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Figure 8: Multi-electrode array recordings of ganglion cell spontaneous activity 
and responses to Gaussian white noise flicker. Ganglion cell activity was recorded 
with multi-electrode arrays while the retina was exposed to a sequence of visual 
stimuli, repeated at each ambient luminance level. Each visual stimulus was preceded 
by 1 second of uniform background gray (‘128’). This time window was used to 
calculate spontaneous activity.  (A) Spontaneous activity in ON and OFF ganglion cells 
(polarities defined by STA) over the whole experiment (stimulus durations were 12 
seconds to 3 minutes; stimuli 1 to 60 were considered as “settling down period” and 
not analyzed). ON cell spontaneous activity (upper panel) differed mainly during 
mesopic conditions while OFF cells (lower panel) in knockout exhibited an increased 
spontaneous spike rate over all luminance levels (height of the vertical bars on top of 
the panels indicates p-values). Vertical lines indicate switches to the next ambient 
luminance level. Stimuli are indicated below: Yellow – sequence start, magenta – full 
field steps, cyan – Gaussian white noise flicker, black – drifting gratings, gray – other. 
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(B) Mean spike rates during the full-field Gaussian white noise flicker stimulus with 
interleaved high-contrast (HC) and low-contrast (LC) episodes. For Gaussian flicker, 
only cells with a clear STA to LC episodes of at least one stimulus repetition per 
luminance level were analysed. In general, spike rates during HC episodes were 
similar between genotypes, while spike rates during LC episodes were higher in 
knockout ON and OFF ganglion cells. (C) The difference in spike rate between HC and 
LC episodes was calculated as a measure of discrimination strength of the contrast 
modulation. ON cells (left panel) showed a clear difference in discrimination strength 
only during mesopic conditions, while OFF cells (right panel) had significantly different 
discrimination strength during mesopic and scotopic conditions. 
 
Gaussian white noise stimulus 
 
One of our stimuli was a full-field Gaussian white noise (“flicker”) stimulus. Each flicker 

stimulus consisted of episodes of high-contrast flicker interleaved with episodes of low-

contrast flicker (Fig. 8 B). The stimulus was repeated four times at each ambient 

luminance level, for a total of 12 repetitions (marked 1 through 12 in the legend at the 

bottom of Fig. 8 A). Spike rates of ganglion cells increased during high-contrast 

episodes, reflecting the stronger drive by the higher stimulus contrast. During low-

contrast episodes, spike rates decreased and dropped to approximately the 

spontaneous rate before stimulus onset. In both ON and OFF cells, the spike rates 

during high-contrast seemed more similar between wild type and knockout, than spike 

rates during low-contrast.  

For the analysis, we subtracted the spike rates during low-contrast episodes from the 

high-contrast spike rates (Fig. 8 C) for each stimulus repetition. We refer to this 

difference as the discrimination strength of a ganglion cell to the flicker stimulus. We 

only included cells in the analysis that had a clear spike-triggered average (STA) 

derived from the low-contrast episodes of at least one stimulus repetition per light level 

to ensure that the spikes are stimulus-driven (ON cells: KO n = 34; WT n = 38. OFF 

cells: KO n = 53; WT n = 49). In ON ganglion cells (Fig. 8 C left), we did not observe 

significant differences between wild type and knockout mice in discrimination strength 

during scotopic and photopic conditions (0.413 < p < 0.992). However, in mesopic 

conditions the discrimination strength was significantly lower in knockout compared to 

wild type (p < 0.01 for first, p < 0.001 for other three repetitions). In OFF ganglion cells 
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(Fig. 8 C right), we observed significantly reduced discrimination strength in knockout 

during scotopic (p = 0.012, p = 0.005, p = 0.037, p = 0.039) and mesopic conditions 

(p < 0.001, all repetitions), but not in photopic conditions (0.053 < p < 0.487; Wilcoxon 

ranksum tests). 

Drifting sinusoidal grating stimulus 

Looking carefully at the spontaneous activity plots, we observed peculiar jumps in 

spontaneous activity in ON ganglion cells during drifting sinusoidal grating stimuli in 

scotopic luminance (Fig. 8 A, top, before stimulus number 100 and after stimulus 150). 

To investigate this further, we grouped ganglion cells based on their spontaneous 

activity following sinusoidal grating stimuli in scotopic luminance (Fig. 9 A). We 

clustered the ganglion cells by a k-means algorithm (Matlab) to avoid any subjective 

selection bias. Most clusters were approximately equally populated by wild type and 

knockout cells. However, we found two clusters that were populated mostly by either 

wild type cells (cluster 4) or by knockout cells (cluster 8), and both exhibited a clear 

jump in spontaneous activity in scotopic luminance. These two clusters robustly 

emerged when running the k-means algorithm with a value of k (= number of clusters) 

between 7 and 12. Fig. 9 A shows the distribution for k = 8 clusters. Four clusters 

consisted exclusively of ON cells (1, 4, 5, 8), while the other four clusters were mixed. 

While both clusters 4 and 8 exhibited a jump in spontaneous activity, this jump 

happened after presentation of gratings of different spatial properties. This is evident 

in the spontaneous activities of the individual cells of clusters 4 and 8 during scotopic 

luminance shown in Fig. 9 B. Spike rates decreased after the presentation of gratings 

with low spatial periods, sometimes exhibiting a marked drop. Common to all cells in 

clusters 4 and 8 was a sharp increase in spontaneous spike rate: in cluster 8, this 

increase happened after presentation of the first 2000 µm grating, while cluster 4 

shows a similar jump in spontaneous activity in between the 500 µm and 1000 µm 

gratings. In both clusters the increased spontaneous activity was maintained between 

presentations of the gratings with large spatial periods and only occurred in scotopic 
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luminance. A natural question is, whether the change in spontaneous activity after the 

presentation of certain gratings simply reflects a persisting elevated activity of the cells 

during those gratings, i.e. if our observation can be explained by a lingering effect of 

responses to the stimulus itself. Fig. 9 C shows example responses after aligning 

(phase shifting) these responses by cross-correlation with the sinusoidal grating 

stimulus (phase-shifts in responses of different ganglion cells stem from different 

receptive field positions relative to the grating stimulus). Of cluster 4, only wild type 

cells were considered for further analysis. We averaged spike rates of cells within each 

cluster and determined the following response parameters with or without subtracting 

the spontaneous spike rate (baseline): minimal spike rate, maximal spike rate, mean 

spike rate, median spike rate and response amplitude (max-min). We compared the 

parameters of gratings of the same temporal frequency, but with different spatial 

periods. Fig. 9 D plots significant changes in a heatmap (Wilcoxon ranksum test). For 

example, the top left entry indicates the level of significance when comparing the 

presentations of 0.25 Hz gratings with 100 versus 200 µm spatial periods. Of all 

parameters examined, only the baseline-subtracted mean spike rate yielded significant 

differences between gratings of different spatial properties in the range with a change 

in the spontaneous spike rate (Fig. 9 D, left; spatial period range marked with yellow 

rectangle). In all other parameters, only the strong changes between 200 µm and 

500 µm gratings yielded systematically significant differences, shown here for the 

parameter “amplitude” of clusters 4 and 8 (Fig. 9 D, right). The situation was similar for 

all eight clusters (not shown). In summary, the change of spontaneous activity after the 

presentation of certain gratings is hardly reflected by changed response properties to 

the gratings themselves. 
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Figure 9: Multi-electrode array recordings of ganglion cell responses to drifting 
sinusoidal gratings. Ganglion cells were k-means-clustered based on their 
spontaneous activity following sinusoidal grating stimuli in scotopic luminance. (A) 
Mean spontaneous activity of eight ganglion cell clusters. Four clusters were 
exclusively ON cells (1, 4, 5, 8), while the other four clusters were mixed (n numbers: 
total (ON cells/OFF cells)). Most clusters contained wild type and knockout ganglion 
cells, only clusters 4 and 8 were more specific. Columns mark spatial periods, each 
containing all temporal frequencies (see labels above clusters 1 and 2). Vertical dotted 
lines indicate the next luminance level. (B) Spontaneous activity of individual cells of 
clusters 4 (top) and 8 (bottom) during scotopic luminance. Spike rates decreased 
during the low spatial periods, with a sharp increase during 500 µm gratings (cluster 
4) or after the presentation of the 2000 µm gratings (cluster 8). (C) Averaged response 
of cluster 4 (WT only) and cluster 8 to a subset of grating stimuli. There is a marked 
increase in spike rate modulation (amplitude) in the responses to the 500 µm gratings 
compared to the 200 µm gratings. (D) Only the baselined mean spike rate (left panels) 
differed significantly at the junctions of grating spatial periods where we saw 
spontaneous activity jumps (yellow rectangles). Amplitudes (right panels) showed 
significant differences mainly at the junction between 200 µm and 500 µm gratings. 
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Full-field step stimulus 

We next analyzed the responses to a full-field contrast step stimulus. The averaged 

responses were very similar in OFF ganglion cells from wild type and knockout at all 

three luminance levels (Fig. 10 A). Only subtle differences between genotypes in the 

positive contrast steps (going ‘brighter’) at scotopic and mesopic luminance could be 

observed. In OFF ganglion cells of the knockout, response peaks were partly shifted 

in time (arrows) and response amplitudes were increased (arrowheads). Note that 

classical ON-OFF cells would almost unequivocally fall into the OFF category in our 

classification by their STA polarity (Tikidji-Hamburyan et al., 2014).  

ON cells of wild type and knockout also responded very similarly in mesopic and 

photopic luminance levels (Fig. 10 B). However, in scotopic luminance, upon return to 

the grey background after the white step, we observed different delays in response 

peaks. The averaged responses revealed that there are several subpopulations with 

different properties, as it appears from the peaks of the standard deviations of the 

responses (inset). To investigate this further, subpopulations of cells were defined by 

manually classifying response peaks in five time windows after the offset of the white 

flash: 0.2 – 0.5 s, 0.5 – 1.0 s, 1.0 – 1.3 s, 1.3 – 1.5 s and 1.5 – 1.75 s. This yielded a 

differential distribution pattern in wild type and knockout (bar graph in Fig. 10 B). 75% 

of ON cells in knockout had such responses versus 45% of the wild type cells. 

Strikingly, almost all wild type cells with a response fell into subpopulation ‘2’ (response 

peak between 0.5 and 1 s). Subpopulation ‘3’ (1 to 1.3 s) was almost exclusively found 

in knockout retinas. Fig. 10 C and E illustrates the marked timing difference in these 

responses with two representative cells belonging to subpopulations ‘2’ and ‘3’ (spike 

raster on top, spike rate at the bottom). Fig. 10 D and F show the population averages 

of these two populations.  
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Figure 10: Multi-electrode array recordings of ganglion cell responses to full-
field contrast steps. Ganglion cells were stimulated with full-field steps: gray  black 
 gray  white  gray (see bottom of each panel). (A) Averaged responses (mean 
± s.d.) of OFF cells from wild type and knockout at all three luminance levels. Response 
peaks to anti-preferred contrast steps were partly delayed (arrows) and response 
amplitudes were increased (arrowheads) in scotopic and mesopic luminance. (B) 
Responses of ON cells of wild type and knockout were very similar in mesopic and 
photopic luminance levels. In scotopic luminance, responses to the last step were 
delayed. We observed several subpopulations characterized by the delay timings (see 
standard deviations in inset). Subpopulations were similar in wild type and knockout, 
except for cells with a delayed response in time window 3, which was almost 
exclusively found in knockout (bar graph). (C) Example scotopic response of a WT ON 
cell with delay 2 (top: raster plot of all 30 repetitions; bottom: averaged spike rate; thick 
line = mean, thin lines = s.d.). (D) Averaged scotopic response of all cells with a 
delayed response in time window 2 (mean ± s.d.). (E) Example scotopic response of 
a KO ON cell with delay 3 (top: raster plot of all 30 repetitions; bottom: averaged spike 
rate; thick line = mean, thin lines = s.d.). (F) Averaged scotopic response of all cells 
with a delayed response in time window 3 (mean ± s.d.). 
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Discussion 

 

We found especially strong expression of the voltage-gated calcium channel (VGCC) 

subunit α2δ-3 in horizontal cells in the mouse retina. Yet, a knockout of α2δ-3 did not 

lead to changes of the horizontal cell mosaic or of voltage-gated calcium channel 

currents within horizontal cell somata. Outer retinal function measured by 

electroretinograms was normal, as was the optokinetic reflex behavior in α2δ-3 

knockout animals. In ganglion cells however, we could see a number of changes in 

response properties to different kinds of visual stimuli, which were mostly restricted to 

scotopic or mesopic ambient luminance levels of our stimulation paradigm. 

 

α2δ mRNA expression 

Gene or protein expression of α2δ-1 (Eroglu et al., 2009; Huang et al., 2013), α2δ-3 

(Nakajima et al., 2009; Pérez de Sevilla Müller et al., 2015) and α2δ-4 (Wycisk et al., 

2006; Mercer et al., 2011; de Sevilla Muller et al., 2013; Thoreson et al., 2013) have 

been reported in vertebrate retina. To the best of our knowledge, expression of α2δ-2 

in adult retina, or expression of any of the four α2δ subunits during mouse retinal 

development have not been demonstrated. We found expression of all α2δ genes in 

adult as well as in developing mouse retina, from at least postnatal day 3 onwards (Fig. 

2). This raises the possibility for a function of the α2δ subunits in synaptogenesis 

(Kurshan et al., 2009) in mouse retina during development.  

 

α2δ-3 localization 

It has previously been reported that α2δ-3 is expressed in ON bipolar cells (Nakajima 

et al., 2009), photoreceptors, bipolar, amacrine and ganglion cells but not horizontal 

cells (Pérez de Sevilla Müller et al., 2015). Yet, we found very prominent LacZ staining 

in horizontal cells, driven by the endogenous α2δ-3 promotor (Fig. 3). The extraordinary 

strength of the horizontal cell labeling by the LacZ reporter we observed is completely 
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in line with the α2δ-3 gene expression values found in the microarray data of Siegert 

et al. (2012) (the expression profile can be found online by selecting “Cacna2d3” at 

http://www.fmi.ch/roska.data/index.php). Therefore we believe that the clear antibody 

labeling of α2δ-3 protein in the outer plexiform layer that has been reported by Pérez 

de Sevilla Müller et al. (2015) stems at least in large part from horizontal cells. The 

absence of this labeling from cone pedicles would thus suggest localization of α2δ-3 

only in horizontal cell processes contacting rods. The data of Siegert et al. (2012) also 

supports our finding of LacZ reporter labelling in melanopsin ganglion cells (Fig. 4). 

Interestingly, their microarray data shows expression of α2δ-3 also in A-II and maybe 

other gylcinergic amacrine cells, which was also reported by Pérez de Sevilla Müller 

et al. (2015). This would be consistent with our observation of LacZ labeling in the 

proximal INL (Fig. 3+4). 

 

Retina morphology and the horizontal cell mosaic 

The mouse retina only contains one type of horizontal cell of the axon-bearing b-type 

(Peichl and Gonzalez-Soriano, 1994) which form a regular mosaic (Wassle and 

Riemann, 1978). Mosaic formation is at least in part controlled by repulsive homotypic 

interactions between neighboring horizontal cells (Poche et al., 2008; Huckfeldt et al., 

2009). It has been shown that α2δ subunits have a function in synaptogenesis and 

synaptic stabilization (Eroglu et al., 2009). The unperturbed regularity of the mosaic 

and spacing of horizontal cells (Fig. 5) can be interpreted as an indication of normal 

outer retinal development and suggests no impact on horizontal cell survival by the 

α2δ-3 knockout. However, the connectivity and ultra-structure of the triad synapses 

should be investigated more closely to determine potential effects on synaptogenesis 

(Reese et al., 2005) and horizontal cell connectivity in detail. 
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Voltage-gated calcium channel currents in horizontal cell somata 

The α2δ subunits are thought to enhance trafficking of VGCC to the membrane. Yet 

we could not detect a difference in maximum current amplitude or density in horizontal 

cell somata of α2δ-3 knockout nor in the parameters of the current-voltage relationships 

or the voltage-dependent inactivation (Fig. 6). It is unknown whether α2δ-3 interacts 

with all VGCC α1 subunits of horizontal cells, namely L-, P/Q- and N-Type (Schubert 

et al., 2006; Liu et al., 2013). It is also not known if there is more than one α2δ isoform 

expressed in horizontal cells. Differential regulation of either α1 or α2δ subunits could 

compensate for the knockout of α2δ-3, rescuing horizontal cells from having a 

pronounced change in voltage-gated calcium channel properties. The other intriguing 

possibility is the putative localization of α2δ-3 on the rod-contacting axonal processes. 

Any changes on calcium currents in the axonal compartment would likely not show up 

in our somatic recordings. 

 

Outer retina function and visual reflex behavior  

Horizontal cells form reciprocal synapses with photoreceptors and this feedback is 

thought to influence spatial (Thoreson and Mangel, 2012; Szikra et al., 2014) as well 

as temporal processing properties of the retina (Pandarinath et al., 2010). If the α2δ-3 

knockout had an impact on feedback, it could affect the strength or kinetics of synaptic 

transmission from photoreceptors also to bipolar cells, and be reflected in the 

properties of bipolar cell responses. Our electroretinographic (ERG) recordings did not 

show an effect of the α2δ-3 knockout on latencies or amplitudes of the b-wave 

(indicative of depolarizing bipolar cell activation), in neither scotopic nor photopic 

conditions (Fig. 7). These results indicate that α2δ-3 subunits are not essential for 

photoreceptor responses or the synaptic signal transmission to depolarizing bipolar 

cells.  

As a measure for overall retinal functionality we tested the α2δ-3 knockout animals for 

their optokinetic reflex behavior. Tracking behavior in our virtual optokinetic drum 
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experiments was found in most knockout animals (Fig. 1), underlining general retinal 

functionality and suggesting meaningful output of α2δ-3 knockout retina in this simple 

visual reflex paradigm. 

 

Retinal processing 

Our micro-electrode array (MEA) recordings of retinal ganglion cells revealed several 

subtle differences between wild type and α2δ-3 knockout retina. Some of the effects 

appear rather general, such as the average spontaneous spike rate which was 

elevated throughout the experiment (covering all luminance levels) in OFF ganglion 

cells, but not in ON cells (Fig. 8 A). The compression of discrimination strength 

between high- and low-contrast flicker stimuli (Fig. 8 B+C) was restricted to scotopic 

(ON cells) or scotopic and mesopic luminance levels (OFF cells). This compression 

seemed to be caused mainly by an elevation of spike rates to the low contrast-

condition, while the spike rates during high contrast were largely similar. The restriction 

of effects to lower luminance levels was a feature we observed consistently.  

While OFF cells showed only minor differences in our other stimuli (Fig. 10 A), there 

were subsets of ON cells with changed response profiles which we found only in α2δ-3 

knockout retinas. We saw a jump in spontaneous spike rates during drifting grating 

stimuli in both wild type and knockout ON cells, reflecting changed activity after grating 

stimuli of certain spatial properties. However, these jumps occurred after gratings of 

different spatial properties in wild type and knockout ganglion cells. It is tempting to 

speculate that the two clusters of cells with an abrupt change in spontaneous spike 

rates (Fig. 9 B) reflect a change in spatial processing of the involved circuitry. We do 

not know, however, what brought about this change in spontaneous spike rates, as 

responses to the preceding grating stimuli themselves did not show any abrupt 

changes in both clusters. The only difference we found (a change in baseline-adjusted 

mean spike rates, Fig. 9 D) is likely due to the shift in the spontaneous spike rate itself, 

as this determines the baseline value and did not show in the non-baselined data (not 
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shown). We didn’t observe any systematic differences depending on the temporal 

properties of the grating stimuli we used. 

The responses within different time windows of our full-field step stimuli (Fig. 10 B), on 

the other hand, can be seen as a change of temporal properties. We do not know the 

physiological significance of these responses, as they only appear on the return to the 

background mean luminance and most have a very long temporal scale (> 500 ms). 

We refer to this type of responses as delayed responses. In general, we found delayed 

responses to be much more abundant in ganglion cells of knockout retina. This could 

indicate an emergence of this kind of responses in ganglion cells, rather than a shift in 

the delay time in the same ganglion cell types. It could also indicate a different 

distribution of the abundance of single ganglion cell types in the knockout, as we 

cannot rule out sampling artifacts of the MEA technique, i.e. we likely record from 

different numbers of single ganglion cell types in each recording. 

What could cause the differences in retinal ganglion cell responses which we 

described? Due to the widespread expression of α2δ-3 in various cell types, 

interpretation of the found phenotypes has to be undertaken with care. As a subunit of 

voltage-gated calcium channels, the α2δ-3 knockout is most likely to cause a loss-of-

function kind of phenotype, affecting synaptic release in the respective cells. The 

increased spontaneous spike rate in OFF ganglion cells might be caused by reduced 

inhibitory transmission somewhere in the circuitry. It is unlikely that the compression 

of discrimination strength in our Gaussian white noise stimulus was caused by the α2δ-

3 knockout in horizontal cells, since horizontal cells do not play a role in contrast gain 

control (Beaudoin et al., 2007) or contrast adaptation (Baccus and Meister, 2002). The 

shift in spontaneous spike rate during drifting sinusoidal gratings of certain spatial 

properties could be indicative of a change in receptive field size in one or several cell 

types. Finally, the abundance of delayed responses and their delay timings in our full-

field step stimuli might be caused by a prolonged inhibitory input or by a change in the 

interaction between the ON and OFF pathways. It is also possible that some of the 
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changes are caused by ganglion cell-intrinsic mechanisms, since α2δ-3 expression in 

the ganglion cell layer seemed low but was widespread. Interestingly, the majority of 

changes we observed were restricted to brightness regimes with rod activity (scotopic 

and mesopic), raising the possibility of a role of α2δ-3 in retinal circuitries carrying rod 

signals. 

 

Horizontal cell function of α2δ-3 and other possible mechanisms 

It remains open how α2δ-3 acts within VGCC complexes in horizontal cells and if it 

contributes to feedback from horizontal cells to photoreceptors (Thoreson and Mangel, 

2012). Horizontal cells have two functionally separated cellular compartments that 

were thought to be electrically isolated from each other (Nelson et al., 1975): somato-

dendritic processes contact cone pedicles, axonal arborizations contact rod spherules 

(Kolb, 1970, 1974). Signals can, however, spread from the dendritic compartment 

down this axon and impact the rod circuitry (Trumpler et al., 2008), creating a form of 

surround inhibition by sign-inverting activation of rod synapses (Szikra et al., 2014). 

Localization of α2δ-3 within the axonal compartment of horizontal cells could at least in 

part explain the restriction of the phenotypes we found in our MEA recordings to 

scotopic and mesopic regimes. Horizontal cells might thus also influence the balance 

between rod and cone activity by utilizing different molecular machinery for feedback 

in each compartment, involving α2δ-3 (rods) or not involving α2δ-3 (cones).  

Considering a putative disturbance of the rod circuitry, A-II amacrine cells would also 

be a good candidate for some of the changes we observed in non-photopic regimes. 

Indeed, glycinergic amacrine cells were reported to express α2δ-3 (Siegert et al., 2012; 

Pérez de Sevilla Müller et al., 2015).  

A cell type-specific knockout of α2δ-3 in horizontal cells or A-II amacrine cells would 

help to elucidate the specific effects of this isoform in certain aspects of retinal 

processing. Especially the possible role of α2δ-3 in horizontal cell feedback to rods 

versus feedback to cones could be interesting to investigate.  
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