization of SN/SH, and SupH/SupH 

becomes a different realization of SN/SupH. 

 

II.2 Examples of dynamotypes 

In Appendix – Fig. 3 we show bifurcation diagrams for the types in the bistability region in 

the upper portion of the map from Fig. 4C. Note that, for all types except SN / SH, additional 

bifurcations (aside from the first and last used in the dynamotype name) may be necessary for the 

type to exist (to allow the presence of the hysteresis-loop). In particular, all the types in this portion 

of the map show a baseline jump, due to the crossing of the SN bifurcation. By our definition, these 

would be classified as SN onsets.  However, in two of the examples shown it is not until the 

trajectory then crosses the SupH bifurcation that the oscillation begins.  These are the conditions 

which our previous work had classified as SupH onsets, and which we now classify as SN.  We 

based this decision on the fact that our human data showed this precise combination several times, 

but clinicians always identified the SN as the start of the seizure.  The ability to identify a seizure 

trajectory prior to crossing the oscillatory bifurcation has intriguing implications for future work. 
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In Appendix – Fig. 4 we show bifurcation diagrams for the types in the bistability region in 

the lower portion of the map. Here types occur without baseline shifts, even when starting with a 

SN bifurcation. This makes it impossible to discern SN from SubH onsets based on Fig. 1. 
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Appendix – Fig. 3: Dynamotypes with baseline shift  

A: Zoom of the bistability region in the upper part of Figure 4C. In this region, the dynamotypes 

are combinations of SN, SupH, and SH.  All begin with a SN bifurcation, which causes a baseline 

shift. The background of the timeseries is shaded with the same color of the portion the map 

traversed. Vertical colored lines mark the value of z at which bifurcations on the map are crossed. 

Two of the trajectories (top right, bottom left) do not have sustained oscillations until after crossing 

the SupH bifurcation a short time after the SN onset.  B: Bifurcation diagrams for the same types. 

Onset and offset bifurcations for the oscillatory phase are marked with red letters. SNr refers to 

the SN curve on the right of the map, SNl to the SN at the left. Inset: comparison with the ‘Epileptor’ 

type from (Jirsa et al., 2014). 
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Appendix – Fig. 4: Dynamotypes without baseline shift 

A: Zoom of the bistability region in the lower part of Figure 4C. For each type possible in this 

region we show an example of the timeseries. The background of the timeseries is shaded with the 

same color of the portion the map traversed. Vertical colored lines mark the value of z at which 

bifurcations on the map are crossed. B: Bifurcation diagrams for the same types. Onset and offset 

bifurcations are marked with red letters.  
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II.3 Ranking the complexity of each dynamotypes 

We can use mathematical arguments to rank the types according to how complex they are, 

with more complex types being more difficult to encounter in models, and potentially also in nature. 

The first criterion to define the complexity of a type is based on the minimum number of parameters 

(called ‘codimension’) necessary to describe a map in which a path for this type can be placed (see 

(Golubitsky et al., 2001), in which this criterion is introduced, for a more mathematical definition). 

We base this analysis on the hysteresis loop types proposed in (Saggio et al., 2017) , and which are 

illustrated in Fig. 4 and Appendix – Figs. 3, 4. The basis of the dynamic trajectory (or ‘bursting 

path’) of this seizure model is that, once the seizure begins, there is a feedback mechanism in which 

the slow permittivity variable tends to terminate the seizure.  Using this seizure mechanism, the 

least complex type is SubH/FLC, which requires a codimension of two. Following that are SN/SH, 

SN/SupH, SN/FLC, SupH/SH, SupH/SupH and SubH/SH. These types require a codimension 

three, which is the basis for our current model (Saggio et al., 2017). In Fig. 4C of the main paper 

we show a representation of this map that is two-dimensional for more readability, but the map is 

in fact lying on a spherical surface in a three-parameter space (Fig. 4B). The other types of the 

taxonomy require higher codimensions (Saggio et al., 2017). We can further rank types with the 

same codimension based on how many bifurcation curves their paths must cross on the map 

(Saggio et al., 2017) . For example, type SN/SH (two curves to cross) is less complex than the 

other codimension three types (3 or more curves to cross).  

 

In Appendix – Fig. 5 we show the types’ ranking superimposed with results from our 

classification of human seizures (adapted from Fig. 2F). In the clinical data (DC recordings only), 

the most common types are SN/FLC, SN/SH and possibly SubH/FLC and SubH/SH, which have 

low complexity (complexity 2 and 3). However, it is worth recalling that types with FLC offset 

may be overestimated due to noise. Thus, the clinical data are consistent with the predicted 

complexity.  Interestingly, though not assessed in this work, absence seizures may be best described 

with the most common SubH/FLC, which can be found in the lower bistability region of the map 

(see Discussion). Note that the number of seizures in each type is based upon our method of 

identifying the first bifurcation, while the complexity is based upon the initiation of the limit cycle 

(Saggio et al., 2017). Reconciling these methods would likely result in some of the SN onset 

seizures being reclassified as SupH.  Additionally, it should be noted that this complexity refers 

only to seizures that are produced by the hysteresis mechanism.  Other plausible mechanisms are 

independent changes in the permittivity variable and fluctuations due to noise, both of which can 

produce seizures with different codimensions/complexity than those shown here.   
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Appendix – Fig. 5: Complexity of types and data classification results.  

The complexity of the 16 dynamotypes is shown, with darker colors being the least complex.  

Superimposed on that are the number of seizures from Fig. 2 E-F in each type. Note that some of 

the seizures could not be distinguished between SH and SNIC offsets, or between SN (-DC) and 

SubH, so for these types there is a range.  *-The codimension of some of these types is presumed, 

see (Saggio et al., 2017) for details. 

 
 

II.4 Modeling noise-driven or bifurcation-driven transitions   

When 𝑑∗>0 this model produces periodic bursting, while 𝑑∗ = 0 gives no bursting at all 

since the whole system would be in a fixed point. In the presence of noise, we have periodic 

bursting if the variance of the noise is smaller than 𝑑∗ > 0. However, by setting a 𝑑∗ value close 

to the noise variance, and initial conditions for z within the bistability region, we have a different 

scenario. In this case a seizure can be initiated if noise is strong enough to bring the system beyond 

the separatrix (i.e. outside the domain of attraction of the fixed point and within the domain of 

attraction of the limit cycle). Noise-induced transitions like this one have been proposed as a 

mechanism to initiate a seizure (Lopes da Silva et al., 2003b). However, in our model, once the 

fast subsystem has left the fixed point of the fast variables, the whole system is no longer in a fixed 

point and the slow variable will activate to bring to seizure offset. Setting 𝑑∗ close to the noise 

variance thus allows a mixed scenario in which the onset is noise-driven (with the transition to 

seizure being more likely the closer the system is to the bifurcation) and offset is determined by a 

deterministic slow variable. Noise-driven transitions require the presence of bistability. The 

probability of having such a transition increases when approaching the bifurcation point, which 

gives origin to this bistability, from within the bistability region, since the separatrix gets closer to 

the resting state. In the presence of noise thus this mechanism can contribute to seizure onset. 

Noise-driven transitions lack any scaling law. However, the only two bifurcations here that allow 

for noise-driven transition in their proximity (because they feature bistability) are SN and SubH, 

which also lack any scaling law. This implies that, if noise-induced transitions rather than 

bifurcations are causing seizure onset in any seizure in our dataset, these seizures would be 

classified under the ‘SN or SubH’ label. The presence of such events in our dataset would not 

undermine our classification since we already know that ‘SN or SubH’ onset is overestimated. 

However, it is interesting that in these cases, even though the onset is not caused by a bifurcation, 
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the label in our classification would describe the bifurcation that creates the bistability necessary 

for the noise-induced transition to occur.  

 

II.5 Biophysical meaning of the variables 

As discussed in the main text, we use a bursting model as a phenomenological model for 

seizure generation and termination. This implies that the variables of the model do not have any 

explicit biophysical meaning. While we can make considerations, based on the timescales at which 

they operate, on which type of biophysical processes are best candidates to be represented within 

a given variable (e.g. neuroelectric processes for the fast variables, neurochemical substances for 

the slow ones), the biophysical meaning of the variables may depend on the specific type of 

epilepsy or even on the specific patient. 

One strategy to identify the correlates of the model variables could be to rely on the 

comparison with more realistic biological models. Our phenomenological model is based on the 

unfolding of the degenerate Takens-Bogdanov singularity. This singularity appears to be quite 

common both in neural models (Kirst et al., 2015) and in neural population models, such as the 

Jansen-Rit or the Wendling-Chauvel models (Touboul et al., 2011). When this singularity exists, 

the bifurcation diagram in its surroundings is equivalent to the one shown in our model. This allows 

us to produce a mapping between the variables and parameters of the models in which this 

singularity can be found and those of the phenomenological model in (Saggio et al., 2017). 

Applications of this model, however, do not necessarily depend on the understanding of the 

biophysical correlates of its variables. This is true for the investigation of the synchronization and 

propagation patterns linked to each dynamotype—the dynamic phenomena are invariants and do 

not depend upon the specific physiological parameters.  

However, there is clearly great utility in determining how specific physiological parameters 

can be related to this model, specifically for the application of designing methods to stop or prevent 

seizures by acting upon the slow and ultra-slow variables.  In particular, it will be important in 

future work to model the effect of stimulation on specific dynamotypes.  In this case, an external 

current applied to the fast subsystem will modify the additive term 𝜇1. 

 
 

II.6 Limitations of the model 

Planar bifurcations.  One limitation of the present study is that it considers only planar (i.e. two 

variables) bifurcations as possible onset or offset mechanisms. When considering higher 

dimensional systems, additional offset bifurcations exist, while the possible onsets are unchanged 

(Dumortier et al., 1991). However, the exact number of additional bifurcations is unknown 

(Kuznetsov, 2004).  

 Planar bifurcations are used to organize the bifurcation diagrams of many neural populations 

or field models for seizures, even high dimensional ones (Breakspear et al., 2006; Marten et al., 

2009; Touboul et al., 2011; Taylor et al., 2013; Meijer et al., 2015).  Phenomenological models in 

the literature are planar or have planar fast subsystems (Kalitzin et al., 2010; Benjamin et al., 2012; 

Terry et al., 2012; Jirsa et al., 2014; Hutchings et al., 2015; Sinha et al., 2017). The presence of 

additional variables, acting on a different timescale (still fast as compared to the slow permittivity 
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variable z of the present paper), are used to create spike and wave discharges (Marten et al., 2009; 

Wang et al., 2012; Jirsa et al., 2014). In these cases, non-planar bifurcations may appear in the 

model, such as period doubling of limit cycles (Marten et al., 2009), but they are not used to start 

or stop a seizure, but rather to change the number of spikes riding on the wave. This does not affect 

the present work, which instead focuses solely on the onset/offset dynamics. We cannot exclude 

the possibility of non-planar bifurcations playing a role in seizure offset, but with current 

knowledge and available data it may not be possible to distinguish them from planar bifurcations. 

Using a planar system also excludes the possible role of low dimensional chaos in seizure 

generation (Iasemidis et al., 1994). 

 

Bursting with higher dimensional fast subsystems.  Our model is built upon the minimum number 

of dimensions necessary to produce the bursting behavior.  Obviously, more complex models could 

also generate similar activity with different bifurcations (Izhikevich, 2000; Kuznetsov, 2004). 

Among those known, some are characterized by non-zero frequency at the bifurcation point: the 

subcritical flip of limit cycles (or period doubling), subcritical Neimark-Sacker, FLC on a 

homoclinic torus and Blue-sky bifurcations. Other have zero-frequency at the bifurcation point: 

Saddle Focus Homoclinic and Focus Focus Homoclinic. The latter requires at least a four-

dimensional fast subsystem. In addition, planar bifurcations may display additional features when 

they occur in higher dimensions, such as baseline jumps in a FLC. 

 

Other mechanisms of dynamic trajectories.  As stated previously, our model assumes a hysteresis 

in the seizure trajectory, in which the slow variable acts to pull the system out of a seizure once it 

starts.  There are other methods of starting seizures, such as independent changes of the slow 

permittivity variable causing a crossing of the bifurcation, which will be the subject of future work. 

III. Switching between dynamotypes due to fluctuations and ultra-slow 

modulations  

In the model above, the path along which the fast subsystem slowly moves is a simple arc 

linking the offset and onset points. However, movements promoted by real changes of parameters 

can be more complex. As a proof of concept of the effects that this can have on the system, we 

considered modifications of the path due to (i) ultra-slow drifting of the offset and onset points 𝑨 

and 𝑩 and (ii) fluctuations produced by noise. 

The ultra-slow drift was obtained as in (Saggio et al., 2017) . The offset point moves along 

an arc of great circle linking the initial offset 𝑨𝟏 to the final offset 𝑨𝟐 with velocity 𝑐𝐴 ≪ 𝑐. This 

movement is promoted by an ultra-slow variable 𝑢. Analogously for the onset point 𝑩, from 𝑩𝟏 to 

𝑩𝟐 with velocity 𝑐𝐴 ≪ 𝑐, movement is promoted by the ultra-slow variable 𝑤. The equations are: 

 
𝑑𝑢

𝑑𝑡
= 𝑐𝐴 

 
𝑑𝑤

𝑑𝑡
= 𝑐𝐵 

 

𝑨 = 𝑨(𝑢) = 𝑅(𝒈 cos 𝑢 + 𝒉 sin 𝑢) 

𝑩 = 𝑩(𝑤) = 𝑅(𝒍 cos 𝑤 + 𝒎 sin 𝑤) 
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where 𝒈 = 𝑨𝟏/𝑅, 𝒉 = ((𝑨𝟏 × 𝑨𝟐) × 𝑨𝟏)/‖(𝑨𝟏 × 𝑨𝟐) × 𝑨𝟏‖ , 𝒍 = 𝑩𝟏/𝑅 and 𝒎 = ((𝑩𝟏 ×
𝑩𝟐) × 𝑩𝟏)/‖(𝑩𝟏 × 𝑩𝟐) × 𝑩𝟏‖ . 
 

Depending on the location on the map of the points 𝑨𝟏, 𝑨𝟐, 𝑩𝟏 and 𝑩𝟐, this type of drift can 

cause the system to produce seizures of different types in different moments, which is consistent 

with the results of our longitudinal analysis. The addition of noise fluctuations can potentially alter 

the trajectory of the seizure while the seizure is ongoing, which might explain some of the unusual 

seizures identified in the data, such as in Fig. 5.  For example, to obtain transitions between the SN 

/ SupH type and a type with SH offset (Fig. 5A), we simulated a seizure that began on a path for 

SN / SupH slowly drifting downwards towards a path for SN / SH. The two paths lie very close on 

the map. We then added normally distributed noise, which allowed the system to deflect off its 

normal trajectory.  This noise then allowed to get close to different bifurcations within a single 

seizure. Transitions of the type observed in data (which is a subcase of type SN / SH) were observed 

in 10 of the 100 simulations we ran with the same settings. The other simulations produced mostly 

SN / SH seizures (43/100) and some SN / SupH (8/100), other forms of transitions within seizures 

and 12 examples of status epilepticus in which the system entered a long seizing state that did not 

resolve by the end of the simulation. When more than one seizure occurred in the same simulation, 

we classified only the first unless otherwise stated. Seizures were classified by determining the 

onset and offset bifurcations crossed by the path, rather than by analyzing the frequency/amplitude 

profile of the time series. 

 
Of course, these rates of occurrence of types are not meant to reflect real rates in data, since 

parameters for the simulations were carefully chosen to obtain the specific transition within seizure 

observed in data. However, since simulation settings were the same for the 100 trials, these results 

show that fluctuations can easily cause different types to occur when these types are close on the 

map. 

 
Integration settings for Fig. 5 B-C: Euler-Meruyama method; integration step 0.002 s; 

simulation length 10000 s; initial conditions were set to 0 for all variables; noise variance 

was 0.005 for fast variables, 0.0005 for the slow variable and 0.002 for ultra-slow variables.  

Model parameter settings: 𝑐 = 0.002; 𝑐𝐴 = 0.00005; 𝑐𝐵 = 0.000005; 𝑑∗ = 0.3; 𝑅 = 0.4;  

𝑨𝟏 = (0.2731,-0.05494,0.287); 𝑩𝟏 = (0.3331,0.074,0.2087); 𝑨𝟐 = 

(0.3524,0.05646,0.1806); 𝑩𝟐= (0.3496,0.07955,0.1774). The procedure to compute the 

amplitude and frequency of the limit cycle across the map, as shown in Fig. 5 H-I, is the 

same as in (Saggio et al., 2017) .  

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.02.08.940072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.940072
http://creativecommons.org/licenses/by/4.0/


IV. Analysis and simulation of status epilepticus 

In 44 out of the 100 simulations we ran in the previous section, after generating one or more 

seizures the system escaped from the bistability region to be trapped in the ‘seizure only region’. 

Activity in this region of the map is analogous to status epilepticus.  The dynamic map allows us 

to analyze how this transition occurred. In 11 cases this escape occurred when the imposed 

ultraslow drift caused the system to cross the SH curve at the lower border of the upper bistability 

region and then enter the ‘seizure only’ region through the SN bifurcation. In the remaining 33 

cases, instead, the system escaped the bistability region directly through the SN curve, thus before 

the downward ultra-slow drift could play a role in the escape. Our simulations show an example of 

each scenario (Appendix – Fig. 6). To assess the role of noise in this phenomenon, we ran five 

simulations for each of several levels of noise variance. Decreasing the noise variance scaling factor 

𝑎 from 0.0005 to 0.0002 diminished the number of times the system ended up in status epilepticus, 

from 3/5 to 1/5, then to 0/5 for 𝑎 = 0.0001 and below. One of the status epilepticus obtained with 

a = 0.0005 is shown in Fig. 5. These results indicate that high levels of noise variance can contribute 

to the system being trapped in the seizure only regime. 

 

Integration settings: Euler-Meruyama method; integration step 0.002 s; simulation length 

10000 s; initial conditions were set to 0 for all variables; noise variance was 𝑎 ∗ (10 for fast 

variables, 1 for the slow variable, 5 for ultra-slow variables). Tested values of 𝑎 were: 

0.0005, 0.0002, 0.0001, 0.00005. Model parameter settings: 𝑐 = 0.0001; 𝑐𝐴 = 𝑐𝐵 = 0; 𝑑∗ = 

0.3; 𝑅 = 0.4;  𝑨𝟏 = (0.3483,0.03698,0.1931); 𝑩𝟏 = (0.3331,0.074,0.2087); 𝑨𝟐 = 𝑩𝟐 = 

(0.279,0.2187,0.1854). 

 
 

Appendix – Fig. 6: Escape from the bistability region into the seizure-only region  

A: In some of the simulations performed with an ultra-slow downward drift and noise, the system 

escaped from the bistability region (yellow) into the seizure-only region (lavender). The escape 

could occur directly through SN (orange curve), as in Simulation 1, or passing below SH (blue 

curve) and then through SN, as in Simulation 2. B-C: Time series for Simulation 1 and 2.  The 

clinical relevance of this is to illustrate how some episodes of status epilepticus might arise 

uniformly (B) while others have a stuttering onset (C). 
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These findings are very similar to examples from the clinical cohort.  Two of the patients 

had unrecognized episodes of nonconvulsive status epilepticus lasting over 2 hours during sleep 

(see Fig. 5). We analyzed these seizures in the same manner as the others.  One began with a brief 

seizure very similar to the most common SN/SH Type (though this was not DC-coupled, so the 

onset could potentially be SubH, and the offset SNIC).  However, instead of terminating, it then 

transitioned through a SupH into irregular firing.  The second example started with SupH and went 

immediately into irregular firing.  After each seizure started, there were numerous transition 

periods in which the seizure changed dynamics.  The first patient had long periods of arbitrary 

amplitude and ISI, which occasionally organized into a brief SN-SubH/SH pattern before reverting 

to the disorganized firing (Appendix – Fig. 7).  In this patient, the seizure lasted over 24 hours, but 

the final offset could not be determined due to poor signal quality.  In the second patient, there 

were prolonged periods of primarily constant ISI and amplitude, interspersed with brief periods of 

arbitrary firing, and the seizure finally ended with a SupH (Appendix – Fig. 8). There were also 

several unusual periods in which the ISI became uniform for several seconds.  During these periods 

there was nearly perfect ~7 Hz spike wave discharges with constant amplitude, which were much 

more periodic than typical seizures.  In both of these examples, the dynamical behavior is entirely 

consistent with the model: the seizure repeatedly approaches an offset bifurcation then returns to 

the seizure regime with disorganized (i.e. noisy) firing. This offset was SH in our simulations due 

to the chosen parameters, but can also be SupH under different conditions as it resides in the same 

bistability region, e.g. if the seizure started in the top of the region. 
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Appendix – Fig. 7: Status Epilepticus patient 1  

A: Initiation (left) of seizure that begins to terminate with a SH/SNIC bifurcation, then transitions 

into a SupH onset.  The post-seizure baseline (right) returns to prior levels.  The seizure lasted > 

24 hours, but due to signal dropout the exact time of termination was not recorded.  Inset a2: 

expanded view of indicated portion of seizure start.  B: Subclinical status epilepticus was 

characterized by irregular firing interspersed with periods of organized, lower amplitude EEG. C, 
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D: Expanded view of (c1, d1) from B, with further expansion of (c2, d2).  The irregular firing 

organizes several times into discrete seizures that nearly terminate with SH dynamics, but revert 

to the previous pattern.  E: Later in the seizure, there is waxing/waning of the firing pattern, similar 

to Fig. 5 D-F. 

 

 

 
 

Appendix – Fig. 8: Status Epilepticus patient 2   

A: Onset and offset of a seizure lasting 5 hours were both SupH bifurcations. B: During the seizure, 

there were many transitions in which the dynamics altered.  Top: voltage trace.  Bottom: interspike 

intervals (ISI) show multiple periods in which nearly-constant ISI is interrupted by disorganized 

firing.  Blue lines indicate these transition periods. C: expanded view of red box in B.  D: Expanded 

view of green box in C.  Green circles indicate runs of highly periodic, 7 Hz spike waves, which 

became more frequent later in seizure. 

 
 
 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.02.08.940072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.940072
http://creativecommons.org/licenses/by/4.0/


V. Example of accelerating frequency at seizure offset 

 
One of the seizures we classified as FLC in figure 2E had increasing frequency towards the 

end, shown in Appendix – Fig. 9. The best fit to the ISI for this seizure was a reversed power law 

scaling.  While acceleration at the end of a seizure is peculiar from the clinical point of view, it fits 

with both FLC and SupH bifurcations, which do not have specific scaling laws for the behavior of 

the frequency. As the amplitude of this seizure was arbitrary (rather than decreasing with square 

root), it is most consistent with the FLC.  We analyze it here to show how different frequency 

behaviors can be obtained in the model.  

 

 
 

 

 

Appendix – Fig. 9: Seizure with acceleration of spike frequency at seizure terminus   

In this case, the ISI progressively decreases and follows a reverse power law.  The amplitude is 

arbitrary.  This seizure was labeled as a FLC bifurcation for taxonomical purposes as it did not fit 

with any other single bifurcation. 

 
Seizures with FLC offset occur when the system is in the bistability region in the lower part 

of the map, which is shown in Appendix – Fig. 10A. This region has a wide range of frequency 

characteristics, depending on the specific path chosen.  Appendix – Fig. 10 shows the simulated 

results for three different paths that link a SN onset with FLC offset: it is possible to have seizures 

that have increasing, decreasing, or constant frequency.   These differences occur because this 

region of the map has a great diversity of scaling laws in a small region, and the frequency has to 

change smoothly between them.  In this particular case, even though FLC occurs with non-zero 

frequency, it is close to a SH curve which requires oscillations to slow down to zero. The closer 

the path chosen to the SH curve the slower the oscillations towards FLC offset. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.02.08.940072doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.08.940072
http://creativecommons.org/licenses/by/4.0/


 
  

Integration settings (same for the three simulations): Euler-Meruyama method; 
integration step 0.5 s; simulation length 15000 s; initial conditions were set to 0 for all 
variables; simulations without noise.  Model parameter settings:  
Constant frequency: 𝑐 = 0.001; 𝑑∗ = 0.3; 𝑅 = 0.4;  𝑨𝟏 = (0.1199, -0.0509, -0.3782); 𝑩𝟏 = 
(0.2850, 0.0586, -0.2745). 
Increasing frequency: 𝑐 = 0.002; 𝑑∗ = 0.3; 𝑅 = 0.4;  𝑨𝟏 = (-0.1031, -0.0996, -0.3734); 

𝑩𝟏 = (0.1436, 0.0331, -0.0622). 

Decreasing frequency: 𝑐 = 0.003; 𝑑∗ = 0.3; 𝑅 = 0.4;  𝑨𝟏 = (0.2818, 0.0209, -0.2831); 
𝑩𝟏 = (0.2187, 0.0394, -0.3326). 

  
 

Seizures with SupH offset occur when the system is in the bistability region in the upper 

part of the map, as shown in Appendix – Fig. 11A. Similar to the FLC case, the proximity of the 

SH curve, which has a frequency that goes to 0, affects the trajectories of SupH offsets (Appendix 

– Fig. 11).   

 

Integration settings (same for the three simulations): Euler-Meruyama method; 
integration step 0.5 s; simulation length 20000 s; initial conditions were set to 0 for all 
variables; simulations without noise. Model parameter settings:  
Constant frequency: 𝑐 = 0.00025; 𝑑∗ = 0.3; 𝑅 = 0.4;  𝑨𝟏 = (0.3101, -0.0217, 0.2517); 
𝑩𝟏 = (0.3426, 0.0772, 0.1915). 
Increasing frequency: 𝑐 = 0.001; 𝑑∗ = 0.3; 𝑅 = 0.4;  𝑨𝟏 = (0.3216, 0.0625, 0.2294); 𝑩𝟏 = 

(0.3479, 0.0790, -0.1810). 

Decreasing frequency: 𝑐 = 0.0002; 𝑑∗ = 0.3; 𝑅 = 0.4;  𝑨𝟏 = (0.3102, -0.0437, 0.2488); 
𝑩𝟏 = (0.3249, 0.0713, 0.2221). 

 

 These two examples show some of the complex characteristics that can occur when a 

seizure’s dynamics are in a region of the map that is close to two different bifurcations.  This can 

cause unusual phenomena such as accelerating spikes at seizure offset, but also seizures that 

combine features from different bifurcations, such as FLC (Appendix – Fig. 10) or SupH 

(Appendix – Fig. 11) that show slowing down. This slowing down is in principle different from 

that of SH or SNIC because it does not follow a scaling law down to zero. The slowing down 

becomes more similar to that of SH-SNIC the closer the path gets to these bifurcation curves. Some 

extreme examples are shown in Appendix – Figs. 10 and 11, in which it would be ambiguous to 

classify based upon ISI of the timeseries.  In such cases, only the presence of amplitude scaling 

(for SupH) would help disambiguate.  
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Appendix – Fig. 10: Varied frequency behavior of FLC offsets 

Depending on how close the trajectory comes to the SH offset, an FLC offset can have a wide range 

of frequency behaviors. We show examples for three frequency trends for the FLC bifurcation. A) 

portion of the map in which the SubH / FLC type can be found.  B-C) Frequency and amplitude 

trajectories of three different seizures showing constant, increasing, and decreasing frequency.  D) 

simulations for the paths shown in B-C.  Note the last few spikes drop in amplitude precipitously, 

characteristic of the FLC releasing from the limit cycle (which has a finite amplitude when it 

disappears) and settling on the fixed point. This is different from the square-root decreasing 

amplitude of the SupH bifurcation, which is instead caused by a slow decrease in the amplitude of 

the limit cycle itself, in this latter case the limit cycle disappears when zero amplitude is reached. 
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Appendix – Fig. 11: Frequency behavior of SupH offsets   

The trajectory of seizure offset in SupH is influenced by the SH curve, allowing for constant, 

increasing and decreasing frequency trends. A) portion of the map in which the SN / SupH type 

can be found.  B-C) Frequency and amplitude trajectories of three different seizures showing 

constant, increasing, and decreasing frequency.  D) simulations for the paths shown in B-C.  Note 

the amplitude in each case is very characteristic of the SupH, despite the different frequency 

behavior. 

 

 

VI. Projection of other epilepsy models onto the Taxonomy of Seizure Dynamics 
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The model in (Saggio et al., 2017) and Fig. 4 is capable of navigating the entire projection with 

first order trajectories and provides minimal models for many other bursting types. For instance 

the Epileptor model maps to the region of the SN/SH type. In addition to the Epileptor, the map 

contains the bifurcation diagrams of other seizure onset and/or offset models used in the literature.  

For instance, Sinha et al. (Sinha et al., 2017) used a model (only fast variables) with the same 

bifurcation diagram as the subH/FLC type. That type is also present in the lower portion of this 

map.  The path of the SubH/FLC type is equivalent to several bistable and physiologically-inspired 

seizure models (Suffczynski et al., 2005; Suffczynski et al., 2006; Marten et al., 2009; Kalitzin et 

al., 2011; Benjamin et al., 2012; Goodfellow et al., 2012; Meisel and Kuehn, 2012; Terry et al., 

2012; Kalitzin et al., 2014; Hutchings et al., 2015). Some of these models use noise induced 

transitions, others bifurcations (see Appendix III).  Excitable models, such as those in Wendling et 

al (Wendling et al., 2002) and Goodfellow et al (Goodfellow et al., 2016), can be obtained in the 

map when the system is close to the SNIC curve. There are also models used in the context of 

epilepsy that contain bigger portions of the map, such as the Jansen-Rit and the Wendling-Chauvel 

(Touboul et al., 2011) models. This versatility led other authors to state that the degenerate 

Bogdanov-Takens bifurcation (the basis of our map) is “a good candidate for a simple qualitative 

model of a cortical mass” (Touboul et al., 2011). 
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