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ABSTRACT 

Long runs of homozygosity (ROH) are contiguous stretches of homozygous genotypes, 

which are a footprint of recent inbreeding and recessive inheritance. The presence of 

recessive loci is suggested for Alzheimer’s disease (AD). However, the search for 

recessive variants has been poorly assessed to date. To investigate homozygosity in 

AD, we performed a fine-scale ROH analysis including 21,100 individuals from 10 

cohorts of European ancestry (11,919 AD cases and 9,181 controls). We detected an 

increase of homozygosity in AD cases compared to controls [βFROH (CI95%) = 0.051 

(0.023 – 0.078); P = 3.25 x 10-4]. ROHs increasing the risk of AD (OR > 1) were 

significantly overrepresented compared to ROHs increasing protection (p < 2.20 x 10-

16). The top associated ROH with AD risk (β (CI95%) = 1.09 (0.48 ‒ 1.48), p value = 9.03 

x 10-4) was detected upstream the HS3ST1 locus (chr4:11,189,482‒11,305,456), 

previously related to AD. Next, to construct a homozygosity map of AD cases, we 

selected ROHs shared by inbred AD cases extracted from an outbred population. We 

used whole-exome sequencing data from 1,449 individuals from the Knight-ADRC-NIA-

LOAD (KANL) cohort to identify potential recessive variants in candidate ROHs. We 

detected a candidate marker, rs117458494, mapped in the SPON1 locus, which has 

been previously associated with amyloid metabolism. Here, we provide a research 

framework to look for recessive variants in AD using outbred populations. Our results 

showed that AD cases have enriched homozygosity, suggesting that recessive effects 

may explain a proportion of AD heritability.   
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Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder that is the leading cause of 

dementia worldwide 1. A small proportion of patients develop AD before the age of 65; 

this is known as early-onset AD (EOAD). In most persons, clinical symptoms begin after 

the age of 65, in a form of the disorder known as late-onset AD (LOAD). AD presents a 

strong genetic component. In fact, heritability estimations for EOAD and LOAD fall in 

the range of 92 to 100% and 13 to 73%, respectively 2,3. 

Specific autosomal dominant mutations have been linked to familial EOAD: mutations 

in presenilin 1 (PSEN1) 4, presenilin 2 (PSEN2) 5, and amyloid precursor protein (APP) 6. 

These findings were pivotal events pinpointing to the role of amyloid metabolism as a 

disease-causing mechanism 7. Despite that, dominant causes account for a minority of 

both familial and apparently sporadic EOAD cases. It has been suggested that 

autosomal recessive loci might cause most EOAD cases (∼90%) 2. However, only two 

recessive mutations in the APP gene (A673V and E693Δ) have been described to date 8, 

9, and these mode of inheritance remain controversial. 

The most common AD clinical presentation, the sporadic form of LOAD, has a polygenic 

background. Genome-wide association studies (GWAS) and large sequencing projects 

have identified nearly 40 genetic variants associated with LOAD risk 10, 11, 12, 13. These 

discoveries only explain a limited part of disease heritability (⁓31%) 14. Current genetic 

findings were made using an additive mode of inheritance, which overlooks the 

relevance of non-additive genetic components, i.e. the recessive model. Despite the 

fact these components could explain a part of disease heritability. 
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It is well known that inbreeding increases the incidence of recessive diseases. Hence, 

the probability of detecting a recessive locus increases in offspring of consanguineous 

unions 15 because the partners share alleles inherited from a recent common ancestor. 

This recent parental relatedness points to genuine regions of autozygosity. Long runs 

of homozygosity (ROHs) — long stretches of consecutive homozygous genotypes (>1 

Mb) — are a recognized signature of recessive inheritance. Thus far, they have been 

used for homozygosity mapping 16. Population history, e.g. historical bottlenecks or 

geographical isolation, also influences homozygosity levels in individual genomes 17, 18. 

To assess the role of recessive inheritance in AD, Farrer et al. 19 studied 183 families of 

the isolated Wadi Ara region (an area in Israel populated mainly by Arab citizens). The 

Wadi Ara population has increased parental relatedness and a high prevalence of AD. 

Farrer et al. pointed to candidate regions with potential recessive loci 19, 20. Using 

homozygosity mapping in a consanguineous EOAD family, and subsequent sequencing 

of candidate regions, Bras et al. suggested the CTFS gene as a potential recessive locus 

21, 22. 

It has recently been demonstrated that ROHs are ubiquitous even in outbred 

populations 23, 24. An excess of homozygosity has been associated with risk of AD in 

individuals of Caribbean-Hispanic and African-American ancestries 25, 26, 27. It suggests 

the presence of inbreeding and potentially autosomal recessive AD (arAD) cases 

nested in these populations. Conversely, this association presented controversial 

results for individuals of European ancestry 28, 29. Several factors might explain these 

inconsistencies. First, ROH patterns differ between populations. Specific recent 

bottlenecks, as well as the presence of cultural practices promoting endogamous 
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marriages in Latino groups, could be increasing inbreeding, and consequently ROH 

estimations, in these populations 30,31. Second, it has been estimated that large sample 

sizes (12,000‒65,000) are required to detect an excess of homozygosity in outbred 

populations 32. Thus, previous studies might be underpowered. 

Assessing the impact of inbreeding in the genetic architecture of AD remains a 

challenge. The limited number of deeply characterized consanguineous families, the 

difficulties in finding familial information for sporadic AD individuals (mainly due to the 

late onset of the disease) and the reduced size of intragenerational pedigrees in 

western countries make the search for arAD loci complex. Furthermore, follow-up of 

candidate ROHs in sequencing data might be a necessary step in the definitive 

mapping a recessive locus, but it has been poorly assessed to date. Considering 

limitations, we think that capturing the fraction of consanguineous individuals nested 

in AD cases in an outbred population could be an efficient strategy to prioritize 

homozygous regions potentially harboring recessive loci. 

To the best of our knowledge, this is the largest genomic data set exploring the 

influence of homozygosity in AD (n = 21,100). First, we investigated whether AD 

individuals from a European outbred population presented an excess of homozygosity 

relative to controls. Next, we delineated the scale of inbreeding in AD cases. To 

prioritize regions with potential recessive loci, we constructed a homozygosity map of 

genomic regions overrepresented in inbred AD cases. Finally, we performed further 

exploration of several promising candidate ROHs using whole exome sequencing (WES) 

data.   
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Subjects and Methods 

The overview of the proposed strategy for ROH detection and subsequent 

prioritization is depicted in Figure 1. 

Genotyping data 

This study includes 10 independent genome-wide data sets comprising a total sample 

of 21,100 unrelated individuals (11,921 AD cases and 9,181 individual controls) of 

European ancestry (Supplementary Table 1). The recruitment, phenotyping, and 

quality control for genome-wide data has been described previously 13. 

Briefly, genotype-level data for each cohort was processed by applying identical quality 

control and imputation procedures. Individuals were excluded for low-quality samples, 

(call rate <97%), excess heterozygosity, sample duplicates, or relation to another 

sample (PIHAT > 0.1875). Individuals were excluded if sex discrepancy was detected. 

Population outliers of European ancestry were also removed. Variants were excluded if 

they departed from the Hardy-Weinberg equilibrium (P-value ≤ 1 × 10-6), presented a 

different missing rate between cases and controls (P-value < 5 × 10-4 for the 

difference), or had a low frequency (MAF < 0.01) or low call rate < 95%. High-quality 

variants were imputed in Michigan Server using the Haplotype reference consortium 

(HRC) panel (https://imputationserver.sph.umich.edu). Only common markers (MAF > 

0.05) with a high imputation quality (R2>0·90) were used for downstream analysis. 

Next, we generated a merged data set combining imputed genotypes from available 

data sets. We calculated identity-by-descendent (IBD) with PLINK 1.9 to generate a 

cohort of unrelated individuals. All possible pairs had Pi-hat < 0.1875, a Z0 ≥ 0.75 and a 
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Z1 ≤ 0.25. Imputed markers with call rates > 0.95 and MAF > 0.05 in the merged data 

set were selected for ROH calling (N SNPs = 2,678,325).  

Whole Exome Sequence (WES) data 

To meet the objective of exploring most promising ROH candidates in the sequencing 

data, we used the Knight-ADRC-NIA-LOAD (KANL) cohort 33. We excluded autosomal 

dominant familial cases and sporadic AD cases harboring well-known disease-causing 

mutations, as they could explain disease status. Thus, this study comprised 986 AD 

cases and 463 control individuals of European ancestry (See Supplementary Table 1 

and Supplementary Figure 1). Of these, 488 subjects presented both GWAS and WES 

data available for this study. Detailed descriptions of cohort characteristics and quality 

control for WES data have been provided previously 33. 

Briefly, exome libraries were prepared using Agilent’s SureSelect Human All Exon kits 

V3 and V5 or Roche VCRome. WES samples were sequenced on a HiSeq2000 with 

paired ends reads, with a mean depth of coverage of 50x to 150x for WES and 30x for 

WGS. Fastq sequences were aligned to the GRCh37.p13 genome reference. Variant 

calling was performed following GATKv.3.6 Best Practices 

(https://software.broadinstitute.org/gatk/) and restricted to a capture region with 

100bp of padding. Variants and indels within 99.9% of the VQSR confidence interval 

were included in the analysis, along with variants with an allele balance between 0.30–

0.70, a quality depth ≥5 for indels and ≥ 2 for SNPs, and a call rate > 95% 33.  

1-Identification of individual ROHs 

Individual ROH calling was conducted using the observational genotype-counting 

approach implemented in PLINK (v1.09) (https://www.cog-genomics.org/plink/1.9/), 
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as it outperforms additional methods in ROH detection 34. ROH detection was 

performed for each individual study and for the merged data set using imputed 

genotypes. Since included data sets were genotyped using different genotyping arrays, 

they shared a small fraction of directly genotyped markers. Given that it has been 

demonstrated that lower SNP density can impact the accuracy of ROH analysis 35, we 

decided to use high-quality imputed genotypes to increase SNP coverage. We used a 

sliding window of 50 SNPs of 5000 Kb in length to scan the genome. One heterozygote 

and five missing calls per window were tolerated in order to manage genomic regions 

with a small number of genotyping errors and discrete missingness. These parameters 

were similar to those described previously 36. The minimal number of SNPs in a ROH 

was set to 100 SNPs 37,38. We empirically explored two minimal length cut-offs to 

consider a ROH, 1 Mb and 1.5 Mb. It has been suggested that ROHs > 1Mb prevent the 

detection of short homozygosity stretches, which, according to empirical studies 39, 40, 

41, are generated by linkage disequilibrium forces in the human genome. However, the 

ability to detect autozygous regions with ROH length set to 1Mb could be 

compromised. Inbreeding estimations resulting from individual ROHs ≥ 1.5Mb have 

been most strongly correlated with inbreeding estimated from pedigree information 

23, but this threshold has never been applied to AD studies. Autosomal SNPs were 

included in a ROH if >5% of the sliding window was homozygous. This means that at 

least 3 SNPs in 250 Kb from the sliding window were required to include a new marker. 

The maximum distance between two consecutive SNPs was set to 1000 Kb apart, and 

SNP density to at least 1 SNP in 50Kb.  
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2-Exploration of homozygosity parameters 

To assess the data quality and genetic architecture of detected ROHs (> 1 Mb and > 1.5 

Mb) in each individual study and in the whole dataset, we calculated: a) the mean of 

the total length of ROH or sum of ROH (SROH); b) the average ROH length (AVROH); c) 

the number of ROHs (NROH); and d) ROH-based estimates of the inbreeding 

coefficient, F, (FROH) per individual. AVROH is the SROH divided by NROH per subject. 

FROH represents the proportion of homozygous segments in the autosomal genome 

per individual (Equation 1). For individuals, this would be the SROH detected divided 

by a factor of 3,020,190 Kb, the total autosomal genome length according to the 

GRCh37.p13 assembly. We further explored whether the effect of homozygosity 

parameters was similar when: 1) ROH length was set to 1 Mb or 1.5 Mb; and 2) the 

analysis was performed per data set or in the final merged database (Supplementary 

Figure 2). Supplementary Table 2 and Supplementary Figure 3 demonstrate that FROH 

estimates derived from ROH calling at 1Mb exhibited a large degree of inflation, not 

allowing an accurate detection of inbreeding (Mean FROH 1Mb = 0.028; Mean FROH 

1.5Mb = 0.011), which is in accordance with prior studies 23. After conducting an 

analysis of the 2,678,325 SNPs shared between available data sets, we found that the 

parameters of the individual data sets and the merged data set analyses were similar 

(Supplementary Figure 2 and Supplementary Table 3). After these exploratory 

analyses, we decided to conduct downstream analyses with ROH calling at 1.5 Mb in 

the merged data. 
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Copy number variants (CNV), particularly hemizygous deletions, are known to cause 

spurious ROHs. However, prior studies have demonstrated that the impact of 

performing ROH calling with or without CNVs is only 0.3% of the total ROH length 23, 

making it highly unlikely that deletions called as ROHs influence findings. To assess the 

impact of CNVs, specifically deletions, in our study, we also conducted ROH calling 

after removing common CNV deletions extracted from the Database of Genomic 

Variants (DGV) (http://dgv.tcag.ca/) 42.  

3-Identification of consensus ROHs 

Consensus ROHs were defined as overlapping segments between individual ROHs 

observed in different genomes. A consensus ROH needs a DNA segment match of at 

least 95% for non-missing SNP markers. Consensus ROH calling was performed using 

PLINK 1.9 in the merged data set. We then extracted those consensus ROHs with a 

DNA length over 100 Kb and more than 3 consecutive SNPs. These criteria were 

applied to prevent the detection of false positives. 

4-Analyses 

4a-Association analysis between homozygosity parameters and AD risk 

Equation 1. 
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To assess the quality of the data in each individual study, we explored sample 

distribution for each of four homozygosity parameters: NROH, SROH, AVROH, and 

FROH. Exploratory analysis was depicted with violin plots, which combine a box plot 

with a kernel density plot, using the ggplot2 package from R (Supplementary Figure 4 

and 5). Inverse rank normal transformation was performed to generalize homozygosity 

parameters using “rankNorm” option in the RNOmni package in R. Transformed 

distributions are shown in Supplementary Figure 6. To test the association of 

homozygosity parameters with AD status, we developed a generalized linear model for 

a binominal outcome, using R for individual-level data. To account for potential 

heterogeneity between individual studies, we adjusted the model per cohort and the 

first four principal components (PCs) resulting from ancestry analysis. See Equation 2. 

Sensitivity analysis was conducted to explore the impact of age on homozygosity 

parameters (Supplementary Table 6).  

 

4b-Association analysis between consensus ROHs and AD 

The association between the phenotype and all consensus ROHs was explored using a 

logistic model. The model was adjusted per cohort, with PCs as covariates for 

downstream analysis. Nonetheless, covariate models adjusted for age and gender, in 

addition to cohort and PCs, were also calculated. Regression-based results were 

corrected for multiple testing using a Bonferroni correction.  

Next, we sought to estimate whether there was an overrepresentation of risk (β > 0) or 

protective (β < 0) consensus ROHs in our association results at different levels of length 

and SNP number per consensus ROH. We applied a binominal test using R. We 

Equation2. Z =β1 Homozygosity Parameter +β2 Cohort +β3 PC1 +β4 PC2 +β5 PC3 +β5 PC4 + e 
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considered that under the null hypothesis of no association, similar distributions would 

be expected for both (50/50). 

5-The homozygosity map of inbred AD individuals 

5a-Identificationn of inbred individuals 

We used FROH estimates to detect the subset of inbred individuals within the whole 

data set. This parameter has been previously shown to better correlate with the 

unobserved pedigree inbreeding 32,43. The cut-off between inbred and non-inbred 

individuals was set to FROH > 0.0156 35. This cut-off corresponds to a second-degree 

relation, i.e. the mean inbreeding coefficient for kinship in a second-cousin marriage or 

closer. It was assumed that there are no different biological effects below 0.0156 than 

in the general population 44. We demonstrated the efficient capture of inbred 

individuals as indicated in Supplementary Figure 7, which shows the inverse 

relationship between ROH length and ROH age. Thus, short ROHs evidence ancient 

origin, and long ROHs more recent origin, which might indicate ROHs emerging from 

consanguineous mating. Next, to explore whether the frequency of consanguinity was 

higher in AD cases than in controls, we calculated the odds ratio and chi square p 

values using the epitools package in R. 

5b-ROHs prioritization based on inbred AD cases 

ROH detection was conducted in the subset of inbred AD cases, applying similar 

criteria to those previously described for the outbred population. Briefly, considering 

the long size of homozygous tracts for inbred individuals, there is higher probability of 

finding a consensus ROH by chance within consanguineous AD cases than in the 
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general population. Hence, we applied stringent criteria to define consensus ROHs. 

Consensus ROHs from inbred AD cases with ROH lengths > 100 Kb and ROH > 100 SNPs 

were given priority for further analysis. Shared overlapping regions between inbred AD 

cases and the whole data set were also identified (See bash code in Supplementary 

Material), and selected based on their overrepresentation in AD cases relative to 

controls (β > 0.03). Prioritized regions were then explored in sequencing data. 

6-Candidate gene prioritization strategies using WES 

6a-Gene based analysis 

To prioritize genes in consensus ROH regions, we performed a gene-based analysis 

(986 cases vs 463 controls) (Figure 1). To generate SNP sets, variants were filtered out 

according to minor allele frequency (MAF<0.01) and functional impact. The allele 

frequency cut-off was established according the Exome Aggregation Consortium 

(ExAC), non-Finnish European Exome Sequencing project (ESP), and 1000G. Only those 

variants predicted to have a high or moderate effect according to SnpEff were included 

45. To compute p-values per gene set, SKAT-O model were applied using R. The models 

were adjusted to consider the impact of the first two PCs and sex. Genes were filtered 

out from results if the number of SNPs included in the model was less than or equal to 

3. 

6b-Variant filtering strategy for inbred AD cases 

ROH segments emerging from inbred AD cases are the most promising candidates to 

harbor autosomal recessive variants. Therefore, we deeply explored ROHs by applying 

an alternative strategy based on variant filtering. In the present study, we explored 
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488 AD cases with complementary GWAS and WES data to identify candidate genes 

and/or mutations associated with AD. Because there is a low likelihood to identify any 

novel or causative mutation in available databases, variants with MAF > 0.01 in the 

Exome Aggregation Consortium (ExAC), non-Finnish European Exome Sequencing 

project (ESP), and 1000G were excluded. All heterozygous variants were removed. 

Finally, only the variants mapped in individual ROHs were selected.   

Biological significance of ROH findings 

To map genes within ROHs, we first extracted all the SNPs located in ROH regions. 

Next, we individually annotated each one. 

Results 

ROH parameters are associated with Alzheimer’s disease risk. 

We examined the general characteristics of the four ROH parameters (SROH, NROH, 

AVROH, FROH) in 21,100 unrelated European individuals from 10 independent cohorts 

(Supplementary Table 1). Data distributions in each individual data set and in the joint 

analysis are shown in Supplementary Table 2 and Supplementary Figure 4. 

Relationships between the mean NROH and SROH are shown in Figure 2. Within the 

merged data set the mean NROH was 14.6 ± 4.6, the AVROH was 2.11 ± 0.61Mb, and 

the SROH was 31.9 ± 22.2Mb. These estimations are in accordance with those 

observed in European individuals 35, except for the NROH parameter, which was higher 

than in previous studies 35.  
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Next, we tested the association of the four parameters between AD cases and control 

subjects. We found that i) a larger homozygosity fraction of the genome (FROH) 

increased the risk of suffering AD [β FROH (CI95%) = 0.051 (0.023 – 0.078); p value = 3.25 

x 10-4] (Table 1); ii) AD individuals presented more ROH segments compared to 

controls [β FROH (CI95%) = 0.043 (0.015 – 0.071); p value = 2.48 x 10-3]; iii) and average 

lengths of ROHs were increased in AD cases compared with controls [β FROH (CI95%) = 

0.027 (0.000 – 0.055); p value = 0.051] (Table 1). Results for each cohort are shown in 

Supplementary Table 4. Notably, a sensitivity analysis conducted excluding known 

deletions, i.e. hemizygous segments 42, provided similar results (Supplementary Table 

5). 

We also detected a correlation between age and homozygosity measures in the 

control group populations ranging from 50 to 80 years old. Specifically, FROH and 

NROH exhibited a significant positive correlation. Conversely, AVROH showed a 

significant inverse correlation with age (Supplementary Table 6). Given these findings, 

we decided to test the impact of acquired clonal mosaicism introduced by aging on 

homozygosity estimations. First, we conducted a sensitivity analysis, controlling for 

cohort, PCs, and age. The effect of FROH remained significant and stable after 

adjustments. The average length of ROH also remained significantly different between 

cases and controls [β AVROH (CI95%) = 0.074 (0.040 - 0.106); p value = 2.16 x 10-5)]. 

Interestingly, the number of ROHs was largely age-dependent (p value = 8.93 x 10-9), 

and it was not significantly associated with AD after age adjustment [(β NROH (CI95%) = 

0.010 (-0.024 - 0.044); p value = 0.559]. These findings support the notion that 

genomic somatic instability increases with age and can pervasively distort the gene-

dosage of multiple loci (Supplementary Table 6). 
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ROH analysis of AD risk using the whole data set 

We identified 21,190 consensus ROHs in the merged data set (N = 21,100). We then 

tested the association of each consensus ROH with AD status. Of these, 11,974 were 

found to be enriched in AD cases, and 9,216 were enriched in controls. Overall, we 

observed a highly significant over-representation of ROHs that increased the risk of 

suffering AD (p value < 2.20 x 10-16) (Table 2). The same over-representation of risk 

associations was detected after filtering at several levels based on the length and 

number of SNPs per consensus ROH (Table 2). When the test was conducted with 

results adjusted for cohort, PCs, age, and gender, the over-representation of risk 

associations remained significant (p value < 2.20 x 10-16). 

To prevent the detection of false positive associations, we selected consensus ROHs 

with ≥100 Kb and ≥3 SNPs, which provided a subset of 1,017 consensus ROHs (Figure 1 

and Supplementary Table 7). After correction of multiple tests (Bonferroni correction 

of p = 4.92 x 10-5), the most significantly associated ROH was detected in 57 individuals 

(45 AD cases vs 12 controls, β (CI95%) = 1.09 (0.48 ‒ 1.48), p value = 9.03 x 10-4). It 

expanded 115.9Kb into an intergenic region (chr4:11,189,482‒11,305,456) near the 

HS3ST1 locus. This region survived age and gender adjustments (Supplementary Table 

7). Importantly, this region has been previously associated with AD 46, but the recessive 

model has never been tested. 

Using associated ROH as a reference, we explored the genes located in significant risk 

consensus ROHs (p value < 0.05) in WES data as well (Figure 1). A total of 33 ROHs 

comprising 41 genes were analyzed. Of those genes, 32 included >3 SNPs in the model 

(32 genes; Bonferroni correction p value = 0.0015). The NECAB1 locus 
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(chr8:91,803,921-91,971,630) presented the most significant signal (p = 0.01) 

(Supplementary Table 8), but none loci reached the multiple test correction threshold. 

Homozygosity mapping of AD using DNA segments identified in inbred cases  

We detected 1,621 individuals presenting a FROH ≥ 0.0156 among the total sample (N = 

21,100) (Figure 2) (Supplementary Table 9). Interestingly, inbreeding over the second 

degree of consanguinity was associated with higher risk of suffering AD [OR (95%, CI) = 

1.12 (1.01 – 1.25); p value = 0.027), which is in line with our previous results. This 

supports the idea that consanguineous AD cases are overrepresented in the general 

AD population. Accordingly, the search for recessive loci that play a role in AD can first 

be assessed in consanguineous cases.  

After ROH calling in inbred AD cases, we detected 5,087 pools of overlapping ROHs. 

From these, we extracted consensus ROHs with ≥100 Kb and ≥100 SNPs. We then 

selected those ROHs that overlapped with the whole sample and that were over-

represented in AD cases relative to controls (Figure 1). We prioritized 807 consensus 

homozygous segments from inbred cases (Figure 3 and Supplementary Table 10). 

Together, these represented 8.6% of the total autosomal genome and comprised 1,722 

genes (Supplementary Table 11). Of these, 1,136 genes, including >3 SNPs in the 

model, were further explored in WES data using a gene-based approach. None of them 

remained associated after multiple corrections (N genes tested = 1,136; p value = 3.47 x 10-

5). Our top signal was detected in the FRY locus (p value = 0.001) (Supplementary Table 

11).  
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Considering that recessive variants are expected at low frequencies, even gene-based 

analysis would be underpowered to detect significant associations. Therefore, we 

decided to further prioritize loci by searching homozygous mutations within selected 

consensus ROHs from inbred AD subjects (Figure 1). We identified seven AD cases that 

had eight new (or extremely rare) homozygous variants in long ROH segments (Table 

3). Two of these individuals were consanguineous (F ROH > 0.156). One had a missense 

variant (rs140790046, c.926A>G) that encodes p.Asn309Ser change within the MKX 

locus. Another carried a novel variant (rs116644203) in the ZNF282 locus, which was 

located in an extremely large region of homozygosity (14.9 Mb) (Table 3). 

Furthermore, three additional homozygous variants were detected: i) a variant 

(rs117458494) in the SPON1 locus, previously related with amyloid metabolism 47, and 

ii) two potential causative variants, carried only by this individual, within a previously 

identified AD region (TP53INP/NDUFAF6) 13. One (rs73263258-ESRP1; in 

TP53INP/NDUFAF6 region) is a missense variant (c.475G>A) that encodes p.Ala159Thr 

change (Table 3). Further notes and functional effect predictions for these variants are 

provided in Supplementary Table 12. 
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Discussion 

This study represents the largest analysis of homozygosity (ROHs) conducted in the 

context of Alzheimer’s disease (AD). Our estimate of excessive homozygosity in 

individuals with AD from European populations (N = 21,100) provides firm evidence for 

the role of consanguinity in AD. This finding suggests that there might be numerous 

recessive AD loci. This statement has several implications for the design of AD genetic 

studies, for the better understanding of the causes of phenotypic variation in AD and, 

finally, for the search for an efficient therapeutic target. 

In this study, we efficiently identified numerous potentially inbred AD cases nested in 

an outbred population, offering a new framework for the analysis of the inbreeding 

component in AD. Furthermore, we demonstrated that detected consensus ROHs are 

enriched in risk associations. Considering our findings, we believe that recessive allelic 

architecture defines a portion of AD heritability. Even the accumulation of multiple 

low-penetrance or pure recessive variants is likely to play a role.  

The genetic basis of human late-onset diseases has been mainly explained by selective 

neutrality 48 under the common disease-common variant (CD-CV) hypothesis 49. 

Considering that, several evolutionary theories of aging have been proposed and 

demonstrated to some extent, e.g. mutation accumulation (MA) and antagonistic 

pleiotropy (AP) 50,51. Theoretical and experimental models for MA further support 

inbreeding effects for late-onset diseases 52,53. Given that the human population is 

evolutionarily young, a large degree of human variation is necessarily rare 54. Thereby, 

late-acting alleles will also be found at low frequencies. In that scenario, contemporary 
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genetic models are in agreement with present results, where rare and recessive-acting 

variants could explain a part of the genetic basis of AD. 

Previous studies in populations from European and non-European ancestries have 

shown inconsistent results 28,29,27,26 in searches for homozygosity patterns in AD. We 

believe that several technical considerations must be taken into account in the analysis 

of ROH. First, it is suggested that the estimation of an excess of homozygosity in an 

outbred population requires a large sample size 32, but prior studies had very modest 

sample sizes (N < 6,000) 28,29,27,26. Thus, they likely were underpowered to detect 

inbreeding effects from unrelated individuals. 

Second, different scenarios should be considered for selecting shorter or longer ROHs 

than 1.5 Mb for the measurements and statistics, because these indicate different 

aspects of demographic history. Evidence suggests that individual ROHs < 1.5 Mb 

might reflect LD patterns of ancient origin rather than the consanguineous cultural 

practices and genetic isolation captured with ROHs > 1.5 Mb 23. Here, we detected 

substantial inflation in FROH estimations when individual ROH length was set to 1 Mb. 

This makes the detection of inbred individuals from an outbred population 

complicated, and strongly confounds the interpretation of homozygosity estimations. 

Despite that, prior AD genetic studies assessing the role of homozygosity have not 

tested the potential effect of performing ROH calling for segments longer than 1 Mb 

28,29,27,26, which might partly explain initial failures.  

Overall, several technical handicaps have made difficult ROH studies in AD. It might 

have caused researchers to overlook the potential inbreeding effect for this disease. 

Hence, we encourage other groups to conduct ROH analysis in unrelated populations, 
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but with large enough sample sizes and while redefining the ROH lengths at least to 

1.5Mb, to better capture the recessive component of AD. 

In our ROH analysis using the whole sample (N = 21,100), the most promising 

consensus ROH was located in proximity to the HS3ST1 gene (⁓200 Kb), and showed a 

strong genetic effect. Genetic markers in the vicinity of the homozygous block 

(⁓300kb) have been previously associated with AD 55,46. Additionally, the HS3ST1 locus 

was differentially expressed in the brain in AD cases versus controls 55. Despite these 

findings, the causative genetic mechanism involving this region with AD remains 

elusive. We therefore believe that high-resolution mapping across the 115 Kb of the 

reported consensus ROH could help to positional cloning of the causative mutation. 

Our study of ROHs > 1.5Mb sheds light on the homozygosity component influencing 

AD, as it reflects recent consanguinity and/or population isolation. Inbred individuals 

tend to have lower survival, fertility, and growth rates 56,57,58, as well as post-

reproductive health 59. Considering that, we believe that enriching our subset of inbred 

cases can provide a redefined framework for investigating inbreeding effects and 

looking for recessive acting variants. This idea has driven the design of the present 

study. With the aim to increase the probability to detect regions harboring recessive-

acting loci, we prioritized consensus ROHs according to the homozygosity map of 

inbred AD individuals that we obtained. Candidate regions were then explored in 

sequencing data. Among them, variants of the MKX and ZNF282 genes were detected 

in two independent inbred AD cases. Both ZNF282 and MKX loci are encoding 

transcription factors 60,61,62. This is worth noting, given that the largest WES study 

analyzing rare variations in AD recently highlighted the potential role of transcriptional 
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regulation for this disease 63. As well, the ZNF282 gene is mapped roughly to 800Kb 

from the CNTNAP2 gene, which has been previously associated with AD 11. Autosomal 

recessive mutations in CNTNAP2 loci have been also linked with epilepsy and 

intellectual disability (OMIM 604569). 

In this study, we also found a potential recessive variant in the SPON1 locus. SPON1 

has been related to the mechanism of AD, where APP metabolism has a central role. 

APP cleavage through β-secretases produces amyloid-beta (Aβ), which later 

accumulates in AD brains 7. SPON1 has been found to bind to APP, inhibiting its α/β 

cleavage 47. Other studies have also reported SPON1 binding to the APOE family of 

receptors 64. Markers in this gene have been related with dementia severity 65 and with 

the rate of cognitive decline 66. Considering prior findings and the present result, it 

would be biologically plausible that the presence of recessive acting-variants in APP or 

in its biological partners directly influences the amyloid cascade. Thus, we believe that 

SPON1 could be considered an interesting candidate, which deserves future 

resequencing efforts. 

Among other candidates, we identified a missense variant (rs73263258 in ESPR1 gene) 

within a long ROH in an AD patient. This gene was mapped in the close vicinity of the 

TP53INP1/NDUFAF6 genomic region. This region has been previously associated with 

AD using a gene-based strategy 67. Recently, our group also identified genome-wide 

significant markers in this region 13. It is not unexpected that genes containing 

common variants with small genetic effect might also be enriched in rarer variants 

with higher penetrance. The existence of several genetic mechanisms acting in this 
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region should be considered when deep sequencing will be conducted, to help 

pinpoint the causative variant. 

Our observations are subject to limitations that need to be considered. Since the data 

sets used in the present study were genotyped using different platforms, they shared a 

small proportion of directly genotyped markers. Given that lower SNP density could 

impact the accuracy of the study 35, we decided to perform the present analysis using 

imputed genotypes of high quality (imputation quality, r2> 0.90).  To make the data 

optimally comparable, we generated a merged data set including the same variants 

with MAF > 0.05. We also showed that ROH calling is insensitive to performances of 

the analysis in each individual dataset or in the merged data for a set of individuals 

from the same ancestral group, when we determined the SNP set to use.  

The potential impact of CNVs on ROH analysis must be taken in consideration as a 

potential limitation. However, when we assessed CNV impact on our analyses, no 

differences were found in homozygosity parameters before and after CNV exclusion. 

These results are in agreement with those of previous studies, suggesting that the 

effect of deletions on homozygosity parameters, when it exists, is minimal 36. 

Clonal mosaicism can also generate spurious ROHs. A direct correlation between clonal 

mosaicism events in peripheral blood and age >50 years was demonstrated 68. We 

believe that these events might be introducing ROHs of short lengths. Consequently, 

an age-dependent increase in the number of segments was detected. In fact, it could 

explain why we identified a higher-than-expected mean ROH number for this data set 

of a European population than was found in prior studies 35. From our point of view, 

controlling the role of genome instability for late-onset neurodegenerative diseases 
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represents a challenge, due to the impossibility of detecting true converters to AD 

before disease onset, and the difficulties of collecting biological information from the 

target tissue. Despite the fact a signature of genome instability in ROH studies might 

exist, our adjusted results (those considering age effects) still support the idea that 

inbred individuals are overrepresented in AD population respect to controls. 

In summary, we demonstrated the existence of an inbreeding effect in AD and 

efficiently captured a fraction of consanguineous individuals from outbred 

populations. The proposed method can be considered a refined strategy to investigate 

the role of recessive variants in AD. Considering that there are significant barriers to 

collecting complete information from consanguineous AD families, the identification of 

highly probable consanguineous AD cases in outbred populations could be important 

for future large-scale homozygosity mapping. Furthermore, the opportunity to explore 

complementary sequencing data gave an added value to this research, providing a 

subset of potential candidates harboring recessive variants. In any case, the proposed 

candidates, acting under a recessive inheritance model, will only be confirmed when at 

least an additional individual harboring the same recessive mutation, or a compound 

heterozygote is detected. We recognize our current lack of power to fully verify arAD 

loci. That is why greater efforts and larger collections of individuals with GWAS and 

sequencing data are needed to confirm our findings.  

Our understanding of the dynamics of population genomics in complex diseases like 

AD is far from complete, but ROH analyses provide us a means to go further and might 

be an alternative strategy to uncover the genetic loci underlying Alzheimer’s disease. 
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Table Legend 

Table 1. Effect of genome-wide homozygosity measures in Alzheimer’s disease for the 
joint analysis. 

Dataset Unadjusted Adjusted Cohort Adjusted Cohort, PCs 

Beta (CI95%) P value Beta (CI95%) P value Beta (CI95%) P 
value 

FROH 0.059 
(0.032 - 0.087) 

2.02 x 
10-5 

0.064  
(0.036 - 0.091) 

4.96 x 
10-6 

0.051  
(0.023 - 0.078) 

3.25 x 
10-4 

AVROH 0.014 
(-0.001 - 0.053) 

0.060 0.030 
(0.003 - 0.057) 

0.032 0.027 
(0.000 - 0.055) 

0.051 

NROH 0.053 
(0.027 - 0.081) 

1.11 x 
10-4 

0.058 
(0.030 - 0.086) 

3.62 x 
10-5 

0.043 
(0.015 - 0.071) 

2.48 x 
10-3 

Results for association of excess of homozygosity (FROH), average ROH lenght (AVROH), and 
number of ROH (NROH) with Alzheimer disease status.  
OR, Odds Ratio;  with 95% confindence interval (CI95%) and level of statistical significance (P 
value) 
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Table 2. Frequency of consensus ROHs with a potential risk or protective effect in 
Alzheimer's disease. 

 
N 

ROH 
Risk  

associations 
Protective 

associations P value Probability of 
Success 

Whole dataset 21190 11974 9216 < 2.2 x 10-16 0.56 
Category A 1017 593 424 < 2.2 x 10-16 0.58 
Category B 926 537 389 1.30 x 10-6 0.57 
Category C 858 499 359 1.98 x 10 -6 0.58 
Category D 42 33 9 2.7 x 10-4 0.79 

Whole dataset / 
Map of Inbreed AD 

Cases 
6636 3969 2667 < 2.2 x 10-16 0.60 

 

Strategy A, ROHs > 100 kb; > 3 SNPs 
Strategy B, ROHs > 100 kb; > 25 SNPs 
Strategy C, ROHs > 100 kb; > 50 SNPs 
Strategy D, ROHs > 100 kb; > 3 SNPs, P< 0.05 
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Figure Legend 

Figure 1. Schematic of the stepwise for ROH prioritization. 

Figure 2. Runs of homozygosity per cohort and per individual. A) Mean number of 
ROHs versus mean total sum of ROHs in Mb for the 10 cohorts explored. B) Mean 
number of ROHs versus mean total sum of ROHs in Mb per individual explored. Red 
dashed lines represent the threshold for the inbreeding coefficient of 0.0156 (second 
cousins’ offspring) and 0.0625 (first cousins’ offspring). 

Figure 3. Circos plot for the prioritized regions. 

Histogram for the effect of the 21,190 consensus ROHs identified in the whole sample 
is shown. Risk ROH associations are shown in red; protective ROH associations are 
shown in green. Blue regions represent prioritized ROHs from consanguineous AD 
cases. Orange segments represent prioritized regions harboring potential recessive 
variants. 

 

Supplementary Tables 

Supplementary Table 1. Characteristics of the cohorts used in the analysis. 

Supplementary Table 2. Summary of homozygosity measures for each individual study 
and the merged data set, considering two minimal ROH length cut-offs, 1 Mb and 1.5 
Mb. 

Supplementary Table 3. Summary statistics for the difference in homozygosity 
measures calculated using two different methods 

Supplementary Table 4. Effect of genome-wide homozygosity measures in Alzheimer’s 
disease for each individual data set 

Supplementary Table 5. Effect of genome-wide homozygosity measures in Alzheimer’s 
disease for the joint analysis, excluding deletions. 

Supplementary Table 6. Effect of genome-wide homozygosity parameters in 
Alzheimer’s disease for the joint analysis, considering the effect of clonal mosaicism in 
aged populations. 

Supplementary Table 7. Consensus ROHs associated with Alzheimer’s disease in the 
whole dataset. 

Supplementary Table 8. Gene-based results for genes located in consensus ROHs 
associated with Alzheimer’s disease in the whole dataset. 

Supplementary Table 9. Demographics for the pool of inbred individuals. 
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Supplementary Table 10. Consensus prioritized ROH based on the map of inbred 
Alzheimer's disease patients. 

Supplementary Table 11. Gene-based results for genes located in consensus prioritized 
ROH based on the map of inbred Alzheimer's disease patients. 

Supplementary Table 12. Variant annotation and functional effect prediction. 

 

Supplementary Figure Legend 

Supplementary Figure 1. Quality control for A) ancestry and B) relatedness in the 
exome. All possible pairs had Pi-hat < 0.1875, a Z0 ≥ 0.75 and a Z1 ≤ 0.25. 

Supplementary Figure 2. Boxplot for FROH per individual at ROH calling with 1Mb and 
1.5Mb. Red line represents FROH = 0.0156 (mean inbreeding coefficient for kinship of 
second cousin marriage). 

Supplementary Figure 3. Mean number of ROHs versus mean total sum of ROHs in Mb 
for the 10 cohorts explored, according to different ROH calling parameters. A) ROH 
length set to 1 Mb. ROH calling conducted with different number of markers per data 
set; B) ROH length set to 1.5 Mb. ROH calling conducted with different number of 
markers per dataset; C) ROH length set to 1 Mb. ROH calling conducted with the 
fraction of markers shared between data sets (2.6M); D) ROH length set to 1.5 Mb. 
ROH calling conducted with the fraction of markers shared between data sets (2.6M).  

Supplementary Figure 4. Violin plots showing the distribution of ROH > 1.5 Mb within 
each data set and in the merged data for the homozygosity parameters (NROH, SROH, 
AVROH, FROH). 

Supplementary Figure 5. Violin plots showing the distribution of ROH > 1.5 Mb within 
each data set and in the merged data for the homozygosity parameters (NROH, SROH, 
AVROH, FROH), split by case control status. 

Supplementary Figure 6. Transformed distribution for the homozygosity measures. 
Transformation was performed using an inverse rank normal transformation with the 
“rankNorm” option in the RNOmni package in R. 

Supplementary Figure 7. Distribution for average length of individual ROH segments 
for: non-inbred individuals (FROH < 0.0156), second-degree relatives (FROH > 0.0156) 
and first-degree relatives (FROH > 0.0625). 
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