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Abstract

Fruit classification is conductive to improving the self-checkout and packaging systems. The
convolutional neural networks automatically extract features through the direct processing of
original images, which has attracted extensive attention from researchers in fruit classification.
However, due to the similarity of fruit color, it is difficult to recognize at a higher accuracy. In the
present study, a deep learning network, Interfruit, was built to classify various types of fruit
images. A fruit dataset involving 40 categories was also constructed to train the network model
and to assess its performance. According to the evaluation results, the overall accuracy of
Interfruit reached 93.17% in the test set, which was superior to that of several advanced methods.
According to the findings, the classification system, Interfruit, recognizes fruits with high
accuracy, which has a broad application prospect.
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1. Introduction

In the food industry, fruit represents a major component of fresh produce. Fruit sorting can
not only help children and the visually impaired people to guide their diet1, but also can assist the
or grocery stores in improving the self-checkout, fruit packaging, and transportation systems. Fruit
classification has always been a relatively hard problem, which is ascribed to the wide variety and
irregular shape, color and texture characteristics2. In most cases, the trained operators are
employed to visually inspect fruits, which requires that these operators should be familiar with the
unique characteristics of fruits and maintain the continuity as well as consistency of identification
criteria3. Given the lack of a multi-class automatic classification system for fruits, researchers
have begun to employ Fourier transform near infrared spectroscopy (FTIR), electronic nose, and
multi spectral imaging analysis for fruit classification4.

The image-based fruit classification system requires only a digital camera, and achieves
favorable performance, which has thus attracted considerable attention from numerous researchers.
Typically, this new solution adopts wavelet entropy, genetic algorithms, neural networks, support
vector machines, and other algorithms to extract the color, shape, and texture characteristics of
fruits for recognition 5. For fruits that have quite similar shapes, color characteristics have become
the criteria for the successful fruit classification6. Nonetheless, these traditional machine learning
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methods require the manual feature extraction process, and feature extraction methods may be
redesigned in calibrating parameters7. For example, for the apple and persimmon images with
extremely similar color and shape, it is difficult for the traditional methods to accurately
distinguish between them. To solve this problem, a computer vision-based deep learning
technology is proposed8. Notably, deep learning is advantageous in that, it directly learns the
features of fruit images from the original data, and the users do not need to set any feature
extraction method9. Convolutional neural networks stand for the earliest deep learning methods
used for identifying fruits, in which numerous techniques, such as convolution, activation, and
dropout, are adopted10. The existing fruit data sets are small, and insufficient training is likely to
occur in the modeling process. The Weekly-Shared Deep Transfer Networks (DTN) can alleviate
the deficiency of image training data11, 12. Researchers are working to apply the technology to
other image sets. However, the deep learning methods have not been extensively utilized to
classify different categories of fruits, and the classification accuracy is still not high13.

To enhance the recognition rate of deep learning for fruits, a deep learning architecture
named Interfruit was was proposed in the present study for fruit classification, like a tree network
that integrates the AlexNet, ResidualBlock, and Inception networks. Additionally, a common fruit
dataset containing 40 categories was also established for model training and performance
evaluation. Based on the evaluation results, Interfruit achieved superior classification accuracy to
the existing fruit classification methods.

2. Materials and Methods

2.1 Data set

Totally 3,139 images of common fruits in 40 categories were collected from Google, Baidu,
Taobao, and JD.com to build the image data set, IntelFruit (Figure 1). Each image was cropped to
300x300 pixels. Table 1 shows the category and number of fruit pictures used in the current study.
For each type of fruit images, 70% images were randomly assigned to the training set, while the
remaining 30% were used as the test set. The as-constructed model was trained based on the
training set and evaluated using the test set.

2.2 Convolutional Layer

The convolutional neural networks are a variant of deep networks, which automatically learn
the simple edge shapes from raw data, and identify the complex shapes within each image through
feature extraction. The convolutional neural networks include various convolutional layers similar
to the human visual system. The convolutional layers generally have filters with the kernels of 11
× 11, 9 × 9, 7 × 7, 5 × 5 or 3 × 3. The filter fits weights through training and learning, while the
weights extract features, just similar to the camera filters.

2.3 Rectified Linear Unit (ReLU)Layer

Convolutional layers are linear and can not capture the non-linear features. Therefore, a
rectified linear unit (ReLU) is used as a non-linear activation function for each convolutional layer.
ReLU suggests that, when the input value is less than zero, the output value will be set to zero.
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Using the ReLU, the convolutional layer can output the non-linear feature maps, thereby reducing
the risk of overfitting.

2.4 Pooling Layer

The pooling layer is adopted for compressing the feature map after the convolutional layer.
The pooling layer summarizes the output of the neighboring neurons, which reduces the activation
map size and maintains the unchanged feature. There are two methods in the pooling layer, i.e.
maximum and average pooling. In this paper, the most popular pooling strategy, namely, the
maximum pooling (MP) method was adopted, which remained the maximum pooling area.

2.5 ResidualBlock and Inception Structure

The general convolutional neural networks like as AlexNet tend to overfit the training data
and have poor performance on the actual data. Therefore, the ResidualBlock and Inception
structure were used to solve this problem in this study. The Deep Residualnetwork alters several
layers into a residual block (Figure 2). The residual block is composed of ReflectionPad layer,
Convolutional layer (kernel 3x3, output channel 256), InstanceNorm layer, ReLU layer,
ReflectionPad layer, Convolutional layer (kernel 3x3, output channel 256). The ResidualBlock
Network solves the degradation problem of deep learning networks, accelerates the training speed
of deep networks, and promotes the faster network convergence.

In addition, the Inception structure (Figure 3) connects the results of convolutional layers
with different kernel sizes to capture the features of multiple sizes. In this study, the inception
module was integrated into one layer by several parallel convolutional layers. There are four
branches in the Inception structure. The first branch consists of a convolutional layer, batch
normalization layer, and ReLU layer, with the kernel of the convolutional layer of 1*1 and the
stride of 1. The second branch is comprised of two pairs of convolutional layers, the batch
normalization layer and the ReLU layer, with the kernel of the first convolutional layer of 1*1 and
the stride of 1, while the kernel of the second convolutional layer is 3*3 and the stride is 1. The
third branch also consists of two pairs of convolutional layers, batch normalization layer, and
ReLU layer. Of them, the kernel of the first convolutional layer is 1*1, and the stride is 1. The
kernel of the second convolutional layer is 5*5, and the stride is 1. The fourth branch is made up
of the pooling layer, convolution layer, batch normalization layer, and ReLU layer. The kernel of
the pooling layer is 3*3 and the stride is 1. The kernel of the convolutional layer is 1*1 and the
stride is 1. There are seven input parameters in the Inception. The first parameter is the input
channel, and the second parameter is the output channel value of the first branch. The third
parameter is the output channel value of the first layer of the second branch, and the fourth
parameter is the output of the second branch. The fifth parameter is the output channel value of the
first layer on the third branch and the sixth parameter is the third branch's output channel value.
The seventh parameter is the output channel value of the fourth branch. Inception reduces the size
of both modules and images, and increases the number of filters. Further, the module learns more
features with fewer parameters, making it easier for the 3D space learning process.

2.6 Fully Connected and Dropout Layer

Fully connected layer (FCL) is used for inference and classification. Similar to the traditional
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shallow neural network, FCL also contains many parameters to connect to all neurons in the
previous layer. However, the large number of parameters in FCL may cause the problem of
overfitting in the case of training, while the dropout method serves as a technique to solve this
problem. Briefly, the dropout method is implemented during the training process by randomly
discarding units connected to the neural network. In addition, the dropout neurons are randomly
selected during the training step, and its appearance probability is 0.5. During the test step, the
neural network is used without dropout operation.

2.7 Model Structure and Training Strategy

In this study, the convolutional neural network, IntelFruit, was constructed to classify fruits
(Figure 4). According to Figure 4, the input image with a size of 227×227×3 was fed into the
IntelFruit network. The IntelFruit model was a stack architecture integrating convolutional
network+ ResidualBlock + Inception structure. The IntelFruit model is like an inverted trigeminal
tree. The intermediate branch layers are AlexNet net, ResidualBlock structure and Inception
structure. The input and output channels of the ResidualBlock structure are both 256, while those
of Inception are 256 and 84, respectively. The output channels of the Inception’s branches are 16,
16, 48, 4, 12, and 8. The left branch is derived from the second convolutional layer of AlexNet.
The left unit has an Inception structure and a Max Pool layer, in which the output channels of the
Inception’s branches are the same as the intermediate branch. The input and output channels of
Inception are 256 and 84, respectively, whereas those of Max Pool layer are 84, the kernel is 3*3,
and the stride is 2. The right branch is derived from the third convolutional layer of AlexNet. The
right unit has an Inception structure and a Max Pool layer with the same as the left branch. The
input and output channels of Inception are 384 and 84, respectively. The output size of the three
units is all 84*6*6. According to the first channel, each branch's output is merged and then
reshaped to a one-dimensional vector of 9072=84*6*6*3. The last three-level structure is the FC
layer, the input length and output length of the first-level FCL are 9072 and 512, respectively;
while those of the second-level FC are 512 and 512; those of the third-level FC are 512 and 40.
There are ReLU and Dropout layers between FCL, and the ratio of Dropout is 0.5. Notably, the
last fully connection layer played a role as a classifier, which calculated and output the scores of
different fruits.

To minimize errors, the Adam optimizer was also employed in this study, which was superior
in its high computational efficiency, low memory requirements and great suitability for large data
or many parameters. The learning rate of the Adam optimizer was set to a constant of 1×10e-4,
and CrossEntropyLoss was used as a cost function. Thereafter, the as-proposed model was trained
and tested end-to-end on the CPU i5-8400processor, GPU K80 24G, with 64 GB of running
memory and the operating system of WIN 10 x64.

2.8 Metrics of Performance Evaluation

The prediction performance of classifier was evaluated by two metrics, including accuracy
(Acc) and average F1-score. To be specific, the metrics were defined as follow:

total

P

N
NAccuracy  (1)
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totalN
scoreF

scoreAvgF  


1
1 (2)

where Np is the number of all correctly classified pictures and Ntotal is the number of all
pictures. Average F1-score was calculated using the method average = “weighted”of the
sklearn.metrics package

3. Results and Discussion

3.1 Loss andAccuracy Rate Curve

In terms of time and memory consumption in model training, the loss vs. accuracy curve is an
effective feature. Figure 5.A presents the loss rate curve of IntelFruit on training and test sets in
200 iterations. Clearly, the loss curve of the test set was similar to the training set, with lower
errors at epoch 46, indicating the high stability of IntelFruit. Figure 5.B illustrates the accuracy
curves of the training and testing sets. A low higher accuracy rate was achieved at epoch 116,
suggesting that IntelFruit effectively learned data and might serve as a candidate model for fruit
recognition.

3.2 Confusion Matrix

In the current work, the proposed deep learning network IntelFruit was trained on the fruit
dataset. Afterwards, the model was evaluated on the test set, showing good performance. Figure 6
displays the confusion matrix of the classification results, where each row represents the actual
category while each column stands for the predicted result. In addition, the number (m-th row and
n-th column) indicated the number of actual instances to the m-th label and was predicted as the
n-th label.

The performance of the classifier was visually evaluated based on the results, and highlighted
classes and features of the network model were also determined. IntelFruit obtained a high
recognition rate. Typically, the best classified fruits were Grape_Black and Pineapple with
different shapes, colors and characteristics from those of other fruits. As clearly observed from
Figure 6, among the 40 categories, 63 images were incorrectly predicted as the 27 category, and
the remaining 860 images were correctly predicted. Therefore, the best classified fruits were
Grape_Black and Pineapple, closed to a high accuracy of 100%. By contrast, the worst classified
fruits were Apricot and Plum, with a low accuracy. According to the above results, the IntelFruit
model was able to better identify different fruits.

3.3 Comparison of Classification Performance

To evaluate the effectiveness of these models, the as-proposed method was compared with
the existing methods for modern deep learning. The models were evaluated on the test set by the
accuracy rate, and avg F1-score (Table 2). In Table 2, the model IntelFruit achieved lower false
positive and false negative rates, which demonstrated the effectiveness. For the fruit dataset
involving 40 categories, the accuracy value of the proposed model was 93.17%, which was
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subsequently compared with those of AlexNet, GoogLeNet and ResidualBlock18. The accuracy
values of these three methods were as follows, 83.97% for AlexNet, 84.83% for GoogLeNet, and
75.52% for ResidualBlock18. In addition, Table 2 clearly illustrated that the avg F1-score of the
proposed model was 96.47%, which was also superior to the existing models.

It also allowed for the transferred learning using the AlexNet, GoogLeNet, and
ResidualBlock18 models. The trained AlexNet, GoogLeNet, and ResidualBlock18 models were
downloaded from the official website of pytorch. The last FC layer's output was changed to 40
categories, and the default weights were set the other layers. Then, the data set in this paper was
used for training and prediction. Table 3 shows the prediction results. The accuracy values of these
three methods were as follows, 83.21% for AlexNet, 83.97% for GoogLeNet, and 76.60% for
ResidualBlock18. Besides, avg F1-score values of these three methods were 90.83% for AlexNet,
91.28% for GoogLeNet, and 86.74% for ResidualBlock18. The accuracy and F1-score of these
three methods were lower than those of IntelFruit too. It was seen from Table 2 and Table 3 that,
the transfer learning method had not greatly improved the prediction metrics of these three
methods.

In the case of fruit recognition, IntelFriu was more effective than those previous methods,
revealing the superiority of the proposed network. In general, the intelFriut model with the highest
recognition rate shows promising application value in the food and supermarket industries.
Noticeably, IntelFruit was associated with many advantages, and it ushered in a new method to
classify 40 different types of fruits simultaneously. According to the high-precision results,
convolutional neural networks might also be used to achieve high performance and faster
convergence, even for the smaller data sets. This model captured images to train the model
without preprocessing the images to eliminate the background noise and the lighting settings.
Although this model showed excellent performance in the evaluated cases, it was linked with
some difficulties in some cases. For instance, for categories Apricot and Plum, some categories
were easily confused with others due to the insufficient sample sizes, leading to false positives or
lower accuracy.

4. Conclusions

It is quite difficult for the supermarket staff to remember all the fruit codes, and it is even
more difficult to sort the fruits automatically if no barcodes are printed on the fruits. In the current
work, a novel deep convolutional neural network named intelFriut is proposed, which is then used
to classify the common fruits and help supermarket staff to quickly retrieve the fruit identification
ID and price information. IntelFriut is an improved stack model that integrates AlexNet,
ResidualBlock and Inceptiont, with no need for extracting color and texture features. Furthermore,
different network parameters and DA techniques are used to improve the prediction performance
of this network. Besides, this model is evaluated on the fruit dataset intelFriut, and compared with
several existing models. The evaluation results demonstrate that the intelFriut network proposed in
the present study achieves the highest recognition rate, with the overall accuracy of 93.17%,
which is superior to other models. Findings in the present study indicate that the network
combining AlexNet, ResidualBlock and Inception achieves higher performance and has technical
validity. Therefore, it can be concluded that, intelFriut is a novel and highly computational tool for
fruit classification with broad application prospects.
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Legend

Figure 1. Categories of IntelFruit data set
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Figure 2.ResidualBlock Structure
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Figure 3.Inception Structure
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Figure 4. InterFruit Model Structure
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Figure 5. Loss and Accuracy Curves
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Figure 6. Confusion matrix on the test set
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Table 1. Summary of the training and test sets

Label Category Number of Training Set Number of Test set Total Number

0 Apple 45 18 63

1 Apricot 25 10 35

2 Avocado 47 19 66

3 Banana 28 12 40

4 Blueberry 47 20 67

5 Brin 84 36 120

6 Cantaloupe 73 31 104

7 Carambola 42 17 59

8 Cherry 47 19 66

9 Cherry Tomatoes 52 22 74

10 Citrus 49 20 69

11 Coconut 94 40 134

12 Durian 54 22 76

13 Ginseng fruit 46 19 65

14 Grapefruit 62 26 88

15 Grape_Black 127 54 181

16 Grape_Green 41 17 58

17 Hawthorn 84 35 119

18 Jujube 98 41 139

19 Kiwi 31 12 43

20 Lemon 35 15 50

21 Longan 95 40 135

22 Loquat 51 21 72

23 Mango 47 19 66

24 Mangosteen 39 16 55

25 Mulberry 42 17 59

26 Olive 42 18 60

27 Orange 50 21 71

28 Passion fruit 65 27 92

29 Peach 54 22 76

30 Pear 26 10 36

31 Persimmon 45 19 64

32 Pineapple 115 49 164

33 Pitaya 82 35 117

34 Plum 28 12 40

35 Prunus 35 14 49

36 Rambutan 59 25 84

37 Sakyamuni 48 20 68

38 Strawberry 58 24 82

39 Watermelon 24 9 33

Sum. 2216 923 3139
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Table 2. Comparison of Classification Performance by training on Intelfruit dataset

Methods Acc F1score

AlexNet 83.97 91.28

GoogLeNet 84.83 91.79

ResidualBlock18 75.52 86.05

Intelfruit 93.17 96.47
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Table 3. Comparison of Classification Performance by transfer learning

Methods Acc F1score

AlexNet 83.21 90.83

GoogLeNet 83.97 91.28

ResidualBlock18 76.60 86.74

Intelfruit 93.17 96.47
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