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Abstract 1 

Delta oscillations (0.5–4 Hz) are a robust but often overlooked feature of basal ganglia 2 

pathophysiology in Parkinson’s disease and their relationship to parkinsonian akinesia has not 3 

been investigated. Here, we establish a novel approach to detect spike oscillations embedded in 4 

noise to provide the first study of delta oscillations in awake, dopamine depleted mice. We find 5 

that approximately half of neurons in the substantia nigra reticulata exhibit delta oscillations in 6 

dopamine depletion and that these oscillations are a strong indicator of dopamine loss and 7 

akinesia, outperforming measures such as changes in firing rate, irregularity, bursting and 8 

synchrony. We further establish that these oscillations are caused by the loss of D2 receptor 9 

activation and do not require motor cortex, contrary to previous findings in anesthetized animals. 10 

These results give insight into how dopamine loss leads to dysfunction and suggest a 11 

reappraisal of delta oscillations as a biomarker in Parkinson’s disease. 12 

 13 

Introduction 14 

 Parkinson’s disease (PD) is characterized by the loss of dopamine neurons in the 15 

substantia nigra pars compacta (SNc), inducing a state of dopamine depletion (DD) in the basal 16 

ganglia. In human PD patients, this change is accompanied by a striking increase of oscillatory 17 

power in local field potential (LFP) recordings and in the spiking of individual neurons, primarily 18 

in the beta (13-30 Hz) and delta/theta frequencies (1-7 Hz) (Lenz et al., 1988; Levy et al., 2002; 19 

Priori et al., 2004; Steigerwald et al., 2008; Du et al., 2018; Halje et al., 2019). 20 

Of these, beta oscillations have been the primary focus of research. In PD studies, beta 21 

oscillations have been shown to correlate with symptom severity (Jenkinson & Brown, 2011) 22 

and tend to dissipate under treatments such as dopamine replacement therapy (Weinberger et 23 

al., 2006; Ray et al., 2008). Similar oscillations are observed in some animal models of PD – 24 

slightly higher in frequency (25-35 Hz) in 6-hydroxydopamine (6-OHDA) lesioned rats or lower 25 

(8-13 Hz) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys. In these 26 
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models, the link between beta oscillations and motor symptoms is less clear. Beta oscillations 27 

may arise later than symptoms (Mallet et al., 2008), do not consistently track symptom 28 

progression (Muralidharan et al., 2016) or reduction with treatments such as deep brain 29 

stimulation (DBS) (McConnell et al., 2012), and occur in both parkinsonian and healthy animals 30 

(Connolly et al., 2015). Attempts to artificially induce beta oscillations in these animals have also 31 

been insufficient to cause PD-like symptoms (Swan et al., 2019). Even in humans, DBS studies 32 

have shown conflicting results between the correlation of beta oscillations and motor symptoms 33 

– oscillations tend to weaken during stimulation (Kühn et al., 2006, 2008) but not in every case 34 

(Rossi et al., 2008) or may return before symptoms reemerge (Foffani et al., 2006). 35 

 In contrast, the lower frequency oscillations observed in human PD patients have been 36 

much less studied, despite occurring in a greater number of neurons than beta oscillations in 37 

some patients or in the absence of beta oscillations at all (Levy et al., 2002; Du et al., 2018; 38 

Zhuang et al., 2019). These delta oscillations are often termed “tremor frequency” oscillations 39 

due to their typical coherence with Parkinsonian tremor (Bergman et al., 1994), but they may 40 

also arise without such coherence (Hurtado et al., 1999). While delta oscillations have an 41 

unclear relationship to tremor, their relationship to other PD symptoms such as bradykinesia 42 

and rigidity has not been investigated.  43 

This lack of attention is surprising, as slower oscillations have also been observed in 44 

animal models of PD. In monkeys, oscillations as low as 3-7 Hz have been observed (Raz et al., 45 

2000; Heimer et al., 2006; McCairn & Turner, 2009), but these have mostly been viewed as an 46 

extension of the beta band. In anesthetized rodents, oscillations at even lower frequencies (0.5–47 

4 Hz) are most prevalent (Tseng, Kasanetz, Kargieman, Pazo, et al., 2001; Walters et al., 2007; 48 

Parr-Brownlie et al., 2009; Aristieta et al., 2016), but these have been mostly discounted as 49 

artifacts of anesthesia or artificial respiration (Ruskin et al., 2002). Indeed, delta oscillations in 50 

the striatum of 6-OHDA-lesioned rats were shown to have high coherence to anesthesia-51 

induced slow waves in motor cortex (M1) (Tseng, Kasanetz, Kargieman, Riquelme, et al., 2001; 52 
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Belluscio et al., 2003) and were weakened after cortical ablation (Magill et al., 2001), leading to 53 

the conclusion that they merely infiltrate the basal ganglia through M1 and are not relevant to 54 

the awake, behaving parkinsonian animal. Experiments investigating the presence of sub-beta 55 

band oscillations in awake, behaving animals have, to our knowledge, not been performed. 56 

One factor limiting these investigations is the high levels of noise that contaminate low 57 

frequency signals, particularly during awake recordings. So-called “pink” or “flicker” noise is 58 

most prevalent at low frequencies and typically observed in LFP recordings but is also present 59 

in the spiking of individual neurons. This complication makes reliable detection of oscillations 60 

near or below 2 Hz difficult with current methods. 61 

Here, we develop a method to reliably distinguish spike oscillations from noise and use 62 

this approach to characterize the oscillations in the substantia nigra pars reticulata (SNr) of 63 

dopamine depleted mice. We demonstrate that delta, not beta, oscillations are the primary 64 

oscillatory feature in SNr neurons after loss of dopamine, and that they correlate strongly with 65 

PD-like motor deficits. We show that, contrary to prior reports, delta oscillations in the SNr 66 

precede those in M1, and that M1 is not necessary for these oscillations to develop in the SNr. 67 

We also establish that a loss of D2 receptor activation is sufficient to immediately and reversibly 68 

generate both delta oscillations and PD-like akinesia in awake mice, suggesting a direct link 69 

between dopamine loss, delta oscillations, and parkinsonian symptoms. This work indicates that 70 

delta oscillations in basal ganglia neurons are a critical component of parkinsonian pathology in 71 

DD mice and suggests that DD mice may effectively model the low frequency oscillations seen 72 

in PD patients.  73 

 74 

Results 75 

Dopamine depleted mice exhibit 0.5–4 Hz spike oscillations in SNr units 76 

We recorded single units from the substantia nigra pars reticulata (SNr) of awake, head-77 

fixed mice (Figure 1a–b) that had been bilaterally dopamine depleted with 6-OHDA or saline. To 78 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.941161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.941161
http://creativecommons.org/licenses/by/4.0/


 

5 
 

investigate oscillations in the spiking activity of single units, we first examined spike trains and 79 

their autocorrelograms. In control animals, units typically fired in a regular, pacemaking pattern, 80 

indicated by a fast oscillation in their autocorrelograms which corresponded to the interspike 81 

interval of pacemaking and flattened within 20-100 ms (Figure 1c). In contrast, units in bilaterally 82 

dopamine depleted animals exhibited autocorrelograms that showed much slower oscillations 83 

between 0.5 and 4 Hz that remained autocorrelated for several seconds, visible in the raw spike 84 

trains as peaks and troughs or pauses in firing (Figure 1d). These slow oscillations were never 85 

observed in the autocorrelograms of units from control animals. 86 

 87 

Phase shift analysis enables distinction between low frequency oscillations and neural 88 

noise 89 

We first sought to reliably quantify these oscillations in dopamine depleted mice. Neural 90 

noise is more prevalent in awake than anesthetized animals, and typically manifests in a power 91 

law fashion (called “pink” or “flicker” noise) such that it is dominant in low frequencies. Since the 92 

oscillations we observe in SNr units in DD were in the range typically tainted by pink noise, we 93 

could not reliably detect them using standard approaches based solely on the power spectral 94 

density or transformations of it.  Specifically, random peaks in the power spectral density atop 95 

pink noise, or the pink noise itself, can easily be misidentified as an oscillation of interest (Figure 96 

2c). 97 

To overcome false positive detections, we used both the power and phase information 98 

provided by the short time Fourier transform to identify oscillatory components of spike trains 99 

with consistent phase over time (see Methods). By requiring that an oscillation have both high 100 

spectral power and low phase shift (Figure 2a), we successfully distinguished the oscillations of 101 

interest embedded in pink noise from the noise itself (Figure 2b). Notably, spike trains that 102 

exhibit a relatively flat autocorrelation but have delta peaks in their PSD are successfully 103 

disregarded as oscillators when phase shift analysis is applied (Figure 2c). 104 
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Delta, not beta, oscillations in SNr units are a marker of dopamine depletion 105 

Using this detection method, we observed that very few SNr units from control animals 106 

exhibit an oscillation in the 0.5–4 Hz range (2 of 85 units pooled across animals), whereas in 107 

each bilaterally dopamine depleted animal, 33–92% of units exhibited significant delta 108 

oscillations (117 of 226 units pooled) three days after depletion (Figure 3a). Without using the 109 

phase shift criterion, a much greater number of units were flagged as oscillating, particularly in 110 

control mice (28% of units vs 2% after phase shift correction, Figure 3b), despite these units 111 

having a nearly flat autocorrelation as in Figure 2c. To determine whether these oscillations 112 

remained stable at longer time points after depletion, we recorded from the SNr of unilaterally 113 

depleted mice, 2-4 weeks after depletion.  We found that a significant proportion of SNr neurons 114 

still exhibited delta oscillations at these later time points (22–82% for each animal, 48 of 83 units 115 

pooled), suggesting that these oscillations are a stable feature of basal ganglia pathophysiology 116 

following dopamine depletion.  A small number of units on the contralateral side of the lesion 117 

also exhibited delta oscillations (0–19% for each animal, 7 of 72 units pooled) (Supplemental 118 

Figure 1). 119 

To ensure that delta oscillations were not merely an immune or inflammatory side effect 120 

of the injected toxin or cell death, we treated a cohort of animals intraperitoneally with reserpine, 121 

a compound that blocks the vesicular monoamine transporter 2 (VMAT2) complex from 122 

packaging monoamines into vesicles. This yielded a monoamine (including dopamine) depletion 123 

without any intracranial injection or cellular death and produced akinetic symptoms similar to 124 

those observed in bilateral 6-OHDA depleted mice. When we recorded three days after the start 125 

of daily reserpine injections, these animals exhibited a high proportion of slowly oscillating units 126 

in the SNr (33-100% for each animal, 74 of 119 units pooled), similar to bilaterally depleted 127 

animals (Figure 3a).  128 

Given the prevalence of beta oscillations in the DD and PD literature, we sought to 129 

determine if these animals’ SNr units also exhibited beta oscillations. We defined a wide 130 
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frequency range for beta oscillations, 7–35 Hz, which fully encompasses the definition of beta 131 

oscillations across humans and common model species (monkey and rat). We saw no increase 132 

in the fraction of beta oscillating units after any form of dopamine depletion, with or without our 133 

phase shift criterion (Figure 3c–d). Taken together, our results suggest that delta, not beta, 134 

oscillations are the primary oscillatory feature in SNr spike trains of awake, dopamine depleted 135 

mice. 136 

 137 

Oscillations predict DD severity and behavior better than other physiological measures 138 

of dysfunction 139 

To understand how delta oscillations relate to the severity of dopamine depletion, we 140 

used an existing dataset of SNr recordings from mice gradually depleted to varying levels of 141 

dopamine loss through successive small injections of 6-OHDA (Willard et al., 2019). In this data, 142 

we looked at the relationship between an animal’s fraction of units exhibiting a delta oscillation 143 

and its level of dopamine neuron loss (as measured by striatal tyrosine-hydroxylase (TH) 144 

immunoreactivity). Performing a linear regression to predict %TH remaining from oscillation 145 

fraction showed a relatively strong (r2 = 0.5267) and significant (p < 0.01 from a bootstrapped 146 

99% confidence interval, see Methods) relationship between dopamine loss and the fraction of 147 

oscillating units (Figure 4a). 148 

Since striatal TH immunoreactivity is not a perfect indicator of parkinsonian symptoms, 149 

we also used these measures to predict motor behavior. Prior to in vivo recordings, these 150 

animals were given a series of behavioral tests to measure their mobility, dexterity, and strength 151 

(see Methods & Willard et al., 2019), and we performed principal component analysis on the 152 

results of these tests to get a single measure – the first principal component (PC1) – of their 153 

motor deficits. A linear regression predicting PC1 from the fraction of oscillating units illustrated 154 

a similarly strong and significant relationship (Figure 4b, r2 = 0.6406, p < 0.01). 155 
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Besides oscillations, many other neural measures in the basal ganglia have been 156 

suggested as correlates of DD severity – most commonly, changes in firing rate, firing regularity, 157 

burstiness, and synchrony between units. To see how delta oscillations compare to these 158 

measures in reliably predicting DD severity, we built a set of statistical models to predict %TH in 159 

each animal from five physiological parameters measured from single units in the SNr: 1) 160 

median firing rate, 2) median coefficient of variation (CV) of interspike intervals (ISIs), 3) median 161 

rate of bursts, as measured from the Poisson surprise test, 4) fraction of significantly 162 

synchronous pairs of units, and 5) fraction of units with significant 0.5–4 Hz oscillations. Due to 163 

the highly nonlinear relationship between the first four of these measures and DD severity 164 

(Willard et al., 2019), we performed a series of nonlinear regressions on this data by building 165 

1000 decision trees from randomly selected sets of 20 (out of 25) animals, excluding the 166 

remaining 5 animals as a testing set for each tree (Figure 4c). We estimated a 95% confidence 167 

interval of mean squared errors (MSE’s) from these 1000 trees and showed that a tree built 168 

from these parameters predicts TH significantly better than a naive intercept-only model (Figure 169 

4d). 170 

To determine how each parameter informs the model, we shuffled the testing data for 171 

that parameter and calculated how much this loss of information increased the MSE of the 172 

model (the ‘importance” of that parameter). We then estimated 95% confidence intervals for the 173 

importance of each parameter (see Methods). The fraction of oscillating units was the only 174 

parameter whose confidence interval did not extend below zero (Figure 4e), suggesting that, 175 

when the model is built to include oscillations, they are the only parameter that provides reliably 176 

predictive information. In other words, while other parameters may provide information, that 177 

information is redundant when the fraction of oscillating units is known.  178 

To confirm this in another manner, we rebuilt the models using the same cross-validated 179 

training and testing sets as above using only a single parameter at a time, or using all of the 180 

parameters except oscillations. The first four parameters fall outside (FR) or on the edge (CV 181 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.941161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.941161
http://creativecommons.org/licenses/by/4.0/


 

9 
 

ISI, Burst and Sync) of the full model confidence interval, but the model with all four parameters 182 

performs better than any individual parameter (Figure 4d), confirming results seen previously 183 

(Willard et al., 2019). However, the model built using only oscillations as a predictor is, on 184 

average, better than any other model including the combined parameter model, providing further 185 

evidence that other physiological parameters are not additionally informative when oscillations 186 

are considered. 187 

Using the same procedure as above to predict PC1 of the animals’ behavior, we found 188 

very similar results to those predicting TH levels – namely, firing rate, irregularity, burstiness and 189 

synchrony provide some information in predicting behavior, particularly when considered 190 

together. However, when the fraction of oscillatory units is included in the model, it is the only 191 

important variable, and is significantly so, in predicting motor dysfunction (Figure 4f–g). 192 

 193 

Delta oscillations arise immediately following loss of MFB transmission or D2 receptor 194 

activation 195 

The mechanism behind the observed delta oscillations is unclear, but they could arise 196 

due to a wide range of immediate biophysical changes in the basal ganglia after DD or emerge 197 

more slowly through plasticity or compensation. To determine this time course, we recorded 198 

from the SNr of healthy animals while acutely infusing lidocaine (a voltage-gated Na+ channel 199 

blocker) into the medial forebrain bundle (MFB), the same injection site for 6-OHDA in our other 200 

experiments, to quickly disrupt MFB transmission. We found that oscillations arose in the SNr 201 

within 2 minutes of the start of lidocaine infusion (before infusion ended) and waned within ten 202 

minutes after the end of infusion, mirroring the time course of akinesia observed during the 203 

experiment (Figure 5a-c). This result is consistent with the similarly rapid onset of slow 204 

oscillations produced by TTX infusion to the MFB under anesthesia (Galati et al., 2010) and 205 

demonstrates that low frequency oscillations arise in the SNr almost immediately after loss of 206 

MFB transmission, ruling out long-term mechanisms for their generation. 207 
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To determine whether the loss of dopamine signaling is causal to the onset of delta 208 

oscillations, we recorded from the SNr of healthy animals before and during the systemic 209 

injection of a D1-receptor (D1R) antagonist (SCH233890) or a D2-receptor (D2R) antagonist 210 

(raclopride). While both drugs caused reduced movement on the wheel, only the D2R 211 

antagonist led to the development of oscillations in the SNr (Figure 5d–f). We then performed 212 

the converse experiment, injecting a D1R agonist (SKF81297) or D2R agonist (quinpirole) 213 

systemically into bilateral DD animals. Similarly, while both led to highly increased motor activity 214 

(though highly dyskinetic in the case of D1 agonism), only the D2R agonist injection attenuated 215 

delta oscillations in the SNr (Figure 5g–i). This suggests that low frequency oscillations are 216 

mediated purely due to a loss of action on D2Rs and are not affected by D1Rs. 217 

 218 

Delta oscillations are a feature of dopamine depletion throughout the indirect pathway 219 

Since the indirect pathway of the basal ganglia is a primary location of D2R-expressing 220 

neurons, we posited that oscillations may also be present elsewhere in the indirect pathway. We 221 

thus recorded from healthy and dopamine depleted globus pallidus externa (GPe) (Figure 6a) 222 

and subthalamic nucleus (STN) (Figure 6c), two reciprocally connected nuclei in the indirect 223 

pathway that both project heavily to SNr. We found a similar pattern of oscillatory activity across 224 

units in the GPe (40–80% of units in each animal, Figure 6b) and STN (15–70% of units in each 225 

animal, Figure 6d) after dopamine depletion, whereas only 1 of 111 total GPe and 1 of 63 STN 226 

units exhibited oscillations in the healthy state. 227 

 228 

Two populations of delta oscillating units in SNr both lead oscillations in motor cortex 229 

Previous literature suggests that oscillations in the dopamine depleted basal ganglia 230 

arise due to input from oscillating neurons in motor cortex (M1) under anesthesia (Tseng, 231 

Kasanetz, Kargieman, Riquelme, et al., 2001). However, since we have shown that these 232 

oscillations arise from antagonism on D2R’s, a receptor more prevalent in the basal ganglia 233 
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than M1, a possible alternative in awake animals is that these oscillations arise first in the basal 234 

ganglia and then entrain M1. 235 

To distinguish between these possibilities, we sought to characterize oscillations in the 236 

M1 of DD animals and determine the phase lag between M1 and SNr oscillations. We recorded 237 

an electrocorticogram (ECoG) in M1 while simultaneously recording from single units in SNr 238 

(Figure 7a). Compared to healthy controls, the M1 ECoG of DD animals exhibited a large 239 

increase in delta oscillations and reduction in theta (4–7 Hz) oscillations, which are typically 240 

seen in the cortex of healthy mice (Tort et al., 2018) (Figure 7b–c).  241 

Determining the relationship between two oscillating signals from their phases is a 242 

difficult task – if the phase of one perfect oscillator slightly leads that of a second perfect 243 

oscillator, it is impossible to distinguish whether the first leads the second at a short lag or if the 244 

second leads the first at a long lag. However, neural oscillations do not match the activity 245 

patterns of perfect oscillators, but in fact have profiles that vary across periods and highly 246 

varying period lengths that are merely centered on a range of values. We can leverage this fact 247 

to make predictions about the relative timing of SNr and M1 (Figure 7d). 248 

To quantify this relation, we performed a series of Granger causality regressions, which 249 

make no assumptions on the periodicity of the signals. Rather, they simply attempt to predict 250 

changes in M1 ECoG based on its own history (the null, autoregressive model) or by 251 

additionally including SNr spiking information from a single unit. For each unit, we computed 252 

201 separate models predicting M1, each using SNr spiking information at a different lag 253 

between -1 (i.e., past spikes) and +1 seconds (i.e., future spikes). Aligning the lag coefficients of 254 

the models for a single unit illustrates a periodicity in their values that matches the oscillation 255 

period (Figure 7e-f).  256 

We computed the mean squared error (MSE) of each model at each lag and considered 257 

the lag that minimized MSE. To quantify whether this model significantly outperforms the purely 258 

autoregressive ECoG model, we performed an F test on the two models, correcting for multiple 259 
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lag comparisons (Figure 7e-f). We find that 51 of 63 of oscillating units in SNr predicted changes 260 

in the ECoG significantly better than the null autoregressive model, suggesting that there is 261 

significant correlation between SNr and M1 at a consistent time lag. 262 

When analyzing the regression coefficients at these significant lags, we found a clear 263 

bimodal distribution of units determined by whether the active or inactive phase of their spike 264 

oscillation predicted positive deflections in M1. We term these types “active-predicting” (AP) 265 

units, which make up approximately 47.1% of ECoG-locked units (38.1% of oscillating units, 266 

34.3% of all analyzed units) and “inactive-predicting” (IP) units (Figure 7g), which make up the 267 

remaining 52.9% of ECoG-locked units (42.9% of oscillating units, 38.6% of all analyzed units). 268 

We see further evidence of these two distinct populations through cross correlation analysis of 269 

SNr unit pairs (Supplementary Figure 2). 270 

When clustering units based on their phase lag relative to M1, SNr units also organize 271 

into a bimodal distribution, with one mode dominated by AP units and the other by IP units. 272 

(Figure 7h). Critically, all significant lags were negative – that is, SNr spikes from both 273 

populations of SNr units consistently predicted future changes in the ECoG, but not the inverse 274 

(Figure 7h). The relative timings of these signals suggest an order in which oscillations 275 

propagate through the SNr and cortex - AP neurons enter their active phase (increase firing), 276 

then IP neurons enter their inactive phase (decrease firing or pause), and finally M1 enters its 277 

active phase. These results suggest a consistent timeline of oscillatory dynamics by which two 278 

oscillating populations in SNr both dynamically predict M1 activity. 279 

 280 

M1 is not required for delta oscillations in SNr  281 

The results of our regression analysis suggest that oscillations in SNr are not caused by 282 

M1, but rather that oscillations in the SNr precede and predict those in M1. To test this 283 

hypothesis, we performed M1 aspiration lesions in dopamine depleted mice (Figure 8a) and 284 

recorded from the SNr. SNr units in the DD + M1-lesioned mice had similar oscillations to those 285 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.941161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.941161
http://creativecommons.org/licenses/by/4.0/


 

13 
 

DD mice without M1 lesions (Figure 8b). These mice had a significantly higher fraction of 286 

oscillating units than control animals, but there was no difference between dopamine depleted 287 

animals with or without an M1 lesion (Figure 8c). These results provide additional evidence that 288 

M1 is a recipient, not the source, of delta oscillations in DD.  289 

 290 

Discussion 291 

In this paper, we have demonstrated that delta (0.5–4 Hz), not beta (7–35 Hz), 292 

oscillations are the predominant oscillatory feature in basal ganglia neurons in awake, dopamine 293 

depleted mice, and that the fraction of units exhibiting these oscillations is a good marker of 294 

dopamine loss and motor deficits. These results are consistent with data from the human PD 295 

literature demonstrating that delta oscillations are the dominant or only oscillatory feature in 296 

some PD patients (Du et al., 2018; Levy et al., 2002). We further show that these oscillations 297 

arise from a loss of action on D2 receptors and that, contrary to conclusions drawn from 298 

anesthetized experiments, motor cortex is not required for their generation but rather follows the 299 

oscillations evident in the basal ganglia. 300 

A novel method to distinguish oscillations from noise 301 

Although several studies demonstrate the presence of delta oscillations in the LFP (Levy 302 

et al., 2002; Priori et al., 2004) and single units (Steigerwald et al., 2008; Du et al., 2018; 303 

Zhuang et al., 2019) of PD patients, many more studies ignore oscillations in this band 304 

completely. Difficulties in detecting these oscillations may contribute to this lack of attention. 305 

Most studies examining oscillations in PD patients investigate the LFP, not individual spiking 306 

units, and the intrinsic low frequency noise of LFP signals makes reliably detecting oscillations 307 

in the delta range difficult. Even when it is possible to record from single units, we have 308 

demonstrated that low frequency noise can disrupt these spiking signals as well. 309 

To reliably detect low frequency spike oscillations in awake animals, we have introduced 310 

phase shift as a novel detection technique which utilizes phase information typically discarded 311 
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from the Fourier transform. Phase shift measures the local stationarity of a signal composed 312 

primarily of one frequency – a perfect sine wave would have zero phase shift and high power, 313 

but a sine wave with a phase that randomly advances would have high phase shift while 314 

maintaining high power. This measure can distinguish our signal of interest – a single oscillatory 315 

signal that shifts in phase only gradually or rarely – from low frequency pink noise, a 316 

phenomenon that is not restricted to a single frequency, for which phase components measured 317 

at individual frequencies may shift rapidly between adjacent windows. 318 

Relationship to previous studies on PD oscillations 319 

In PD research, much of the oscillation literature has focused on the beta band 320 

(Hammond et al., 2007; Jenkinson & Brown, 2011). Here, we demonstrate dopamine loss and 321 

PD-like symptoms in mice without the presence of beta oscillations, and we have previously 322 

demonstrated their absence in LFP signals in awake mice as well (Willard et al., 2019). Indeed, 323 

to our knowledge, no study has demonstrated the presence of beta oscillations in mouse 324 

models of PD. Instead, this study suggests that delta oscillations are an important signal in the 325 

dopamine depleted basal ganglia and may cause parkinsonian dysfunction instead of or (in 326 

patients or other animal models) alongside beta oscillations. 327 

The low frequency oscillations that we observe resemble those seen in anesthetized 328 

mice and rats, although oscillations in awake settings are generally noisier. By performing these 329 

experiments in awake mice, this study rules out concerns that oscillations in the basal ganglia 330 

are simply entrained by anesthesia-induced oscillations from cortex (Tseng, Kasanetz, 331 

Kargieman, Riquelme, et al., 2001; Belluscio et al., 2003) or by artificial respiration devices 332 

(Ruskin et al., 2002). Instead, we see that oscillations in the basal ganglia arise even during 333 

wakefulness and in fact lead and predict oscillations in M1. While we can rule out one causal 334 

direction (M1 -> SNr), it is difficult to know whether SNr entrains M1 directly or if both SNr and 335 

M1 are entrained by a common source. 336 
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By referencing SNr oscillations to M1, we distinguish two populations of oscillating SNr 337 

neurons. These populations and how they are defined mimic the Type-A (TA) and Type-I (TI) 338 

populations observed in GPe whose discharge is high and low, respectively, during the active 339 

phase of M1 oscillations (Mallet et al., 2008). Active-predicting (AP) and inactive-predicting (IP) 340 

SNr neurons are a very close analog to TA and TI GPe neurons, respectively, except for two 341 

differences. First, the granularity of our regression analysis illustrates that AP and IP neurons 342 

are not simply active or inactive during the active phase of the M1 oscillation, but begin 343 

discharging (AP) or pausing (IP) 150–250 ms before the active component of the M1 oscillation. 344 

To our knowledge, a precise timing analysis of TA and TI neurons with M1 oscillations has not 345 

been performed to determine if a similar phenomenon occurs in GPe. Second, SNr AP and IP 346 

neurons are approximately equal in number, whereas TI neurons are the prevailing population 347 

in GPe (72% TI, 17% TA) (Mallet et al., 2008). These populations of GPe neurons were later 348 

shown to have anatomical (Corbit et al., 2016; Mallet et al., 2012), genetic (Abdi et al., 2015), 349 

and functional (Gage et al., 2010; Mallet et al., 2016) differences, forming the prototypic (TI) and 350 

arkypallidal (TA) populations. AP and IP neurons may exhibit such differences as well, although 351 

these analyses would be beyond the scope of our study. 352 

Mechanisms of generation: insight from D2 receptors 353 

A previous study demonstrated that delta oscillations in anesthetized mice arise 354 

immediately after loss of dopamine signaling through the MFB (Galati et al., 2010), a finding that 355 

we have replicated here in awake mice. This fast onset (<2 minutes) contrasts with the typical 356 

longer timescale associated with beta oscillations in DD (Mallet et al., 2008). We further show 357 

that these oscillations arise due to a loss of D2R activation and can be ablated in already 358 

dopamine depleted animals through D2R agonism. It is unclear where the D2 receptors 359 

responsible for this ablation are located, but the high density of D2R’s in the striatum make it a 360 

strong candidate. Lack of D2R activation causes a wide array of biomolecular changes within 361 

D2R-expressing neurons, including the opening of NMDA (Higley & Sabatini, 2010; Wang et al., 362 
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2012) and L-type calcium channels (Hernández-López et al., 2000), which have been shown to 363 

be involved in membrane potential and calcium oscillations, respectively, in other circuits 364 

(Guertin & Hounsgaard, 1998). 365 

In addition to striatum, another candidate for the generation of delta oscillations in DD is 366 

the STN-GPe loop. While often associated with beta oscillations (Mallet et al., 2008; Nevado-367 

Holgado et al., 2014; Pavlides et al., 2012; Wei et al., 2015), this loop was originally implicated 368 

in generating much lower frequency oscillations (0.8 – 1.8 Hz) in cultured neurons (Plenz & 369 

Kital, 1999), a phenomenon that has been demonstrated subsequently in computational models 370 

(Terman et al., 2002; Modolo et al., 2008). The slow rates associated with the dynamics of T-371 

type calcium channels and of some after-hyperpolarization currents have been shown to 372 

contribute the generation of oscillations and could explain the low frequency of these oscillations 373 

as well (Devergnas et al., 2015). 374 

Relationship between oscillations and motor dysfunction 375 

Of those studies that examine low frequency oscillations in PD patients, many consider 376 

only their relationship to tremor, seeing both positive and zero correlation with EMG signals 377 

during tremor bouts (Hurtado et al., 1999; Du et al., 2018). No study, to our knowledge, has 378 

investigated low frequency oscillations in relationship to other PD symptoms. Here, we have 379 

established a strong relationship between delta oscillations, dopamine loss, and akinetic 380 

dysfunction in mice. Further research and re-examination of existing patient data could elucidate 381 

a role for delta oscillations in predicting or causing PD motor deficits in humans. 382 

While we cannot demonstrate a causal link between oscillations and motor dysfunction 383 

in this study, it is notable that the emergence of delta oscillations in the SNr from multiple 384 

experimental manipulations is consistently paired with a time-locked and commensurate 385 

reduction in motor activity. These results suggest a reappraisal of delta oscillations as a 386 

potential cause or marker of motor dysfunction in Parkinson’s disease patients that could be an 387 

underappreciated target for PD therapies. 388 
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Methods 389 

Animals 390 

 All experiments were conducted in accordance with guidelines from the National 391 

Institutes of Health and with approval from the Carnegie Mellon University Institutional Animal 392 

Care and Use Committee.  Male and female mice on a C57BL/6J background aged 8-15 weeks 393 

were randomly allocated into experimental groups (e.g. Control, Bilateral 6OHDA, Reserpine, 394 

etc.), except insofar as to ensure that male and female mice were both represented in every 395 

group. 396 

 397 

Stereotaxic surgery 398 

Headbar implantation 399 

Animals were anesthetized with 20 mg/kg ketamine and 6mg/kg xylazine and placed in a 400 

stereotaxic frame (Kopf Instruments). Anesthesia was maintained throughout surgery with 1.0-401 

1.5% isoflurane. All coordinates were measured in mm with AP and ML measured from bregma 402 

and DV relative to the dural surface. The scalp was opened and bilateral craniotomies (for later 403 

probe insertion) approximately 1.5 x 1.5 mm in size were drilled over SNr (AP: -3.00, ML: 404 

±1.50), GPe (AP 0.00, ML: ±2.12), or STN (AP: -1.70, ML: ±1.52). A custom-made copper or 405 

stainless steel headbar was affixed to the mouse’s skull with dental cement (Lang Dental). A 406 

well of dental cement was then built around the exposed skull (see in vivo recordings) and filled 407 

with a silicon elastomer. 408 

Dopamine depletion 409 

A hole was drilled on one (for unilateral) or both (for bilateral) hemispheres of the skull 410 

over the medial forebrain bundle (MFB, AP: -0.80, ML: ±1.10). A unilateral infusion cannula 411 

(PlasticsOne) was slowly lowered into the brain 5mm below the dura. 1 µL of 5 µg/µL 6OHDA 412 

(Sigma-Aldrich) or 0.9% saline was injected over the course of 5 minutes with a GenieTouch 413 

Hamilton syringe pump (Kent Scientific). The infusion cannula was left in place for 5 minutes 414 
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post-injection before being slowly retracted. For animals undergoing bilateral depletion, this 415 

process was repeated on the opposite hemisphere. 416 

Cannula implantation 417 

For experiments involving acute drug infusion into the MFB or gradual dopamine 418 

depletion with 6OHDA, a bilateral guide cannula (Plastics One) was implanted (same 419 

coordinates as dopamine depletion) using dental cement (Lang Dental) and a dummy cannula 420 

was placed in the guide. Before infusion, the dummy was replaced with an infusion cannula and 421 

attached to the same Hamilton syringe pump as above. Gradually depleted animals were 422 

infused with 1 µL of 0.75 µg/µL 6OHDA every 5 days (See Willard et al 2019 for full details).  423 

ECoG connector implantation 424 

For experiments involving electrocorticogram (ECoG) recordings, a male gold connector 425 

(Ampityco Electronics) was soldered to a stainless steel wire, and the connector was gently 426 

lowered above left or right motor cortex (M1, AP: +1.40, ML: ±1.00) such that the wire touched 427 

the dural surface then secured in place with dental cement (Lang Dental).  428 

Aspiration lesions 429 

For experiments involving M1 lesion, a craniotomy was drilled bilaterally over M1 (AP 430 

0.0-2.5, ML 1.0:2.5) and the dura was removed. Using a 20-gaugse suction tube (Miltex) 431 

attached to a vacuum source, we aspirated cortex to a depth of 2.5 mm across the craniotomy 432 

and under portions of the remaining skull, periodically lightly rinsing the area with saline. We 433 

filled the lesioned space with triple antibiotic (bacitracin, neomycin, polymyxin) before sealing 434 

the craniotomy with a silicon elastomer (Smooth-On) 435 

Post-operative care 436 

Upon completion of surgery, animals were injected subcutaneously with 0.5 mg/kg 437 

ketofen and placed inside their cage half on/half off a heating pad to recover. Dopamine 438 

depleted animals were supplied with trail mix and moistened food to maintain weight and 439 
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hydration, in addition to their usual food pellets and water bottles, and animals were tracked 440 

regularly to ensure proper health and weight. 441 

 442 

Drugs 443 

In addition to the drugs used above during surgery, animals were given the following 444 

drugs (Sigma-Aldrich, except when specified) dissolved in 0.9% saline (except when specified). 445 

For reserpine depletions, animals were injected i.p. daily for three days with 5 mg/kg reserpine 446 

in 2% acetic acid (diluted in 0.9% saline). For recordings involving dopamine agonists and 447 

antagonists, animals were injected i.p. during recording with either 0.4 mg/kg SCH22390, 3 448 

mg/kg raclopride. 1 mg/kg SKF81297 (Tocris Biosciences), or 3 mg/kg quinpirole. Acute 449 

infusions into the MFB used 2% lidocaine. 450 

 451 

In vivo recordings 452 

Mice were head-fixed atop a free-running wheel (Heiney et al., 2014). After acclimation 453 

to head-fixation for ten minutes, the silicon elastomer was removed and craniotomies were 454 

cleaned with saline. Using a micromanipulator (Sutter Instruments), a linear microelectrode 455 

probe with sixteen channels spaced 50 µm apart (NeuroNexus) was lowered into the craniotomy 456 

at the coordinates listed above for SNr, GPe or STN. After the initial lowering, a ground wire 457 

was placed in saline in the dental cement well on the skull. Once the top of the nucleus (SNr, -458 

4.0mm, GPe: -3.60mm, STN: -4.00mm from the top of the brain) was found and high firing rate 459 

units were observed, the probe was held stable for at least ten minutes prior to recording. 460 

Spiking (bandpass filtered for 150-8000 Hz, sampled at 40 kHz) and local field potential 461 

(bandpass filtered to 0.5-300 Hz, sampled at 1 kHz) recordings were collected through an 462 

OmniPlex amplifier (Plexon, Inc.) with common median virtual referencing. After recording for at 463 

least three minutes, the probe was lowered to explore the full dorsal-ventral extent of the 464 

nucleus. Simultaneous to these recordings, the mouse’s walking speed on the wheel was 465 
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recorded using an optical mouse and fed to a TTL-pulser which was connected to the OmniPlex 466 

amplifier analog input. For ECoG recordings, the gold implant was connected to a headstage 467 

with a ground wire in saline on top of the skull. The headstage was connected to an amplifier (A-468 

M Systems) with 1000x gain and 0.1–500 Hz bandpass filtering and this amplifier was 469 

connected to the OmniPlex amplifier analog input. 470 

 471 

Histology 472 

After recording, animals were sacrificed and perfused with 4% paraformaldehyde (PFA). 473 

The brain was extracted from the skull and stored in PFA for 24 hours then moved to a 30% 474 

sucrose solution for at least 24 additional hours. Tissue was sectioned using a freezing 475 

microtome (Microm HM 430; Thermo Scientific) and primary antibody incubations were 476 

performed on these sections at room temperature for 24 hours. A tyrosine-hydroxylase (TH) 477 

antibody (rabbit anti-TH, 1:1000; Pel-Freez) was used to confirm successful dopamine depletion 478 

in 6OHDA-depleted animals; animals required at most 15% TH fluorescence compared to 479 

controls on both hemispheres (for bilateral 6OHDA injection) or the contralateral hemisphere 480 

(for unilateral 6OHDA injection) to be considered for analysis. and an Iba1 antibody (rabbit anti-481 

Iba1) for microglia activation was used to confirm probe location and guide cannula placement 482 

in animals undergoing infusion during recording. Epifluorescent images were taken at 10x 483 

magnification (Keyence BZ-X) and outlines of nuclei of interest were overlaid on the images 484 

(from Paxinos Mouse Brain Atlas in Stereotaxic Coordinates, Second Edition). 485 

 486 

Data pre-processing 487 

Spikes were manually sorted into single units using Offline Sorter (Plexon). For 488 

classification as a single unit, the following criteria were set: 1) principal component analysis of 489 

waveforms generated a cluster of spikes significantly distinct from other unit or noise clusters (p 490 

< .05), 2) the J3-statistic was greater than 1, 3) the Davies-Bouldin statistic was less than 0.5, 491 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2020. ; https://doi.org/10.1101/2020.02.09.941161doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.941161
http://creativecommons.org/licenses/by/4.0/


 

21 
 

and 4) fewer than 0.15% of ISI’s were less than 2ms. In the case where a unit was lost during 492 

recording, it was only used in analysis for the time period when its spike cluster satisfied these 493 

criteria, and only if its cluster was present for at least three minutes. Data were then imported 494 

into MATLAB (MathWorks) in which all further analysis was performed using custom code 495 

except when specified.  496 

Since units must fire quickly enough to exhibit an oscillation, only units with a firing rate 497 

greater than 5 Hz (over 95% of sorted units) were considered for analysis. As ECoG signals 498 

were occasionally corrupted for short time windows, generally due to muscle activity, we visually 499 

determined a noise threshold for each recording and zeroed any length of signal within 250 500 

milliseconds of any data point whose absolute value exceeded that threshold. ECoG signals 501 

were then delta (0.5–4 Hz) bandpassed using a 2nd order Butterworth filter. 502 

 503 

Oscillation detection and visualization 504 

Renewal-Corrected Power Spectrum 505 

 For each unit, we downsampled its spike train to 1 kHz and split it into segments of 212 506 

ms, advancing from one segment to the next with time step size 𝛥𝑠 = 29 ms.  For each 507 

segment, we calculated its interspike interval (ISI) probability distribution, 𝑃0(𝑡). We calculated 508 

�̂�0(𝜔), the theoretical power spectral density (PSD) of a renewal process defined by 𝑃0(𝑡) 509 

scaled by the number of spikes in the segment: 510 

�̂�0(𝜔) = 𝑅𝑒 (
1 + �̂�0(𝜔)

1 − �̂�0(𝜔)
) 𝑛 511 

where 𝑅𝑒(𝑥) indicates the real part of x, �̂�0(𝜔) indicates the Fourier transform of the ISI 512 

distribution in appropriate frequency units, and n is the number of spikes in the segment. This is 513 

a variant of a method presented previously for calculating �̂�0(𝜔) analytically rather than 514 

approximating it through Monte Carlo shuffling simulations (Rivlin-Etzion et al., 2006). 515 
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We next calculated an estimate of the PSD of the spike train in that segment:1 516 

�̂�∞(𝜔) = |𝐹𝐹𝑇(𝑥(𝑡))|2 517 

where x(t) is the mean-subtracted spike train in the segment, FFT is the fast Fourier transform 518 

(MATLAB function fft) and vertical bars indicate absolute value. Finally, we normalized this 519 

estimate to achieve the renewal-corrected PSD of a single segment: 520 

�̂�(𝜔) =
�̂�∞(𝜔)

�̂�0(𝜔)
 521 

and averaged �̂�(𝜔) values across segments to obtain the renewal-corrected PSD. All PSD’s in 522 

this study have undergone this renewal-correction, but are simply referred to as PSD’s for 523 

brevity. 524 

Phase Shift 525 

 For the kth time segment, we calculated the uncorrected phase �̃� at each frequency: 526 

�̃�(𝜔, 𝑘) = tan−1 (𝐹𝐹𝑇(𝑥(𝑡))) 527 

and made the following correction such that the phase of each frequency is defined relative to 528 

the start of the recording rather than the start of the segment: 529 

𝜙(𝜔, 𝑘) = 𝑚𝑜𝑑(𝜋 + (�̃� − 2𝜋𝜔(𝑘 − 1)𝛥𝑠), 2𝜋) − 𝜋 530 

where mod is the modulus operator and 𝛥𝑠 is the time step between adjacent segments (here, 531 

29/1000 seconds). In other words, for each frequency, imagine a perfect oscillator with zero 532 

phase at the start of the recording. For each segment, we determined what phase this oscillator 533 

would reach at the start of the segment and defined that phase to be zero for that segment. This 534 

correction ensures that a perfect oscillator would have the same corrected phase 𝜙 for every 535 

segment. 536 

 
1 Note that a rectangular window is used throughout this section. This is because 1) compared to tapered 
windows, the rectangular window’s maximal frequency resolution ensures a peak in the PSD representing an 
oscillation of interest will not mix with nearby peaks caused by pink noise, and 2) multiplication with a window 
function manifests as a convolution in the frequency domain, which distorts phase and yields a nearly flat and 
uninformative phase shift plot. 
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After computing the corrected phase of all segments, we approximated the time 537 

derivative 𝜙𝑠(𝜔, 𝑘) by computing the difference of phase across successive time steps and 538 

averaged over each difference to obtain the average absolute rate of phase shift: 539 

𝜉(𝜔) =
1

𝑁 − 1
∑|𝜙𝑠(𝜔, 𝑘 + 1) − 𝜙𝑠(𝜔, 𝑘)|

𝑁−1

𝑠=1

  540 

where N is the number of segments. For brevity, we refer to 𝜉(𝜔) as the phase shift. 541 

 542 

Oscillation Detection 543 

 We detected oscillations in a two-step process by first seeking frequencies with high 544 

power and then determining whether these frequencies also had low phase shift. 545 

 To determine whether a unit reached statistically significantly high power at a particular 546 

frequency, we found each local maximum of �̂�(𝜔), defined as a value higher than its three 547 

neighbors on both sides, within the band 0.5–4 Hz (or 7–35 Hz for detecting beta oscillations). 548 

We then estimated a 99% confidence interval of renewal-corrected power from the region of 549 

�̂�(𝜔) between 100 and 500 Hz, correcting for multiple comparisons (Bonferroni correction) of all 550 

frequencies in the band of interest. A peak of �̂�(𝜔) was considered significant if it fell above this 551 

confidence interval. 552 

 As our second step, we determined if any frequency detected in the previous step had a 553 

significantly low phase shift. We estimated a 95% confidence interval of phase shifts from the 554 

region of 𝜉(𝜔) between 100 and 500 Hz, correcting for multiple comparisons (Bonferroni 555 

correction) if multiple frequencies were detected from the PSD. We concluded that an oscillation 556 

was present at a frequency with significant power if the phase shift at that frequency fell below 557 

this confidence interval. 558 

 559 

Spike Spectrograms 560 
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 For time frequency analyses, the process outlined under Renewal-Corrected Power 561 

Spectrum was modified to use segments of length 213 ms with 211 ms overlap to improve 562 

visualization. Rather than averaging over segments, the resultant matrix was smoothed with a 563 

3x3 2-D gaussian filter and plotted as a normalized heatmap (MATLAB function imagesc). Due 564 

to the loss of fine frequency resolution at low frequencies, this procedure was only used on 565 

spike trains in which an oscillation was detected in the previous procedure. 566 

 567 

Neural Measures 568 

 Beyond oscillations, we investigated several other neural measures – firing rate, firing 569 

variability, bursts and synchrony. A unit’s firing rate was defined as its number of spikes divided 570 

by the total time of recording. Variability was measured as the coefficient of variation (standard 571 

deviation divided by mean) of a unit’s interspike intervals. Bursts were quantified using the 572 

Poisson surprise algorithm (Legendy & Salcman, 1985) with a surprise threshold of 5, initial 573 

firing rate threshold of 200% of baseline calculated over the entire recording, and removal of 574 

any burst with fewer than 3 spikes. 575 

 To determine if two units were synchronous, we used the method and parameters 576 

outlined in Willard et al. 2019, which determines the fraction of synchronous spikes above 577 

chance after correcting for nonstationarity in a unit’s firing rate (Willard et al., 2019). In brief, we 578 

windowed both spike trains into 12-second segments and zeroed the first and last four seconds 579 

of the segment taken from the second spike train. We performed cross-correlation with a 580 

maximum lag of four seconds. Since this maximum lag is equal to the length of time zeroed on 581 

the second spike train, this ensures a constant number of non-zero-padded comparisons (nc) at 582 

each lag, as opposed to traditional cross-correlation in which nc is a function of lag. We divided 583 

the cross-correlogram for the segment by the mean value from 0.5–4 seconds on both sides, 584 

which allows the correlation’s units to be interpreted as the fraction of spikes greater than 585 

chance at a given lag (where 1 = chance). We repeated this process on overlapping segments 586 
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(time step = 4 seconds) and then averaged these results together to get the mean, 587 

nonstationarity-corrected cross-correlogram. We generated a 99% confidence interval from the 588 

data with lag ≥ 0.5 s (which is a reasonable null distribution due to nc, and thus the variance of 589 

the correlation estimate, being held constant). We conclude that a pair is synchronous if its 590 

normalized cross-correlation at lag zero is larger than the upper boundary of this confidence 591 

interval. 592 

 593 

Behavioral Testing and Metric 594 

 Full details on the behavioral testing and the principal component analysis (PCA) metric 595 

for gradually depleted animals can be found in Willard et al. 2019. In brief, PCA was performed 596 

on the following metrics from behavioral tests: mean speed in an open field, number of rears in 597 

10 minutes in a small enclosure, total time spent traversing a pole task, and latency to fall on a 598 

wire hang task.  599 

 600 

Linear Regression 601 

 Linear regression was performed using ordinary least squares. To determine if a linear fit 602 

was statistically significant, we computed 1000 fits each using a random subsample containing 603 

80% of the data. We computed a bootstrapped confidence interval of the slope of this linear 604 

relationship from the middle 99% of the slopes of these 1000 fits, and the relationship was 605 

considered significant if this interval did not include zero. 606 

 607 

Decision Tree Regression 608 

  We sought to determine the relationship between dopamine loss, motor symptoms and 609 

neural firing by predicting animals’ TH immunofluorescence (see Histology) and the first 610 

principal component (PC1) of their behavior (see Behavioral Testing and Metric) from four 611 

physiological measures (see Neural Measures) and prevalence of delta oscillations. Firing rate, 612 
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CV and bursts/second were averaged across all neurons for each animal, synchrony was 613 

measured as the fraction of synchronous pairs of units, and oscillations were measured as the 614 

fraction of delta oscillating units. Because of the highly nonlinear nature of these parameters’ 615 

relationships to dopamine loss and behavior (Willard et al., 2019), we used a variant of decision 616 

tree regression, a highly nonlinear regression method. 617 

 We built an individual tree on 80% of the data (20 animals) using the fit method of the 618 

DecisionTreeRegressor class in the scikit-learn package for Python to predict the percent of TH 619 

remaining (Y) from the above neuronal parameters (a set X). In brief, this method places all 620 

training data at the topmost node of a tree and calculates the mean squared error (MSE) of this 621 

node as if each animal’s TH were estimated to be the mean TH of every animal at the node. We 622 

determined, for each parameter X, the threshold T that would most reduce the mean squared 623 

error (MSE) of the animals if they were to be estimated in two different sets depending on 624 

whether their value of X is “greater than” or “less than or equal to” T. We then found the 625 

parameter for which the best T most reduces that MSE and split the animals at that node into 626 

two new child nodes according to the identified threshold. We iteratively repeated this process 627 

at every node until all terminal nodes had two or fewer animals at them, at which point each 628 

terminal node is termed a “leaf” of the tree. 629 

 We tested the remaining 20% of the data (5 animals) using the DecisionTreeRegressor 630 

test method, which runs each animal through the tree (picking > or ≤ at each node as 631 

determined by the animal’s data) until it reaches a leaf. The mean value of Y at each leaf is the 632 

prediction for that animal. We computed the error of the tree as the root-mean-squared error 633 

(RMSE) of its 5 predictions. 634 

 We computed a forest of 1000 such trees through subsampling the data into training and 635 

testing sets (Monte Carlo cross-validation) and calculated the top and bottom 2.5 percentiles to 636 

approximate a 95% confidence interval for the forest. We generated an intercept-only forest 637 

(using no parameters in the training set) and oscillation-only forest (using only the fraction of 638 
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oscillations and an intercept term in the training set) on the same 1000 bootstrapped training 639 

and testing sets. 640 

 The importance of each parameter was determined using a variant on permutation 641 

importance. For a given parameter and tree, consider the set S of values for that parameter in 642 

the test set. We produced pseudo-test data with every derangement of S (i.e. 5 animals × 44 643 

derangements of 5 values = 220 pseudo-test animals with shuffled data for one parameter). The 644 

difference between the RMSE of the real test data and the pseudo-test data is the importance of 645 

that parameter for that tree. To determine the parameter importance for the entire forest, we 646 

approximate a 95% confidence intervals as above from the 1000 trees. 647 

 A forest predicting the first principal component (PC1) of behavior instead of % TH 648 

remaining was computed in the same manner. 649 

 650 

ECoG-Spike Time Series Regression 651 

 To determine if SNr neurons have a significant lead/lag relationship with M1, we built a 652 

series of regression models predicting an M1 ECoG signal from the spiking of a single SNr unit 653 

at various lags. First, we binned the ECoG into 10ms bins and defined the dependent variable Y 654 

as the difference between adjacent ECoG measurements to reduce nonstationarity. We then 655 

built a 10th order autoregressive model of Y which served as the null model. 656 

 To incorporate SNr firing into the prediction, we calculated the spike density function 657 

(SDF) for an SNr unit by convolving its spike train with a Gaussian function with a standard 658 

deviation of 100 ms. We then aimed to determine which time shift of the SDF best improves the 659 

prediction of the ECoG. One might use a distributed lag model for this task, where the 660 

explanatory variables consist of the time shifted ECoG (autoregression) and all considered time 661 

shifts of the SNr SDF simultaneously in a single model, but the multicollinearity of the SDF at 662 

different time shifts can heavily bias the regression coefficients. Instead we assumed that, if a 663 

lag exists by which the unit firing influences the ECoG or vice versa, then there is only one such 664 
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lag by which this influence occurs. Thus, we could build an individual model for each time shift 665 

of the SDF. Each model used the 10th order autoregressive terms and one SDF term shifted 666 

from between -100 and +100 bins (-1000 to +1000 ms) as its explanatory variables. We built 667 

201 such models, which covers the entire range of lags at 1 bin increments. 668 

 To determine if a significant lead/lag existed, we found the best model as determined by 669 

its mean squared error (MSE). We then determined if the model at this lag was significantly 670 

better than the null autoregressive model by performing an F-test at α < 0.05, correcting for 201 671 

comparisons (Bonferroni correction). As choosing ECoG as the independent variable and using 672 

autoregressive terms from the past could introduce bias in favor of SNr predicting M1, we also 673 

performed these analyses using SNr as the independent variable (i.e. computing a null 674 

autoregressive model for SNr spiking and then computing 201 models at distinct ECoG time 675 

shifts to compare to the null), and performed the same analysis as above but in backwards time 676 

(i.e. building an autoregressive model of the ECoG from future ECoG samples). These analyses 677 

gave very similar results to the original analysis but were omitted for brevity. 678 

 679 

Statistical Tests 680 

Statistical tests were performed to establish if fractions of oscillatory units and fractional 681 

ECoG bandpowers were significantly different across conditions. For comparisons with two 682 

groups, a two-sample t-test was performed, unless data were paired before and after a 683 

manipulation (e.g. acute drug infusion), in which case a one-sample t-test was performed. For 684 

comparisons with multiple groups compared against a control group, a one-way ANOVA was 685 

performed, and if this reached significance at the α = 0.05 level, a Dunnett’s post-hoc test was 686 

performed to determine if there were individual differences comparing groups to control. 687 

Asterisks above comparisons in figures correspond to *: p < 0.05, **: p < 0.01, *** p < 0.0001. 688 

 689 

 690 
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Figure 1, Whalen et al. 
 

 
 
Figure 1. Dopamine depletion leads to low frequency spiking oscillations in SNr units. 891 

a. Schematic of recording setup. Mice were head-fixed atop a free-running wheel with attached 892 

movement sensor and single units were recorded with a 16-channel probe. b. Example sagittal 893 

slice with IBA immunofluorescence showing location of the recording probe in SNr. Dotted line 894 

indicates approximate location of target nucleus, arrow indicates probe location. Scale bar = 895 

500 µm. c. Two seconds of an example SNr unit firing from a control animal (top) and the unit’s 896 

autocorrelation (bottom). Inset is zoomed into the first 200 milliseconds of the autocorrelation 897 

using a smaller bin size. d. Same as c for a bilaterally dopamine depleted animal. 898 
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Figure 2. A phase shift measure to distinguish oscillations from noise. 899 

a. Diagram of the phase shift oscillation detection method. A spike train is divided into 900 

overlapping windows (1st row) and its Fourier transform is computed (corrected for the 901 
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interspike interval distribution, see Methods). We identify statistically significant peaks in the 0.5-902 

3 Hz range (compared to a control 100-500 Hz range) in the averaged power spectral density 903 

(PSD) across all windows (2nd row) and label the oscillation phase (3rd row) at that frequency. 904 

Notice while the peak frequency (red) has consistent phase across windows, an arbitrary noise 905 

frequency (blue) has inconsistent phase. We take the absolute circular difference of phases at 906 

each frequency (4th row) and compute whether the frequency identified in the power spectrum 907 

also has statistically significantly lower phase difference than the control band. A spike train 908 

which has both a significant spectral peak and significant phase difference trough at the same 909 

frequency is labeled as oscillating. b. Data from two example oscillating units. Top: 910 

Autocorrelation exhibiting oscillations. Middle: Significant peaks (red dots) in the PSD 911 

surrounded by pink noise. Bottom: The phase difference at these detected frequencies is 912 

significantly lower than control frequencies. c. Same as b, but for two units whose 913 

autocorrelation appears to be non-oscillating yet have a peak in their PSD and which would be 914 

“false positive” detections if only PSD’s were analyzed without the consideration of phase shift.915 
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Figure 3. Dopamine depleted, but not control, SNr units exhibit phase-consistent delta 916 

oscillations, but no change in beta oscillations. 917 

Fraction of oscillating units from each animal in control conditions (black circles, n = 7) or 918 

various methods of dopamine depletion – bilateral 6OHDA (green diamond, n = 9), unilateral 919 

6OHDA (blue triangle, n = 5), or systemic reserpine (orange square, n = 7). Lines indicate 920 

mean. a. Delta (0.5–4 Hz) oscillations detected using both PSD peak and low phase shift 921 

criteria. ANOVA: p = 5.206*10-5; bilateral: p = 9.506*10-5; unilateral: p = 0.00172; reserpine: p = 922 

5.908*10-5, Dunnett’s post-hoc test. b. Same as a, but using only the spectral power criterion. 923 

ANOVA: p = 4.668*10-4; bilateral: p = 5.645*10-4; unilateral: p = 0.00601; reserpine: p = 924 

5.794*10-4. c–d. Same as a–b, but for beta (7 – 35 Hz) oscillations. With phase shift, ANOVA: p 925 

= 0.8936; without phase shift, ANOVA: p = 0.8908926 
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Figure 4. Oscillations predict severity of dopamine depletion. 927 

a. Scatterplot showing relationship between levels of remaining striatal TH and fraction of 928 

oscillating SNr units in animals (n=25) gradually dopamine depleted to different severities. Each 929 

dot denotes one animal, dashed line is the least squares fit. b. Same as a showing relationship 930 

between the first principal component (PC1) of several behavioral metrics (see methods, more 931 
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negative indicates more dysfunctional) and the fraction of oscillating SNr units. c. The first three 932 

rows of one example decision tree predicting striatal TH from SNr neural properties (firing rate, 933 

irregularity, burstiness, synchronicity and fraction of delta oscillating units). d. A 95% confidence 934 

interval of MSE from 1,000 trees predicting TH. Each square is the MSE of the median model 935 

trained using a subset of parameters (grey: intercept-only, i.e. no parameters; light blue: firing 936 

rate; dark blue: CV of interspike intervals; pink: bursts/second; purple: mean synchrony across 937 

pairs; yellow: fraction of delta oscillating units; green: all parameters except fraction of delta 938 

oscillating units). e. Middle 95 percentile (box) and median (colored line, same color scheme as 939 

in d) of feature importances (permutation importance, see Methods) for each neural measure in 940 

the TH model computed from 1,000 trees. Dotted line indicates zero importance. f–g. Same as 941 

d–e for the model predicting PC1 of behavior. 942 
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Figure 5: Acute manipulations of MFB signaling or D2-receptors modulate oscillations. 943 

a. Effects of lidocaine infusion into the MFB of healthy mice. Top: Speed of mouse on running 944 

wheel during lidocaine infusion (black bar). Bottom: Spike spectrogram of an example SNr unit 945 

during the same infusion as above. b. Top: PSDs from the same unit before (left) and after 946 

(right) lidocaine infusion. Bottom: Phase shift plots corresponding to the above PSDs. A dashed 947 

line from the detected oscillation in the right PSD (red dot) connects to the same frequency in 948 
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the corresponding phase shift plot c. Fraction of oscillating units from all animals before and 949 

after lidocaine (top, n = 3, p = 0.00219) or saline (bottom, n = 2, p = 1.000) infusion into the 950 

MFB. Each dot is one animal, bars indicate mean, and lines connect the same animal before 951 

and after infusion. d–f. Same as a–c, but for systemic injection of a D2R antagonist (raclopride, 952 

n = 3, p = 0.0233) compared to a D1R antagonist (SCH233890, n = 2, p = 1.000) g–i. Same as 953 

d–f, but for systemic injection of a D2R agonist (quinpirole, n = 3, p =8.686*10-4) compared to a 954 

D1R agonist (SKF81297, n = 2, p = 0.7455) in dopamine depleted animals.955 
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Figure 6: Delta oscillations pervade the dopamine depleted, but not healthy, indirect 956 

pathway. 957 

a. IBA immunofluorescence showing example probe locations in GPe. Dotted line indicates 958 

approximate location of GPe, arrow indicates probe location. Scale bar = 500 µm. b. Fraction of 959 

oscillating units from each animal in control (black circles, n = 5), or bilateral 6OHDA (green 960 

diamond, n = 5) animals in GPe (p = 3.847*10-6, two-sample t-test). c–d. Same as a–b targeting 961 

STN (p = 0.00106, both control and bilateral n = 5)962 
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Figure 7: Delta oscillations define two SNr populations which both lead oscillations in M1 963 

a. Example simultaneous M1 ECoG and spike trains from two SNr units exhibiting coherent 964 

oscillations. b. Example M1 ECoG power spectra from control (left) and bilaterally depleted 965 

(right) animals. Power spectra were normalized to their total 0.5-100 Hz power and multiplied by 966 

1000 for visualization. c. Fractional delta and theta band power in M1 ECoG across all control (n 967 

= 8) and acutely depleted (n = 9) animals. Bars indicate mean, error bars indicate standard error 968 

(p = 0.00818 for delta, 0.0173 for theta, two-sample t-test test). d. Example data demonstrating 969 

SNr predicting M1. Top: 5 second rasters from two simultaneously recorded SNr units. Middle: 970 

spike density functions (SDF) of the above SNr rasters. Bottom: Simultaneously recorded M1 971 

ECoG. Lines between the bottom two panels illustrate M1 exhibiting peaks at a consistent time 972 
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lag after the peak of an SNr SDF, even amidst variance in oscillation period length. e. Example 973 

regression results predicting M1 ECoG from an “active-predicting” (AP) SNr unit. Top: 974 

Regression coefficients for each individual lag. Negative lag corresponds to SNr oscillations 975 

leading M1. Bottom: MSE of regression results using each lag. The red dot indicates that the 976 

model using that lag significantly outperforms an autoregressive model of the ECoG (F-test, p < 977 

0.05 correcting for multiple lag comparisons). The dotted line to the upper panel lands at a peak 978 

in the coefficients, defining the unit as “active-predicting”. f. Same as e for an “inactive-979 

predicting” (IP) SNr unit, whose significant lag is labeled in blue. g. Summary histogram of 980 

regression coefficients from all oscillating SNr units recorded simultaneously with M1 ECoG (n = 981 

59). Counts are colored as in e–f based on their regression coefficients (red: positive, blue: 982 

negative, dashed line at zero), which define their type (AP or IP). h. Same units colored as 983 

above grouped by the phase offset at which they best predict the M1 ECoG (as in e–f, negative 984 

phase offsets correspond to SNr oscillations leading changes in M1). 985 
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Figure 8: M1 lesion does not disrupt oscillations in SNr 986 

a. Example coronal slice from an M1 lesioned animal. Scale bar = 1 mm. b. Autocorrelation 987 

(top), PSD (middle) and phase shift (bottom) for an example SNr unit exhibiting a delta 988 

oscillation in an M1-lesioned, dopamine depleted animal. c. Fraction of oscillating units in SNr 989 

for each animal in control (black circle, n = 7) and bilaterally dopamine depleted with M1 lesion 990 

(dark green diamond, n = 3) conditions (p = 1.1478*10-6, two-sample t-test.) 991 
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Figure 3 – Figure Supplement 1: Unilaterally depleted animals exhibit a small number of 992 

delta oscillating units in the SNr of their dopamine intact hemisphere. 993 

a. Example autocorrelation (top), PSD (middle) and phase shift (bottom) for an example SNr 994 

unit exhibiting a delta oscillation in the intact hemisphere of a unilaterally depleted animal. b. 995 

Fraction of oscillating units in SNr for each control animal (black circle, n = 7) and in the intact 996 

hemisphere of unilaterally depleted animals (dark blue triangle, n = 4). The difference between 997 

these conditions is not significant at the α = 0.05 level (p = 0.1138, two-sample t-test). 998 
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Figure 7 – Figure Supplement 1: Pairwise phase relationships corroborate the existence 999 

of two populations of oscillating units in dopamine depleted SNr. 1000 

a. Top: Spike rasters from a pair of simultaneously recorded SNr units, scale bar = 1 s. Bottom: 1001 

Normalized cross correlations (see Neural Measures section of Methods) of the above pairs 1002 

demonstrating an in-phase relationship. b. Same as a for a near anti-phase relationship. c. 1003 

Scatterplot of all pairs of oscillating units. The horizontal axis measures their mean phase offset 1004 

(0 indicating in phase, π indicating antiphase), and the vertical axis measures circular variance 1005 

of phase offset computed across time windows. d. Histogram collapsing the above scatterplot to 1006 

show counts of pairs based on their phase difference. 1007 
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